Journal of the Nigerian Association of Mathematical Physics
Volume 11 (November 2007), 475 - 484
© J. of NAMP

I mproving access, reliability and efficiency of a distributed operating system using
replicated distributed object abstraction

Tola John Odule
Department of Mathematical Sciences,
Olabisi Onabanjo University.
Ago-lwoye, Ogun State, Nigeria.

Abstract

This paper presents an alternative distributed oaimg system
architecture based on the concept of replication distributed objects. A
complete or partial copy of distributed object'sas# is placed in each node
where the object is used. Replication algorithmssare copy coherence. For
each object the most efficient access algorithmkitg its semantics into
account, can be applied. This makes our proposedh#tecture a convenient
platform for developing reliable distributed apphtion.

Keywords Distributed object, replication, semantics objetient/server, distributed shared
memory, migrating thread, microkernel.

1.0 Introduction

Distributed operating system is a software platform providapglications with common
execution environment within distributed system, including meansadsa to hardware and software
resources of the system and application communication fesiliuch operating system should meet
three major requirementsorvenient interface, efficiency andrdiability.

11 Convenient Interface

Due to the nature of distributed systems, it is more difficulusers and software developers to work in
them than in centralised ones. Among the complexity factorshaterogeneity of access to local and
remote resources, high probability of faults, asynchronous comntionie@nvironment and non-uniform
memory access. To enable computations in such an environment, theitdidtoperating system must
support a set of abstractions, isolating developers from ted i®mplexities and providing a convenient
interface to all the resources of a distributed system.

This can be achieved by implementing a Single System Iif&$g abstraction, which is based
on abstraction of theistributed object that encapsulates state and functionality of all operatistpisy
components. Objects are globally accessible by their intarfagm all nodes of a system. Applications
are constructed as a collection of distributed objects. Adoe®e hardware resources, as well as the
interaction between software components are reduced to invoking methods emdbpanding objects.
12 Efficiency
Operating system efficiency is determined mainly by tempotaracteristics of access to various
resources. In the distributed environment network latencies beaqgmmauctivity bottleneck. Therefore,
distributed operating system should minimize the influence of eemotmmunication on software
operation.

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

121 Object replication

Is a generalisation of the preferred implementation appesaichwhich complete or partial copy
of a distributed object’s state can be placed in each node where the objedt Ehasstate of an object is
synchronised (replicated) among nodes. Its replica in the node fagattb invocation of an object
method, where the call originates. Communication with the remeykcas is involved only when
required by the replication protocol, such as, when it is negegsabtain a missing part of an object
state.

Distributed communication is thus moved inside the distributgelcblsuch that efficiency of
access to an object is determined by efficiency of thecadmin strategy. Definitely, there is no single
replication strategy, equally effective for all types of objects. 8fheg, the use of any specific strategy or
a collection of strategies should not be imposed. Instead, sgil tools to simplify the construction of
replicated objects should be provided. In effect, for each dassjects the most efficient access
algorithm, which takes into account its semantics, can be applied. edgorithm can be either selected
from a set of existing replication strategies or designed spelsiffoathe given class of objects.

13 Reliability

Support for reliable distributed application development can badawvhrough replication and
persistence. Replication can appear not only as a means airéffaccess to an object but also as a
redundancy mechanism. Providing consistent copies of an objecifferert nodes, for instance, makes
it possible to tolerate up to n-1 node crashes [1]. Thus, replicatilises hardware redundancy of the
distributed system to provide reliable execution of applications.

Persistence is the ability of the objects to exist for utdiehtime, irrespective of whether a
system functions continuously, by keeping a copy of it in non-¥®latorage and synchronising it with
an active copy. The stored object state is thus always correntjrethe face of hardware failures

Another notable architectural concept is component modellingi#th is based on the idea of
constructing software systems from prefabricated reusablepammts. Components should be
independently deployable by a third party, which is not engaged inndasi implementation of the
given component. The component model specifies the environment in wbmoponents operate,
including protected method invocation mechanism, naming service,biating support, garbage
collection service, component development tools, as well as a nuofbadditional services like
persistence, transactions, replication and object trading [3,4,5,6,7].

It is hereby noted that implementation of a distributed componentlrabtie operating system
level has potential advantages over the middleware approachdeEigner of a component-oriented
middleware inevitably arrives at the implementation of semeal machine over the operating system
abstractions, which, naturally, results in significantly reducefbpeance. In order to get rid of this
overhead, we suggest that distributed component model support shouldtidlly idesigned into
operating system based on the abstraction of replicated object.

On the low level, the distributed component model should rely on tloeitexe primitives, which
are essentially different from the ones used by the conventipeaating systems: process or task. This
execution abstraction does not appropriately support interactingtolyeamedium granularity [8].
Therefore, we propose a new execution model, tailored to suit component-b&set sys

In our proposal, all executable code and data belong to objects. édft®bgside within a single
64-bit address space. Also, there is support for the migrdtirgds model [8], in which execution of a
thread, invoking an object method is transferred to the contexteointoked object. This allows the
departure from a server-style object design, where an ohjast one or several threads to process
incoming method invocation.

20 Comparative overview of distributed operating systems

Modern distributed operating systems can be classified iri@ategories, based on the method
of access to distributed system resourchsnt/server systems andilistributed shared memory (DSM)-
based systems. Our model proposes a third approach, based on replicated object

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

In client/server operating systems, all resources of thwildited system are represented by
objects, which are uniformly accessible from all nodes. Hewesbjects are not physically distributed.
Each object is located in one of system nodes under control e¥er peocess. Global availability of
objects is provided by the remote method invocation mechanism, whieh thie distributed nature of
interactions from the client [9].

This architecture is relatively simple; however, it doeg provide a locality of access to
resources and, therefore, does not eliminate the influencetwbrk latencies on the performance of the
system. Also, it lacks reliability mechanisms: failureaokingle node can cause a wave of software
failures all over the systenddmino effect). Furthermore, client/server architecture lacks scatiabds it
does not support load balancing among nodes.

The main idea underlying DSM-based operating system [10] ismtdage common memory in
the distributed environment. The state and executable codeclfabject are globally accessible from
each node by their virtual addresses. On the first accessdbject, the operating system creates local
copies of its pages. The copies are synchronised using mewtogyence algorithms [11], which can be
thought of as universal replication strategies applicabéayotypes of objects. Unfortunately, they often
fail to provide acceptable efficiency of access. To implemificient access to an object the replication
algorithm should take into account its semantics. Algorithmskiwgron the level of virtual memory
pages are obviously unaware of object semantics. Thus, there is a naturafftbeteeen generality and
efficiency of the replication strategy.

In summary, both client/server and DSM-based systems useerenaihods invocation and
memory coherence algorithms correspondingly. These methods hatesd lefficiency, as they do not
take into account semantics of a particular object.

In our proposed model, selecting replication strategy on the bédise object's semantics
ensures the efficient and reliable access to each objectoud$e, there is no need to design special
replication protocols for each class of objects. An extémdibrary of replication strategies can be
included from, which one can select efficient strategy fduaily any type of objects. In addition, other
replication strategies applicable in our model are clienéseeplication and memory object replication.
These strategies reproduce the types of access to distribjgetsatsed respectively by client/server and
DSM-based operating systems; thus making our model a generalisation Glrttresztures.

3.0 Distributed object architecture
31 Preliminaries

All operating system services as well as application swéivare constructed from distributed
objects, which reside in a single virtual 64-bit addresacep Each object exposes one or several
interfaces, identified by its unique 64-bit address, consistirg s#t of methods. Any object, knowing
this address, can invoke methods of the interface from any network @bgkects can be physically
distributed by keeping partial or complete copies of the staseveral nodes. The copy of an object’s
state in one of the system nodes is called distributed atggota. The distribution of the state among
replicas and replica synchronisation is called object replication.

Distributed object architecture aims to separate an ¢bjgemantics and replication strategy. An
object developer implements only the object’'s semanticaratibnality in local (non-replicated) cases,
while a replication strategy supplier implements the reptinasilgorithm. Replication strategy can be
universal i.e., applicable to objects of various classes. Algects of the same class can be replicated
using different strategies. To achieve this goal, we propose distributad alghitecture similar to Globe
[12], shown in Figure 1.

In this architecture, distributed objects are composddaaf objects. A local object,semantics
object, is limited to one node of the distributed system and consistfixadasize section containing data
members and pointers to interfaces (method tables) and thetdetimres dynamically allocated by the
object from the heap. Semantics object contains the distributedt sbpte, exposes the distributed object
interfaces and implements its functionality.

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

To ensure global accessibility of the distributed objectriate by their virtual addresses,
semantics objects are placed to the same virtual memoayidocin all nodes. Replication objects,
complementing the semantics objects in each node, maintainsthbuded object integrity. Replication
object implements the distributed object replication protocol and sitbstimplementations of semantics
object interfaces by its own implementations, which allows iprocess the distributed object method
invocations.

While processing the invocation, it can refer to the semamiiject to execute necessary
operations over the local object state, as well as commanigtt remote replication objects to perform
synchronisation and remote execution of operations. Interface atibatis transparent for other objects
and can be thought of as aggregation of the semantics object i@plication object. Such architecture
eliminates the overhead of supporting replication objects fodigtgbuted objects that have only one
replica. This architecture effectively separates the gbjsemantics and replication strategy and does not
impose any essential limitations on replication algorithms used. Hemn@ach object the access protocol
providing high efficiency, while preserving required reliability guarestean be applied.

Nodel
Tlnte rface
Semantics
object
Node3 w (Noded

(@ Distributed Object with onereplica

Node2

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

Nodel Node2

Tlnterface 1 T Interface 1
Semantics Replication Replication Semantics
object object object object

A =

Semantics Replication L
object object

llnterface 1

Node3 Node4

(b) Distributed object with several replicas

Figure 1. The Distributed Object Architecture
3.2 Class Objects

Objects of the special typelass objects describe classes of local objects in our model
presentation. Encapsulation of class properties by objectssalfoplementing dynamic class loading.
Class objects stores interface implementations and expodlesdsdor creating and destroying instances
of the given class. Classes are stored in a single sysi#rclass Repository, which guarantees the use
of coherent versions of class objects in different nodeorBafreating class instances, a corresponding
class object must be loaded from Repository to memory. Theedsncept of distributed object classes
in this model; instead, the class of its semantics objecideamify a distributed object, since it is the
semantics object that encapsulates the distributed object’ sofueldly.

33 Model Architecture

Figure 2 shows a generalised architecture of our model. listems a microkernel and a set of
distributed objects acting at the user level. The microkesmgborts a minimal set of primitives that are
necessary for operating system construction such as address, $hegads, inter-process communication
(IPC) and interrupts dispatching. Objects implement all ¢ipgraystem and application functionality.
Microkernel-based design offers a number of advantages. One,patestially more reliable than
conventional monolithic architecture as it allows the major part of the opefanctionality to be moved
beyond the privileged kernel.

Two, microkernel implements a flexible set of primitives, julowg a high level of hardware
abstraction, while imposing little or no limitations on operasgygtem architecture. Therefore, building
an operating system on top of an existing microkernel is significantlyr ¢haredeveloping from scratch.
Besides, since operating system services run at user &let than inside the microkernel, it is possible
to replicate or update certain services at run-time, @nestart several versions of a service
simultaneously.

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

Node

1L

Application Objects

Group RPC

Component Model Support

Object Registry, Global Naming Service, Access Control Server
Object Repository

Network

Execution model and M emory M anagement
Protection Domains, Threads, Memory Objects

Microkernel
Address space, Threads, |PC, Interrupts Dispatching

Figure 2: Generalised Distributed Object Architecture

Finally, some of the existing microkernels achieve an IPCopeehce an order of magnitude over
monolithic kernels [13]. Among these are microkernels of the L4 family [1¥5115].

4.0 Object interaction and protection

Objects in our model interact via method call. This type of comeation is synchronous. Each
call is accompanied by a set of input and output parametersfiegpdy the object developer by means
of Interface Definition Language (IDL). The local replica of the invoked object executes athme calls.
In order to guarantee that such a replica will exist antneil be destroyed by the garbage collection
system, a reference is created on an object before ugyngf s methods. Object methods are invoked
through a pointer to one of its interfaces, and, since all objects in our modelaeel lioca single address
space, this pointer is valid in any system node and in any postedomain. Within the domain
boundaries, method calls arguments are placed in stack ancnegsstid control is transferred to the
address specified in the method table of an invoked object.

The protection model of the architecture presented in section 3.3 abogedsdpethree
assumptions:

1) Object methods have no immediate access to the internal state of ¢éioes ob
2) Objects can interact only by method calls
3) Method calls are monitored by the operating system, which vedidzach call within effective

access control policy.

The following three respective mechanisms: protection domains, crosadmata and access
control mechanism provide for these assumptions and form the basis of ouridisus®e following
sections.

4.1 Protection Domains

The protection model of our architecture is based on obj@etien requirement; this means the object’s
state is not directly accessible to other objects. A simtfiress space spans the whole distributed system;
hence, all objects in the system are accessible by thegueirirtual addresses from any network node as
in [4,17].

In order to provide effective object isolation, we introdulse hotion of protection domain.
Protection domain represents a part of a single virtual adsipesg, containing one or several distributed

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

objects. Each object belongs to exactly one domain. Associateéacithdomain is a separate protection

context, isolating internal domain objects from the other objectseirsystem. However, objects inside

domain are not protected from each other and intradomain methodationsc do not require the

protection context switch. While arranging objects in domains, we cortb@éollowing factors:

X Placing objects in different domains protects them from aotatleor deliberate attempts of
unauthorised access;

% Method invocations within domain are more efficient than crossdomain calls;

« Objects use physical memory more efficiently inside a commonauttothan when placed in
separate domains.

Due to the above conditions, intensively communicating objects, wbictlty implement some
functionality, should be placed in common domain. Domains provide globatigsolbf objects within
the framework of a distributed system. If the object has akveplicas, then in every node its replica
resides in the same domain and at the same memory address. Thaghfects are isolated from each
other, then their replicas will be placed in different domainall nodes. Like other primitives, domains
are distributed objects. A replica of each domain is placed in each node, whers thexglica of at least
one object, belonging to this domain.

4.2 Crossdomain Calls

Implementation of crossdomain calls is more complicated, althoughednteracting objects the
difference is transparent. An attempt to access an objesiieuhe local domain triggers a page fault
exception, handled bgrossdomain Adapter (CA), located in the same domain as the object where the
exception occurs. The CA prepares the stack, containing theatimo@rguments, which will be mapped
into the target domain and on which the method will be executed. All arguments Is®t pgpvalue and
by reference, are copied directly to the new stack. To avoidréaion of a separate stack segment for
each crossdomain call, CA uses the stack that the calling thread was runnifgrenhgecall. The top of
the stack is aligned to page boundary and the resulting address ietetkgs the bottom of a new stack,
as shown in Figure 3, which is then passed to a target domdhmtste content of the calling object’s
stack is not accessible to the called object.

Having created the call stack, the CA transfers control to the micrdketmeh then refers to the
Object Registry for the validation of the caller's capabilities to invoke tgiven operation, and finally
maps the call stack to the target domain and transfers control to tek asjibct to complete the call.

Target Stack g
Page Border BP S
Q
o
SP %
Source Stack @
BP

Figure 3: Stack Management during Crossdomain call

43 Crossdomain call validation

At the time of crossdomain call the microkernel refers t® @bject Registry through an
AccessValidate interface to assure the existence of the invoked object’s réplacocal node, and also to
validate the caller’s rights to perform the given operatidre Registry verifies call legitimacy through
the Access Control Server (ACS). Information on objects and rights is cached by the mianeké&s avoid
having to look up the Registry for each crossdomain call, as shoWwigume 4, in order to improve
efficiency of crossdomain communication.

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

Damain 1 Domain 2

Objectl Object 2

‘H
stem Domal n§§ A

Pl
<«

Access
Qhject Cantral

Registly \/ Server

AccessCache

Microkernel

Figure 4: Communication between Microkernel and Object Reegiduring
Crossdomain call.Oashed line shows optimised crossdomain call path)
4.4 Access Control Server

Access Control Server (ACS) is a distributed object, which enfordagla access control policy
across the distributed system by verifying the legitimafyeach call. The ACS implements the
laccessControl interface, used by the Object Registry for crossdomainvalitlation. The main method
of thelaccessControl interface, namelyalidateAccess, confirms or denies the validity of a call, based on
the thread identifier, caller and callee identities andrtheked method. ACS can also expose additional
interfaces, depending on the particular access control model grimepts. Global fulfiiment of access
control rules is provided by the ACS replication strategyr Fstance, on capability revocation,
corresponding notification must be delivered to all ACS replicdmchweontain outdated information.
The overhead introduced by ACS replication is one of the importatdaréato be considered when
selecting an access control model.

4.5 Basic Execution model

The execution model of our architecture is based on the migratiegds concept. At any point
in time each thread runs in the context of a specificcbbfeuring method invocation, execution of a
thread is transferred to the target object. Thus, the threwad ermanently bound to any specific object
or domain. This execution model eliminates the need to ss@parate thread for processing each call or
queuing calls for sequential processing. This results in increaseiémtf of object interaction as well as
simpler and more lightweight object architecture. Since in oodaharchitecture distributed object
invocation is actually an invocation of its local replica, itsloet cause the transfer of thread execution
to a remote node, except when the replication strategy requireationgof object replica between
network nodes*. After completing execution within the migratepkaibreplica, threads return to their
home nodes.

Associated with each thread is attivation stack, which describes the sequence of nested calls,
both intradomain and crossdomain, performed by the given thread. Ea@ntlef the activation stack
stores the address of the object, which performed the invoc&orcrossdomain calls, the activation
stack also stores the processor context. This information allows #ael ttar correctly return from method

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

invocations. In addition, by placing special instructions to tlenehts of the activation stack, the
operating system can control the thread’s behaviour, for exasygpend it, transfer to remote node or
terminate. Execution of these instructions is deferred umilthread returns from method invocation,
having finished all possible modifications of an object’s state.

50 Conclusion

In our model, the abstraction of the replicated distributed bligeased as a building block for both

operating system components and application software. Sinabutestr object’s interfaces are globally

uniformly accessible across the network, the distributed nafuilee system is hidden from application

developers and users. Selecting replication strategy for eaett @lnj the basis of its semantics allows
achieving efficient access, while providing the required ele@rf reliability. The internal architecture of

the distributed object effectively separates its semmatid replication algorithm, which actually reduces
the task of distributed object development to the development of a locakplaated, object.

Our design runs on top of a microkernel, which supports a minighaif rimitives like address
spaces, threads, IPC and interrupt dispatching. Distributed oljgaisment all operating system and
application functionality. We believe that microkernel-based i@aiare improves modularity and
reliability of the system, as well as reduces contrabdfer costs via the kernel, which is especially
important for the system oriented at intensive communication of medainmed objects.

The execution model of our architecture is based on theatimgrthreads concept. This means a
thread is not permanently bound to any specific object or domain, bsfiermexecution between objects
on method calls. The migrating threads model simplifies obj@atlopment, results in more lightweight
objects and improves the efficiency of object communication.

References

[1] Schneider F. (1990), Implementing fault-toleraservices using the state machine approach: ArialtcACM
computing Surveys 22(4) pp.290-319.

[2] Microsoft and Digital Equipment Corporation @%. The Component Object Model Specification. izer$.9.

[3] Object Management Group (1998). CORBAservi€égmmmon Object Services Specification.

[4] Chase J.S. (1995). An Operating System Strectior Wide-Address Architecture. PhD Thesis. Daparit of
Computer Science and Engineering, University of Nifagton.

[5] Dasgupta R.C. et al (1990). The Design and émantation of the Clouds Distributed Operating &ysComputing
Systems Journal, Vol. 3, USENIX.

[6] Elphinstone K., Russell S., Heiser G., (1998upporting Persistent Object Systems in a Singldrégs Space.
Technical Report 9601. School of Computer SciemceEngineering, The University of New South Walgdney.

[7] Skousen A.C., (1994). SOMBRERO: A Very Larga@e Address Space Distributed Operating Systene. Wisesis.
Computer Science and Engineering Department, AdZ&tate University, Arizona.

[8] Ford B., Lepreau J. (1993). Microkernels Sho8lapport Passive Objectroceedings of International Workshop on
Object Oriented Operating Systems.

[9] Rozier M., et al (1998). Chorus Distributed @gténg Systemslournal of Computing Systems.

[10] Dechamboux P., et al (1996) The ARIAS Disttdal Shared Memory: An OvervieSOFEM Seminar, Prague.

[11] Li K., (1986). Shared Virtual Memory on Looge&loupled Multiprocessors. PhD Thesis, Yale Uniivgryale.

[12] Van Steen M., Homburg P., Tanenbaum A.S. (19@%obe: A Wide-Area Distributed Systefroceedings of IEEE
Conference on Concurrency. pp. 70-78.

[13] Liedtke J. et al (1995). Achieved IPC Perfonma (still the foundation for extensibilityProceedings of the 6"
Workshop on Hot Topicsin Operating Systems (HotOS), pp.28-31. Chatham, Cape Cod, MA.

[14] Liedtke J. (1996). L4 Reference Manual (486nfum, Pro). Research Report RC 20549. IBM T. 4tsdh Research
Centre, Yorktown Heights, NY.

[15] Potts D., Winwood S., Hediser G., (2001). Léf@&ence Manual: Alpha 21x64. Technical Report UNSBE-TR-
0104. University of New South Wales, Sydney.

[16] The L4Ka team (2002). L4 Experimental Kerneff@ence Manual, version X.2.

[17] Heiser G. et al (1998). The Mungi single-addrepace operating systedournal of Software Practice and
Experience, 28(9).

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

*For example the port of a traditional UNIX prograrits main () method is called right after theeatjis created and executes
until the object is destroyed. Such an object rhesioved to a remote node, along with all theatisehat are executing within
it.

Journal of the Nigerian Association of Mathematic&hysics Volumell (November 2007), 475 - 484
Replicated distributed object abstraction Tola John Odule J of NAMP

