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Abstract

This work extends and generalizes biases in honsymmetric kernels.
The practice of obtaining biases of any nonsymmetric kernel when the order
of the smoothing parameter, h, is one is seen not to be sufficient as the error
size for this case is large. A new scheme for higher order biases in
nonsymmetric univariate kernels is proposed. This scheme enjoys not only the
possibility of reducing the size of the global error term (MISE), but also
generalizes the bias term for any nonsymmetric kernels.
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1.0  Introduction

Kernel estimation came to limelight by the workFax and Hodges (1951) [7] and Rosenblatt (1956).[20
Since then the concept has received a lot of &etbecause of its wide applicability to many areé human
endeavour — see Silverman (1986) [23], Wand anesl¢h995) [26], Devroye and Lugosi (1997, 2001 ]j4,5

Baxter et al (2000) [2], Dinardo and Tobias (200d]), Kim and Heo (2002) [9], Osemwenkhae (2003)][12
Osemwenkhae and Ishiekwene (2006) [13], etc.

Generally, let X;, X,,...,X, be a random sample from a density functfprthen the kernel density

: ° 1S (x—X,
estimator f atx is given by: fix,h)=—> k ' 1.1
given by (x,h) nh; ( - j (1.1)

where the kernel functiok(.) is a probability density functiorpdlf) andh is the window width or the smoothing

parameter. All the analytic propertiesiqf) is also inherited byf?(.). The choice of the smoothing parameter has

been seen to be crucial — see for examples, Siker(h986), Hansen (2003), Osemwenkhae and Ogbhonmwan
(2003), Sheather (2004), etc.

Basically, the most general way of placing a measur the global accuracy of in (1.1) as an estimate
for f overall possible data set is the mean integratathred error (MISE) and is usually defined as:

MISE (f (X)) = [bias f (X)dx+ [var f (x)dx (1.2)
Silverman (1986[23]) showed that for any symmetamel of orde® then (1.2) can be expressed as
MISH (X) = % h* V2 j f/(x)2dx+n"h™ j k(t)dt (1.3)

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 497 - 500
Nonsymmetric univariate kernels J. E. Osemwenkhaeand A. O. Isere J of NAMP



The work of Jones and Signorini (1997) and Osemvaek2003 [12]) extended this to wheis of order
m (for anyevenm) and obtained that K{.) is the kernel, then

2
MISE f (X) = 1 hz"vnfj £ (x)2dx + n-lh-lj k(t)2dt (1.4a)
(m)!
1
e _2m
MISE f (x) = 2m+ 1{ {[k dt jf x}z "y 2me (1.4b)

The simplificatlons in (1.3) and (1.4b) are nedessd by the assumption of symmetry kif) - see
Silverman (1986) [23], Simonoff (1996 [24]), WanddaJones (1995 [26]), Osemwenkhae and Oyegue (RA®)6
and Osemwenkhae and Odiase (2006a, b [15, 16]).

In this work the general assumption of symmetrythaf kernel function that has simplified most oé th
available literature would be dropped. Hen&é) can take any of the following nonsymmetric kerndtse
exponential, the weibull, the gamma, the chi-square the Snedecor F-distributions. These denditie® been
seen to be very useful in the field of engineetng the sciences — see Devore (1991 [4]), MugdadiiLahrech
(2004 [11]), Rohatgi (1984 [20]) and Barlow and $utman (1981). So, the need to investigate how liigaberror
(MISE) size could behave at higher order biasesiémsymmetric kernels needed be examined. Fundaiterihe
aim of this paper is to

0] examine the bias term when the ordeha$ one (the fundamental case) and its consequamce
the MISE
(i) propose a generalized bias reduction technigeertically that would help in reducing the

problem(s) ini) above,
(iii) highlight the implicationi{) above of this in nonsymmetric univariate kernels.

2.0 The bias of nonsymmetric kernel (when the order of k(.) isone)
We shall first briefly consider the situation whii'e smoothing parametér is order one as contained in
Osemwenkhae and Orhionkpaiyo (2006 [18]). Suppeasédefine for (1.1) the following nonsymmetric cdrahs:

(i) [k(t)dt=1
(2.1)
(i) V= [t°Kk*(t)dt <o

Also assume thatf'and f"are not only continuous but also square integraslewell aslim h=0 and

n-oo

lim nh=oco. With the definition of (2.1) above, the bias antegrated variance of (X) defined in (1.1) are

n-oo

respectively,
Bias f (x) = Ef (x) - f (x) = —hf'(x)jtk(t)dt+ higherorder ternof h

= —hf'(xV, 2.2)
and [varf (xjdx= nh [k(t)*dt (2.3)

From (2.2) the order dhe biasterm is orderh® and invariably the optimal window
width and theMISH (X) for (2.1) are respectively;

jk 2olt %
2nVJ' dx

Pop: =

(2.4)
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MISE f (x) =

3 : [t patffz /(P ax (2.5)

(2

Equations (2.2), (2.3), (2.4) and (2.5) are fundataleequations in non-symmetric kernels of ordes.d@learly, the
rate of convergence of (2.5) i$”. This would converge but at a very slow rate. This been the existing
pattern/style in literature. For detailed proofs tbé above equations see Mugdadi and Lahrech (2000,
Osemwenkhae and Izevbizua (2005 [14]) and Osemveenkhd Orhionkpaiyo (2006 [18]). So, in the nextise

we shall propose a method of reducing the bias terthexamine the implication of this for the globedor term in
any non-symmetric kernel.

2.0 Biasreduction technique (Proposed Scheme).
Suppose we modify (2.1) by imposing the followiegularity conditions:

(i) [kt)dt=1

(i) [tk(t)dt = [tk(t)dt =...= [ K(t)dt = [tk (t)dt =0 (3.1)

(iii) j 2" (t)dt = J,,_, # 0 for m=1(1)r

The conditions stated in (3.1) are modificationd @nlargements of the conditions in Osemwenkhae an

Orhionkpaiyo (2006 [18]). The bias corresponding(3dl) is obtained by taking the expansion Bf(x), using
Taylor series, t¢2m — 1)thterm to have

Biasf (x) = EF (x)— f(x) = .[h‘lk(%j f(y)dy— f(x)

= [k} f (x-ht)dt - f (x}at (if t= % )
1 _ _ _ .
= ———h*™f @™ (x)| t>"k(t)dt + higherorder ternof h
o (e (et + hig
_ 1
(2m-21)!
All the lower order terms ih drop out because of the nonsymmetric conditior(8.ih) above. Also,

h?mtf @D (x)J, . form=1()r (3.2)

[var f (x)dx = n"h [K(t)°dt (3.3)
Comparing (2.2) with (3.2) shows that for this poeed scheme, the order of the bias has increased f
h* to h®™".Invariably, from MISEf(X) =jBia82 f(x)dx+ jVan:(x)dS, and using (3.2) and (3.3) we get

~ 1 4m-2
MISEf(x)= —————|h" "32 ™9 (x)dx+n"h?|k(t)dt 3.4
(%) ((Zm_l)!)zf ZnafEM(x) [K(t) (3.4)
Invoking equation (3.5b) of Osemwenkhae and |zawi(2005 [14]) we obtain (3.4) explicitly as
4m-2 1 _4m-2
MISE (x) = J gr;“:f[k(t)zdt] 4m-1 [y f (2m-1) (x)dx]4m—1 n 4m-1
4m-2
N2 |am-1 n2]t
1 ((2m-1)1) N ((2m-1)1) (3.5)
((2m—1)!)2 4m-2 4m=-2
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2 _4m-2

From (2.5) and (3.5), the rate of convergencBItBE has increased frorr‘l_5 to N 4™ This

is made possible by the regularity conditions irl)3Invariably, the rate of convergence of MéSE has been
enhanced by this new scheme. Apart from the siztheferror term that has been reduced, conditi8ris) has
helped to generalize the bias term (see equati@)) (@ higher order nonsymmetric kernels.

3.0 Discussion of Findings.

The order of the bias term for the fundamental éash'. This is the simplest form of the bias term in
nonsymmetric kernels. The corresponding order ef NWSE term is n”. This fundamental case has been the

pattern/style in existing literature (see Osemwaeaekdnd Orhionkpaiyo, 2006 [18]). NeverthelesstHi proposed
4m-2

scheme, the bias is of ord&”™™" and theMISE term is of ordern 4m-1 (m=1, 2,3, ..< ®). The proposed

scheme has not only given us the generalized fornth€ bias, but th®lISEin nonsymmetric univariate kernels has

also been reduced when (3.5) is compared with.(2.5)

50 Conclusion

The proposed scheme for higher order bias in nonstnurunivariate kernels has not only reduced the
size of theMISE, but has also generalized the bias term for anpeiethat belongs to this special class. This is
definitely a boost to researchers in general aatissitians in particular.
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