
Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 467 - 474
Incremental cryptography and security Tola John Odule J of NAMP

Journal of the Nigerian Association of Mathematical Physics
Volume 11 (November 2007), 467 - 474

© J. of NAMP

Incremental cryptography and security of public hash functions

Tola John Odule
Department of Mathematical Sciences ,

Olabisi Onabanjo University
Ago-Iwoye, Ogun Stat, Nigeria

Abstract

An investigation of incremental algorithms for crytograp-
hic functions was initiated. The problem, for collision-free hashing, is to
design a scheme for which there exists an efficient “update” algorithm: this
algorithm is given the hash function H, the hash h = H(M) of message M and
the “replacement request” (j, m), and outputs the hash H(M(j, m)) of the
modified message. Ideally, the update time should depend only on the block
size b and the underlying security parameter k, and not on the length of the
message.

Keywords: Cryptography, incrementality, public hash function, security, efficiency, random
access machine, Turing machine, substitution attack.

1.0 Introduction

Incrementality is fundamentally a practical concern because it is a measure of efficiency. Clearly,
an (ideal) incremental scheme is a win over a standard one, as message sizes get larger. The practical
concern is what is the cross-over point: if incrementality only helps for messages longer than one is ever
likely to get, one is not inclined to use the incremental scheme. The cross over point for the schemes
presented here is low enough to make them interesting.

This is achieved in the constructions presented here. Finally, all security results are stated and
analysed exactly (as opposed to asymptotically) and strive for the best possible reductions. The special
case of this hash function in which the number of blocks n is a constant was presented and analyzed by
Chaum, Heijst and Pfitzmann [5]. Brands [3] provided a proof of security for)(kpolyn = .

Note that the hash functions discussed here are ones of public description. That is, the description
of the function is provided to the adversary trying to find collisions. This is unlike the hash functions used
in applications like fingerprinting, where the description of the function is not available to the collision-
finder!
1.1 Fundamental Consideration

The notion of basic security makes an assumption. Namely, that the signer is in a setting where
the integrity of messages and signatures which he is updating is assured. That is, when a signer applies
the update algorithm to update M and its signature σ , he is confident that this data has not been
tampered with since he created it. This is reflected in the fact that adversary's attack on the update
algorithm consists of pointing to a past (authentic) message/signature pair.

Journal of the Nigerian Association of Mathematical Physics Volume
Incremental cryptography and security

This is the right assumption in the majority of applications of digital signatures. For example, in

the case where one is sending the same message to many parties except with different headers, One signs
one copy and update to obtain the rest. But one keeps the original copy and its signature on one’s
machine--when one updates one knows the original is authentic.

But there are some situations in which one might want an even stronger form of security. For
example, suppose one is remote editing a file residing on an insecure machine, and at any time a virus,
which would tamper with the data, could hit the machine. For efficiency one is incrementally signing the
file every time a change is made to it. But when the
still authentic. (It is impractical to verify authenticity before updating because verification takes time
depending on n and the whole point of incrementality is to update the signature quick).

A new notion of security is hereby formalized under substitution attacks appropriate to the above
setting. It is then shown that substitution attacks can be used to break the above hash
when the hash function is a discrete log based one. This is
strength of the new attacks, and it shows that a “standard” construction (namely hash
become insecure in a new setting!
1.2 Hash Functions

A hash function H is a transformation that takes an input
is called the hash value h (that is,
general computational uses, but when employed in cryptography, the hash functions are usually chosen to
have some additional properties as follows: t
H(x) is relatively easy to compute for any given

A one-way function [10] is a mathematical function that is sig
direction (the forward direction) than in the opposite direction (the inverse direction). It might be
possible, for example, to compute the function in the forward direction in seconds but to compute its
inverse could take months or years, if at all possible. A
for which the inverse direction is easy given a certain piece of information (the trapdoor), but difficult
otherwise.

Damgård and Merkle [9] greatly influenced crypto
hash function in terms of what is called a
function can be defined by repeated applications of the compression function until the entire message has
been processed. A message of arbitrary length is broken into blocks whose length depends on the
compression function, and ”padded'' (for security reasons) so the size of the message is a multiple of the
block size. The blocks are then processed sequentially, ta
current message block, with the final output being the hash value for the message (Figure 1.2).

Figure 1.2: Damgård/Merkle iterative structures for hash functions (

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 467
y and security Tola John Odule J of NAMP

This is the right assumption in the majority of applications of digital signatures. For example, in
the case where one is sending the same message to many parties except with different headers, One signs

opy and update to obtain the rest. But one keeps the original copy and its signature on one’s
when one updates one knows the original is authentic.

But there are some situations in which one might want an even stronger form of security. For
e, suppose one is remote editing a file residing on an insecure machine, and at any time a virus,

which would tamper with the data, could hit the machine. For efficiency one is incrementally signing the
file every time a change is made to it. But when the update algorithm is run, one can't be sure the data is
still authentic. (It is impractical to verify authenticity before updating because verification takes time
depending on n and the whole point of incrementality is to update the signature quick).

notion of security is hereby formalized under substitution attacks appropriate to the above
setting. It is then shown that substitution attacks can be used to break the above hash
when the hash function is a discrete log based one. This is interesting in two ways
strength of the new attacks, and it shows that a “standard” construction (namely hash

is a transformation that takes an input m and returns a fixed
(that is, h = H(m)). Hash functions with just this property have a variety of

general computational uses, but when employed in cryptography, the hash functions are usually chosen to
additional properties as follows: the input can be of any length; the output has a fixed length;

) is relatively easy to compute for any given x; H(x) is one-way and H(x) is collision
[10] is a mathematical function that is significantly easier to compute in one

direction (the forward direction) than in the opposite direction (the inverse direction). It might be
possible, for example, to compute the function in the forward direction in seconds but to compute its

ke months or years, if at all possible. A trapdoor one-way function is a one
for which the inverse direction is easy given a certain piece of information (the trapdoor), but difficult

Damgård and Merkle [9] greatly influenced cryptographic hash function design by defining a
hash function in terms of what is called a compression function. Given a compression function, a hash
function can be defined by repeated applications of the compression function until the entire message has

processed. A message of arbitrary length is broken into blocks whose length depends on the
compression function, and ”padded'' (for security reasons) so the size of the message is a multiple of the
block size. The blocks are then processed sequentially, taking as input the result of the hash so far and the
current message block, with the final output being the hash value for the message (Figure 1.2).

Damgård/Merkle iterative structures for hash functions (F is a compression function)

11 (November 2007), 467 - 474
J of NAMP

This is the right assumption in the majority of applications of digital signatures. For example, in
the case where one is sending the same message to many parties except with different headers, One signs

opy and update to obtain the rest. But one keeps the original copy and its signature on one’s

But there are some situations in which one might want an even stronger form of security. For
e, suppose one is remote editing a file residing on an insecure machine, and at any time a virus,

which would tamper with the data, could hit the machine. For efficiency one is incrementally signing the
update algorithm is run, one can't be sure the data is

still authentic. (It is impractical to verify authenticity before updating because verification takes time

notion of security is hereby formalized under substitution attacks appropriate to the above
setting. It is then shown that substitution attacks can be used to break the above hash-and-sign scheme

interesting in two ways--it illustrates the
strength of the new attacks, and it shows that a “standard” construction (namely hash-and-sign) can

d returns a fixed-size string, which
)). Hash functions with just this property have a variety of

general computational uses, but when employed in cryptography, the hash functions are usually chosen to
he input can be of any length; the output has a fixed length;

) is collision-free.
nificantly easier to compute in one

direction (the forward direction) than in the opposite direction (the inverse direction). It might be
possible, for example, to compute the function in the forward direction in seconds but to compute its

is a one-way function
for which the inverse direction is easy given a certain piece of information (the trapdoor), but difficult

graphic hash function design by defining a
. Given a compression function, a hash

function can be defined by repeated applications of the compression function until the entire message has
processed. A message of arbitrary length is broken into blocks whose length depends on the

compression function, and ”padded'' (for security reasons) so the size of the message is a multiple of the
king as input the result of the hash so far and the

current message block, with the final output being the hash value for the message (Figure 1.2).

is a compression function)

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 467 - 474
Incremental cryptography and security Tola John Odule J of NAMP

2.0 Families of hash functions
The usual definitions of hash families [7] are hereby extended to allow independent consideration

of the security parameter, the block size and the number of blocks. These parameters are denoted k; b; n,
respectively. Below the string H is (the description of) a particular hash function.
Definition 2.0

A family of hash functions is specified by a pair IH ()HevalHGen,= of algorithms.
� The PPT generator HGen takes as input 1k; 1b; 1n and outputs a string H.

� The polynomial time hash evaluation algorithm HEval takes H and a message 1 n
bBM ∈ and

outputs a k-bit string called the hash of M under H.
When the family ()HEvalHGen, is clear from the context, H shall be identified with (),.HHEval and

regard it as a map of nbB to { }k1,0 . In particular H(M) shall be written for ()MHHEval , .

2.1 Incrementality
 The following definition says that an update algorithm lncH is one that can turn the hash of M
into the hash of 2M〈j.m〉.
Definition 2.1
 Let IH = (HGen, Heval) specify a family of has functions. We say that lncH is an update
algorithm for, with running time),,,(⋅⋅⋅⋅T if

 { } bBmnjnbkHGenHnbk ∈∀∈∀

∈∀∀ ,,,11,1,1,,, L

if h = HEval;(H,M) then it is the case lncH(H,M,h(j,m)) halts in T(k,b,n) steps with output equal to
HEval(H,M〈j,m〉).

 The lncH – augment of IH = (HGen, HEval) is the triple IH+ = (IHGen, HEval, lncH). It
should be noted that this definition makes no requirement on the running time T in lncH. So, in
particular, an update algorithm can just run can just run HEval(H,M〈j,m〉) to compute its output. This is
not intended to be excluded--it is a legitimate update algorithm. But of course an update It should be
emphasized that an “ideal” update algorithm is one whose running time does not depend on n. Such an
algorithm would random access a small number of relevant memory blocks (this is where the RAM model
is needed as opposed to the Turing machine model) and do some quick computation before writing the
output back to memory.

3.0 Security

A proof of the security of IH+ takes the following form. Given a collision finder A for IH+(k;1k;
n), construct a discrete log finder B for 4G(k). Now suppose A succeeds in (t,ε)-breaking IH+(k; k; n). The
question considered is for what values of t’,ε’ the constructed algorithm B succeeds in (t’,ε’)- breaking
G(k).

It should be noted that previous works [5, 3] have only discussed asymptotic security, where one
sets)(knn = to some fixed polynomial in k, regards t,ε, t’,ε’ as functions of k, assumes t, ε are

polynomial and non-negligible, respectively, and then shows that t’,ε’ are also polynomial, and non-
negligible, respectively. But for practice it is important to know exactly how the resources and
achievements of B compare to those of A, so that one may know what size to choose for the prime p and
what adversaries one can tolerate with a specific security parameter. Moreover, it is important to strive for
the tightest possible reduction, because this means that the same “5security” can be obtained with a
smaller value of the security parameter, meaning greater efficiency. Thus one wants the effort and success
of B should be as close to those of A as possible.

In this light let's look at the existing reductions to see what they achieve. The proof of [5] only
applies to the case of)1(On = block messages, and in fact t’ seems to grow exponentially with n, so that
this reduction is not suitable for our purposes. Brands [3] proposes a reduction which removes the

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 467 - 474
Incremental cryptography and security Tola John Odule J of NAMP

restriction on n and achieves)3(nKOtt +=′ and nt /∈=′ . The running time of B here is essentially
optimal: one must think of t as much larger than n or k, and additive terms like the O(nk3) correspond to
overhead of B coming from simple and unavoidable arithmetic operations.

The loss in the success probability is more serious. Note that (particularly in this case) n may be
very large. Thus even if A is successful with high probability, the above may only let one conclude that B
is successful with low probability. The reduction has been improved to be essentially optimal. The current
quality of the running time is also preserved, and thus achieve for B a success probability within a small
constant factor of that of A.

The big-oh notation, both in the time as given above and in the following theorem, hides a
constant which depends only on the underlying machine model and can be taken as small in a reasonable
setting. Let U denote some oracle machine, which depends only on our proof and the given family.
Although the statement of the theorem does not say anything about the “size” of U, the proof shows that it
is “small,” and this is important in practice. IH + is the lncH-augmentation of IH.
Theorem 3.0
There is an oracle machine U such that the following is true. Suppose collision-finder A succeeds in (t,ε)-

breaking, IH +(k; k; n). Then discrete log finder AdefB U succeeds in),(∈′′t -breaking)(kG where

)(3nKOtt +=′ and 2/∈=∈′ .

Proof

The algorithm U is first described. Then it is argued that its running time is as claimed and finally
that its success probability is as claimed. On inputs p,g,x algorithm B selects ()1,0,,1 ∈nrr L at random

and ()1,,1,0,,1 −∈ pnuu LL at random. For ni ,,1L= it sets

=

=
=

1,

0,

irifiux

irifiug
ig it sets

()nggpH ,,1; L= . Now it invokes)(HA and obtains distinct messages

 [] [] [] []nMMMandnMMM 2,,1221,,111 KK == (1)

For j = 1, 2 it is now convenient to set tj,i = []ijM . Algorithm B sets ()ititiuir ,2,11
−

=
Σ=α , the

arithmetic here being modulo p . If this quantity is 0 then B has failed, and it halts with no output. So
assume it is non-zero. Now compute an inverse b of a mod p (i.e., pba mod1≡ . Such an inverse always
exists since p is prime, and it can be found via Euclid’s algorithm). B computes

() pttub iiiri
mod. ,1,20 −Σ= =α and halts. B invokes A once. In addition it performs

some arithmetic modulo p of which the dominant part is O(n) exponentiations. This accounts for the
claimed running time. We now turn to justifying the claimed success probability.

Note that the distribution of ngg ,,1 K is uniform and independent and is the same as the

distribution over these quantities that HGen would generate. So the messages found by B in Equation 1
are a collision, i.e., () ()21 MHMH = with probability at least є. Now assuming they are a collision we

have ∏ = ∏ ==n
i

n
i

it
igit

ig1 1
,2,1 . Using the definition of ngg ,,1 K and rearranging terms in the above we

get
() =∏ =

−
1

,2,1
ir

ititiu
x

()
∏ =

−
0

,1,2
ir

ititiu
g . Note that the left hand side is ax . It is now claimed that

with probability at least ½ we have 0≠a . Given this, raise both sides of the above equation to the power

b to get == abxx
()

∏ = =−
0

,1,2
ir

ititibu
g gα showing that α is indeed index ()xpG

g . It remains to

justify the claim. This is argued informally using the following technical fact.

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 467 - 474
Incremental cryptography and security Tola John Odule J of NAMP

3.1 Technical Fact
Let naa ,,1 K be numbers with the property that 01 ≠Σ = i

n
i a . Let nXX ,,1 K be independent

random variables defined by [] [] 2/10PrPr ==== iii XaX for each ni ,,1K= . Let .1 i
n
i XX =Σ=

Then [] 2/10Pr ≥≠X . It is noted that the distribution on ngg ,,1 K is independent of nrr ,,1 K . Thus

the experiment may be thought of as the following game: Choose ngg ,,1 K at random and obtain the

collision from A. Let ()iiii ttua ,2,1 −= for ni ,,1K= . Now choose nrr ,,1 K at random and compute

ir a
i 1=Σ . Viewed this way it is seen that it is the same as the technical fact stated above.

3.2 Efficiency
Hashing an n-block message takes n exponentiations (equivalently, one multiplication per

message bit) modulo a O(k)-bit prime. This is quite good for a number-theory based scheme. How does it
compare with standard hash functions like MD5 or SHA? Let's fix k = 512. In hashing from scratch there
is no comparison--MD5 on 512n bits is far better than n exponentiations. But assuming one is in a setting
with frequent updates. With MD5 [13], there is no choice but to hash from scratch, while in this scheme
one can use the update algorithm to update the hash in two exponentiations. Thus to compare the
efficiency one should ask how large is n before the time to do two exponentiations of 512 bit numbers is
less than the time to evaluate MD5 on a 512n bit string. A computation that yields a reasonable value.

Note, however, that there are heuristics (based on vector-chain addition) to compute
[]

∏ =
n
i

iM
ig1 faster

than doing n modular exponentiations [2].

4.0 A practical version with small description size

The size of (the description of) the hash function in the previous section is O(nk) so that it
depends on the message size, which we assume large. In practice this is too much. Here is a suggested

way to reduce the size to O(k). Let { } { })(1,01,0: kOkf → be the restriction of some “standard” hash

function, such as MD5, to inputs of length k. We now set)(ifig = to be the result of evaluating f at i.

Now the description of the hash function is just the prime p and anyone can quickly compute ngg ,,1 L
for himself. The loss in efficiency is negligible since the time for the arithmetic operations dwarfs the
MD5 computation time.

Although such a construction must ultimately be viewed as heuristic, its security can be discussed
by assuming f is a random function. Extending the proof of security given earlier to this setting is not
difficult and it can be concluded (the following statement is informal) that the scheme just described
satisfies Theorem 3.0 in the random oracle model. As discussed by [1], although this approach (namely
prove security in a random oracle model and then instantiate the random oracle with a standard hash
function) does not yield provable security, it provides a better guarantee than purely heuristic design, and
protocols designed in this manner seem to be secure in practice.

The hardness of discrete log implies, via [12], the existence of standard (i.e., non-incremental)

signature schemes which can play the role of *S in the above. Combining this with the results of Section
3.0 one has established the existence of an incremental signature scheme with short signatures given the
hardness of the discrete log in groups of prime order. This construction however is not too practical
because of the use of the result of [12]. For a practical version one could use El Gamal's scheme [8] or

RSA in the role of *S and the practical version of the hash function presented herein (cf. Section 4.0) in
the role of ,.

The public file is large because the hash function has poly(n, k) size. But it isn't necessary that
each user publishes a hash function. Rather, some (trusted) center can publish a single hash function for
use by all users. Now, a user's public file is just that of the original non-incremental scheme, and this is
poly(k).

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 467 - 474
Incremental cryptography and security Tola John Odule J of NAMP

4.1 The tree hash Function
The tree-hash scheme is probably the first thing that comes to mind when asked to find an

incremental signature scheme. Assuming for simplicity that kb = we recall that the scheme makes use

of a standard (i.e., Not necessarily incremental) collision-free hash function { } { }kkH 1,021,0: → . The
message is hashed by the binary tree construction. That is, in each stage, adjacent blocks are hashed
together to yield a single block, halving the number of blocks per stage. In lg(n) stages we have the final
hash value. This can be signed under the standard scheme.

Now suppose we store all the internal nodes of the tree: formally, include them in the signature.
Now the hash can he incremented by just recomputing the tree nodes indicated by the path from the
updated block to the root of the tree. The security needs again to be reconsidered because we allow the
adversary to attack the update algorithm but some thought shows that the scheme satisfies the basic
security requirement. But the signature is long--incrementality is at the cost of storing about twice as
many bits as in the message. Thus while this scheme may be incremental under the formal definition
presented here, it is too memory inefficient to be interesting in most applications. What is desired are
schemes with short signatures.
4.2 A successful substitution attack

The strength of substitution attacks is hereby illustrated by showing how hash function can be
broken. (In particular this means the scheme in question should not be used in applications like remote
editing a file on a machine, which could be unexpectedly hit by a virus). The attack is interesting in
illustrating how substitution attacks work. It is also interesting in illustrating how a “standard”
construction like hash-and-sign, which is secure in the usual sense, fails to be secure in a new setting such
as remote computing.

For simplicity assume that the messages consist of just one block)1(=n : the attack easily

generalizes to arbitrary n. The hash function is described by):(gp and reduces simply to

()MM ggMH +== 1)(, the operations being in Gp. Let *Sk be the signing key under the standard

scheme, so that the signature of M is),(*1 σσ Mg += where)1,*(** MgSkSig
R +←σ

The adversary F begins with the simple signing request A. The reply she obtains has the form

),(*
AAA h σσ = where A

A gh += 1 . Think of it as the signer having signed A and stored AA σ, on the

insecure medium. Here, set AM =1 .

Now, F makes the incremental signing request)1),,1(,,(CB Aσ . That is, on the insecure

medium, she changes A to B, and asks the signer to substitute C for the first (and only) block of this
message. According to the scheme being presented here, the signer first applies the hash update algorithm

to update the hash: CBACB
AF ggghh +−+++− =⋅⋅= 11)1(. Then he re-signs via),(***

F
R

F hSkSig←σ
. The reply to F is),(*

FFF h σσ = .
What is important to note at this point is that what the signer really believes himself to have

signed is C. Thus, the adversary can simply output),(FCBA σ+− as a forgery. The verification

algorithm will accept Fσ as the signature of CBA +− . But at this point the set of messages whose

signatures have been legally obtained is },{ CALegal = . For appropriate choices of CB, (it suffices

that },{ CAB∉ it is the case that LegalCBA ∉+− . Thus the adversary is successful, and the scheme
is broken with probability one.

Notice that the attack did not find collisions in H, nor did it forge signatures under *Sk . It is not known
whether the attack applies to any instance of the hash-and-sign paradigm, but the above is sufficient to
show hash-and-sign is not in general secure against substitution attack.

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 467 - 474
Incremental cryptography and security Tola John Odule J of NAMP

5.0 Conclusion
A new notion of security is hereby formalized under substitution attacks appropriate to the above

setting. It is has been shown that substitution attacks can be used to break the above hash-and-sign
scheme when the hash function is a discrete log based one. This is interesting in two ways--it illustrates
the strength of the new attacks, and it shows that a “standard” construction (namely hash-and-sign
function) can become insecure in a new setting!

1 n

bB is the space of n-block messages.

2Message consisting of M with block j replaced by m.
3 Take kb =
4PrimeGen is a Probabilistic Polynomial Time (PPT) algorithm, which when fixed on input 1k outputs a k +1-bit prime p identifying a group Gp of
(prime order p). G(k) = {Gp:p Є [PrimeGen(1k)]}. Such roups have been used for cryptography by Croft and Harris [6], Schnorr [14], Chaum and
Van Antwerpen [4].
5In keeping with the philosophy of an adaptive-chosen message attack [11], one must allow the adversary to obtain examples of signatures under
the algorithm given by the hash function.
∗ For example the port of a traditional UNIX program. Its main() method is called right after the object is created and executes until the object is
destroyed. Such an object must be moved to a remote node, along with all the threads that are executing within it.

References

[1] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. Proceedings

of the First Annual Conference on Computer and Communications Security, ACM, 1993.
[2] J. Bos and M. Coster. Addition chain heuristics. Advances in Cryptology { Crypto 89 Proceedings, Lecture Notes in

Computer Science Vol. 435, Springer-Verlag, G. Brassard, ed., 1989.
[3] S. Brands. An efficient off-line electronic cash system based on the representation problem. CWI Technical Report CS-

R9323.
[4] D. Chaum and H. Van Antwerpen. Undeniable signatures. Advances in Cryptology - Crypto 89 Proceedings, Lecture

Notes in Computer Science Vol. 435, Springer-Verlag, G. Brassard, ed., 1989.
[5] D. Chaum, E. Heijst and B. Pfitzmann. Cryptographically strong undeniable signatures, unconditionally secure for the

signer. Advances in Cryptology - Crypto 91 Proceedings, Lecture Notes in Computer Science Vol. 576, Springer-
Verlag, J. Feigenbaum, ed., 1991.

[6] Croft and Harris. Public-key cryptography and reusable shared secrets. In Cryptography and Coding, Clarendon Press,
1989.

[7] I. Damgard. Collision-free hash functions and public-key signature schemes. Advances in Cryptology Eurocrypt 87
Proceedings, Lecture Notes in Computer Science Vol. 304, Springer-Verlag, D. Chaum, ed., 1987.

[8] T. El Gamal. A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Info.
Theory, Vol. IT 31, 1985.

[9] I. Damgård. A Design principle for hash functions. Advances in Cryptology - Crypto 89, Springer-Verlag (1990), 416-
427.

[10] O. Goldreich and L. Levin. A hard predicate for all one-way functions. Proceedings of the Twenty First Annual
Symposium on the Theory of Computing, ACM, 1989.

[11] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme secure against adaptive chosen-message attacks.
SIAM Journal of Computing, 17(2):281{308, April 1988.

[12] M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic Applications. Proceedings of the
Twenty First Annual Symposium on the Theory of Computing, ACM, 1989.

[13] R. Rivest. The MD5 message-digest algorithm. IETF Network Working Group, RFC 1321, April 1992.
[14] C. Schnorr. Efficient identification and signatures for smart cards. Advances in Cryptology - Crypto 89 Proceedings,

Lecture Notes in Computer Science Vol. 435, Springer-Verlag, G. Brassard, ed., 1989.

