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Abstract 
 

 This work extends and generalizes biases in nonsymmetric kernels. 
The practice of obtaining biases of any nonsymmetric kernel when the order 
of the smoothing parameter, h, is one is seen not to be sufficient as the error 
size for this case is large. A new scheme for higher order biases in 
nonsymmetric univariate kernels is proposed. This scheme enjoys not only the 
possibility of reducing the size of the global error term (MISE), but also 
generalizes the bias term for any nonsymmetric kernels. 
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1.0 Introduction  
 Kernel estimation came to limelight by the work of Fix and Hodges (1951) [7] and Rosenblatt (1956) [20]. 
Since then the concept has received a lot of attentions because of its wide applicability to many areas of human 
endeavour – see Silverman (1986) [23], Wand and Jones (1995) [26], Devroye and Lugosi (1997, 2001 [4,5]), 
Baxter et al (2000) [2], Dinardo and Tobias (2001) [6], Kim and Heo (2002) [9], Osemwenkhae (2003) [12], 
Osemwenkhae and Ishiekwene (2006) [13], etc. 

Generally, let nXXX ,...,, 21 be a random sample from a density function f; then the kernel density 

estimator f̂  at x is given by: ( ) ∑
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where the kernel function k(.) is a probability density function (pdf) and h is the window width or the smoothing 

parameter. All the analytic properties of k(.) is also inherited by (.)f̂ . The choice of the smoothing parameter has 

been seen to be crucial – see for examples, Silverman (1986), Hansen (2003), Osemwenkhae and Ogbonmwan 
(2003), Sheather (2004), etc. 

Basically, the most general way of placing a measure on the global accuracy of f̂ in (1.1) as an estimate 

for f over all possible data set is the mean integrated squared error (MISE) and is usually defined as:  

  MISE ( )(ˆ xf ) dxxfVardxxfbias ∫∫ += )(ˆ)(ˆ2   (1.2) 

Silverman (1986[23]) showed that for any symmetric kernel of order 2 then (1.2) can be expressed as  
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The work of Jones and Signorini (1997) and Osemwenkhae (2003 [12]) extended this to when h is of order 
m (for any even m) and obtained that if k(.) is the kernel, then 
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The simplifications in (1.3) and (1.4b) are necessitated by the assumption of symmetry of k(.) - see 
Silverman (1986) [23], Simonoff (1996 [24]), Wand and Jones (1995 [26]), Osemwenkhae and Oyegue (2006 [19]) 
and Osemwenkhae and Odiase (2006a, b [15, 16]). 
 In this work the general assumption of symmetry of the kernel function that has simplified most of the 
available literature would be dropped. Hence, k(.) can take any of the following nonsymmetric kernels: the 
exponential, the weibull, the gamma, the chi-square and the Snedecor F-distributions. These densities have been 
seen to be very useful in the field of engineering and the sciences – see Devore (1991 [4]), Mugdadi and Lahrech 
(2004 [11]), Rohatgi (1984 [20]) and Barlow and Proschan (1981). So, the need to investigate how the global error 
(MISE) size could behave at higher order biases for nonsymmetric kernels needed be examined. Fundamentally, the 
aim of this paper is to   

(i) examine the bias term when the order of h is one (the fundamental case) and its consequence on 
the MISE   

(ii ) propose a generalized bias reduction technique theoretically that would help in reducing the 
problem(s) in (i) above, 

 (iii ) highlight the implication (ii ) above of this in nonsymmetric univariate kernels. 
 
2.0 The bias of nonsymmetric kernel (when the order of k(.) is one) 

We shall first briefly consider the situation when the smoothing parameter h, is order one as contained in 
Osemwenkhae and Orhionkpaiyo (2006 [18]).  Suppose we define for (1.1) the following nonsymmetric conditions: 
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Also assume that f ′ and f ′′ are not only continuous but also square integrable as well as 0lim =
∞→

h
n
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lim .  With the definition of (2.1) above, the bias and integrated variance of ( )xf̂ defined in (1.1) are 

respectively, 

( ) ( ) ( ) ( ) ( ) h of order termhigher ˆˆ +′−=−= ∫ dtttkxfhxfxfExfBias  
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and    ( ) ( )∫∫
−−≈ dttkhndxxf 211ˆvar      (2.3) 

 From (2.2) the order of the bias term is order 1h  and invariably the optimal window  

width and the )(ˆ xfMISE for (2.1) are respectively; 
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Equations (2.2), (2.3), (2.4) and (2.5) are fundamental equations in non-symmetric kernels of order one. Clearly, the 
rate of convergence of (2.5) is n-⅔. This would converge but at a very slow rate. This has been the existing 
pattern/style in literature. For detailed proofs of the above equations see Mugdadi and Lahrech (2004 [11]), 
Osemwenkhae and Izevbizua (2005 [14]) and Osemwenkhae and Orhionkpaiyo (2006 [18]). So, in the next section 
we shall propose a method of reducing the bias term and examine the implication of this for the global error term in 
any non-symmetric kernel. 

 
2.0 Bias reduction technique (Proposed Scheme). 

Suppose we modify (2.1) by imposing the following regularity conditions: 
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 The conditions stated in (3.1) are modifications and enlargements of the conditions in Osemwenkhae and 

Orhionkpaiyo (2006 [18]). The bias corresponding to (3.1) is obtained by taking the expansion of f̂ (x), using 

Taylor series, to (2m – 1)th term to have 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ }

( ) ( ) h of order termhigher 
)!12(

1

)(

ˆˆ

12)12(12

1

+
−

−=

−=−−=

−






 −=−=

∫

∫

∫

−−−

−

dttktxfh
m

h

yx
tifdtxfdthtxftk

xfdyyf
h

yx
khxfxfExfBias

mmm

 

( ) 12
)12(12

)!12(

1
−

−−

−
−≈ m

mm Jxfh
m

 for m = 1(1)r     (3.2) 

All the lower order terms in h drop out because of the nonsymmetric conditions in (3.1) above. Also,   
  

( ) ( )∫∫
−−≈ dttkhndxxf 211ˆvar      (3.3) 

 Comparing (2.2) with (3.2) shows that for this proposed scheme, the order of the bias has increased from 
121 −mhtoh . Invariably, from ∫ ∫+= dsxfVardxxfBiasxfMISE )(ˆ)(ˆ2)(ˆ , and using (3.2) and (3.3) we get 
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 Invoking equation (3.5b) of Osemwenkhae and Izevbizua (2005 [14]) we obtain (3.4) explicitly as  
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 From (2.5) and (3.5), the rate of convergence of MISE has increased from 3

2
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is made possible by the regularity conditions in (3.1). Invariably, the rate of convergence of the MISE has been 
enhanced by this new scheme. Apart from the size of the error term that has been reduced, conditions (3.1) has 
helped to generalize the bias term (see equation (3.2)) in higher order nonsymmetric kernels. 
 
3.0 Discussion of Findings. 

The order of the bias term for the fundamental case is 1h . This is the simplest form of the bias term in 
nonsymmetric kernels. The corresponding order of the MISE term is n-⅔. This fundamental case has been the 
pattern/style in existing literature (see Osemwenkhae and Orhionkpaiyo, 2006 [18]). Nevertheless, for this proposed 

scheme, the bias is of order 12 −mh  and the MISE term is of order 14

24

−
−

−
m

m

n  (m = 1, 2, 3, …, < ∞ ). The proposed 
scheme has not only given us the generalized form for the bias, but the MISE in nonsymmetric univariate kernels has 
also been reduced when (3.5) is compared with (2.5). 

 
5.0 Conclusion 
 The proposed scheme for higher order bias in nonsymmetric univariate kernels has not only reduced the 
size of the MISE, but has also generalized the bias term for any kernel that belongs to this special class. This is 
definitely a boost to researchers in general and statisticians in particular. 
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