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Abstract 

 
The stabilizing potentials and work functions of elemental 

metals were calculated for the flat surface, the (111), (100) and 
(110) faces using the stabilized jellium model. The calculated work 
functions were compared with experimental values and calculated 
values obtained using the ab initio method. The stabilizing 
potentials for the different faces of the metals revealed that the less 
densely packed faces require higher potential for stabilization in 
the stabilized jellium model. The calculated work functions for the 
flat surface of the metals were in perfect agreement with 
experimental values for metals in the low-density limit and the 
agreement with experimental values decreased towards the high-
density limit. The calculated work functions for the body centred 
cubic metals were in good agreement with experimental values. 
The calculated work function for the hexagonal close packed 
metals were in fairly good agreement with experimental values 
while the degree of agreement with experimental values was least 
for face centred cubic metals. The work functions of metals 
calculated in this work revealed that the more closely packed faces 
have higher work functions. The results obtained in this work 
revealed that the stabilized jellium model could be used to predict 
fairly well the work function of metals and calculate other metallic 
properties.  

 
Keywords: Sabilized jellium, metals, work function, metallic faces, electron gas parameter.  

 
1.0 Introduction 

Work function is one of the most important properties of metal surfaces. Work function 
determines the physical and chemical properties of metallic surfaces. Work function of metals 
is an intrinsic property and it is affected by atomic arrangement in the metal and inter-atomic 
distances within the metal.  Work function is very vital in understanding some surface 
phenomenon. Work functions of metals are used to calculate corrosion rates, properties of 
materials for light emitting and photosensitive devices [1]. Work functions can be measured 
absolutely using thermionic emission, photoelectric emission and field emission. Work 
functions can be measured relatively using the retarding potential and vibrating capacitor 
methods [2]. Measurement of work functions is improving with improvement in technology 
and development of better methods of measurement [3-4].  
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Much attention has been paid to the theoretical study of work function. The first theory 
proposed for the work function of metals and the self-consistent many electron calculation of 
the work function metals from first principles within the free electron model produced work 
function of metals that were not in good agreement with experimental values [5-6]. Lang and 
Kohn [7] developed the theory of work function of metals based on the jellium model. In the 
jellium model, the ionic point charges are replaced by a semi-infinite distribution of constant 
positive charges. The work of metals calculated based on the jellium model by solving the 
Kohn-Sham equation self-consistently using the kinetic, exchange, and correlation energies 
based on the local density approximation were only in good agreement with experimental 
values for some simple metals [7]. Mahan and Schaich derived another formula for calculating 
work function based on the jellium model that is equivalent to the formula of Lang and Kohn.  
The formula showed that work function might be related to the ground state energy per electron 
of the bulk metal [8]. Work functions of Al, Li, Na, Mg, Pb and Zn calculated using density–
functional theory of the inhomogeneous electron gas were not in good agreement with 
experimental values [9]. Ab initio calculation of the work function of metals was in fairly good 
agreement with experimental values [10].   

The stabilized jellium model was developed by Perdew et al [11]. It evolved from the 
variational self-consistent method of the ground state properties of metals [12]. The model has 
all the properties of the jellium model with an additional constant potential to the effective 
potential of the metal. The stabilized jellium model has been successfully used to explain the 
physics of slabs, [13-14], clusters [15] and to calculate the bulk modulus of metals [16]. In this 
work, the stabilized jellium model will be used to calculate the work function of elemental 
metals at the flat surface, the (111), (110) and (100) faces. The stabilizing potential at these 
faces will also be calculated and studied.  The calculated work functions will be compared with 
experimental values and work function of metals calculated using the ab initio method. The 
variation of the calculated work function for the flat surface with electron gas parameter will be 
studied. 

 
2.0 Theory 

The energy functional functional of a stabilized jellium is 

)]()()[(3)(3)(],[],[ rnrnrrdwsvrrndRemEnnjEnn +−∫∫ +++++++Ε θδ fp  (2.1) 

where EJ is the total jellium energy given as  

))()()],,[(3
2
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Ts[n] is the kinetic energy functional Exc is the exchange correlation energy functional 
θ([n,n+],r) is the electrostatic potential of the jellium, Em is the Madelung energy, wR is the 
short-range repulsive part of the ionic potential, <δv>ws is the average stabilizing potential 
over the volume of the Wigner-Seitz cell.  
In the stabilized jellium model, the potential is the sum of the ionic potential w(r) and the 
electrostatic potential V(r)  

)()( rVrwV +=δ     (2.3) 
The ionic pseudopotential consists of a long-range attractive part and a repulsive term WR(r) 

acting at a short distance  )()( rRw
r

z
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where wR(r) is a pseudopotential whose repulsive part is 
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where θ(rc-r) is a step function which is equal to one in the cell and zero outside. rc is the radius  
 
of the Ashcroft core radius. The electrostatic potential is given [11] as 
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The average of the potential δv over the Wigner-Seitz cell of radius ro is  
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where RW is the average of the ionic potential  Em is the Madelung energy and ε
−

is the average 

electrostatic energy which cancels the electrostatic energy of the uniform positive background. 
At equilibrium the stabilizing potential is  
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where ts and Exc are the respective kinetic energy , exchange and correlation energy in the local 
density approximation. In this work, we used the correlation energy of Carperly and Alder as 
parameterized by Perdew and Zunger [17].  The stabilizing potential for a metal depends upon the 
exposed crystal face. The stabilizing potential for a face is expressed as [18] 
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where 1 3
0 sr z r= , z is valency, rs is the electron density parameter defined as ( )1 3

3 4s avr nπ=
and nav is the average valence electron density and d is the inter planar distance   

In the stabilizes jellium model, the work function is  
fp vxcVjEW δφ ++−∆=        (2.10) 

where 4 ( ( ) ( ))x n x n x dxφ π
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∆ = −∫ is the surface dipole barrier, n(x) is the electron density 

and n+(x) is the density of the positively charged background. 
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and xc
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d n
−=  is the exchange correlation potential. The face dependent work function is  

facevxcVjEfaceW fp δφ ++−∆=       (2.11) 

where <δv>face is given by equation (2.9) above. 
The stabilizing potential for the flat surface was calculated using equation (2.8), the 

stabilizing potential for the (111), (100) and (110) faces were calculated using equation (2.9). 
The work function for the flat surface of metals was calculated using equation (2.10) while the 
face dependent work function was calculated using equation (2.11).   

 
3.0  Results and discussion 

The stabilizing potential for body centred cubic (bcc) and face centred cubic (fcc) 
metals are shown respectively in figures 1 and 2. The stabilizing potentials for the flat surfaces 
of the metals increase as a rule with increase in the electron density parameter, rs suggesting 
that in the stabilized jellium model, the stabilizing potential depend inversely on the electronic 
concentration. The most densely pack faces (fcc(111)) and (bcc(110)) follow the flat surfaces. 
The stabilizing potential for the bcc(110)  is relatively constant for the bcc metals, but for the 
fcc(111) face, the stabilizing potential increases with rs as a power law. The stabilizing potential 
for the less dense faces (bcc(111), bcc(100), fcc(110) and fcc(100)) has a different trend. In the 
low-density limit, the stabilizing potential of the less dense faces increases with increase in the 
electron density parameter gets to a peak value and starts to decrease with an increase in the 
electron density parameter. For the fcc metals, as shown in fig.2, the stabilizing potential for the 
different faces tend to a constant value in the range of 3.2a.u ≤ rs ≤3.5a.u. From fig.1, the 
stabilizing potential for the bcc metals follow the trend δv111 > δv100 > δv110 > δvflat while from 
fig.2, the stabilizing potential for the fcc metals follow the trend δv110 > δv100 > δv111 > δvflat.. 

These suggest that the less pack faces of bcc and fcc metals requires higher potential to attain 
stability in the stabilized jellium model.  
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Fig.3 is the variation of the calculated and experimental work function for flat surfaces 
of metals with electron density parameter, rs. In the low-density limit, rs ≥3.0a.u, there is a good 
agreement between our calculated work function and experimental values. But in the high-
density limit, rs ≤ 3.0a.u the agreement between the calculated and the experimental values 
decreases with a decrease in the electron density parameter. This may be due to the fact that the 
simple metals are in the low-density limit while the non-simple metals are in the high-density 
limit. The simple metals approximate the jellium model on which the stabilized jellium model 
is based. The properties of non-simple metals are affected by band structure and crystal 
structure, which the stabilized jellium model does not put into consideration.  

The stabilized jellium calculation, ab intio calculation of Skriver and Rosengaard [10] and 
the experimental [1] values for body centred cubic (bcc), face centred cubic (fcc) and hexagonal 
closed packed (hcp) metals is shown respectively in Tables 1, 2 and 3. In Table 1, the stabilized 
jellium calculation reproduced the experimental work function of Li, K, Rb, Cs, and Ba within the 
range of ±0.1eV. For the (111), (100), and (110) faces, the stabilized jellium is in fairly good 
agreement with available experimental results for Fe, Nb, Mo. The ab inito calculation for the above 
mentioned metals for the (111), (100) and (110) faces are generally higher than the available 
experimental values except for Nb(110). As shown in Table 1, the work functions calculated using 
the stabilized jellium model differed maximally by ±0.76eV from the available experimental values 
while the ab intio calculations differed maximally from the available experimental values by 
±0.74eV. As shown in Table 1, for the bcc metals, the work functions calculated using the stabilized 
jellium model follows the trend W110>W100>W111 which is in agreement with the theory of Lang and 
Kohn, [7] that the more closely packed face have the highest work function. This seems to suggest 
that in the stabilized jellium model, the work function of a face depend inversely on the stabilizing 
potential of the face.  

In Table 2, the agreement between the stabilized jellium model calculation of work function 
of fcc metals and experimental values is lower than those of bcc metals. The stabilized jellium 
model calculation reproduced only the experimental work function of Ca that differed by 0.1eV 
form experimental value. The ab initio calculation for the (111), (100) and (110) faces of the fcc 
metals are generally higher than available experimental values and are not in very good agreement 
with experimental values. The stabilized jellium model calculation for the work function of the 
(111), (100) and (110) faces of the fcc metals follows the trend W111>W100>W110 in agreement that 
the more closely packed face have the highest work function [7]. 

 
In Table 3, our stabilized jellium model calculation gave the work function of Gb that 

differ from the experimental value by 0.01eV. In Table 3, about 75% of the work function of 
metals calculated using the stabilized jellium model are in good agreement with experimental 
values for the hexagonal closed packed (hcp) metals apart from the work functions of Be, Co, Cd 
which differed from the experimental values by over 0.76eV.  In Table 3, the calculated work 
function for the flat surface is greater than the calculated work function of the (0001) face. 

 
The difference in our calculated work functions and experimental values may be due to 

the fact that the experimental values are for polycrystalline samples and may be the average 
over different faces. Also, the experimental work functions are affected by purity of the sample, 
the method of measurement and surface distribution of crystal facets [1].  The results obtained 
for the following metals : Li, Na, K, Rb, Cs, Al, Pb, Zn, Mg, Ca, Sr and Ba compares very well 
with the results of Perdew et al.,[11],that calculated the work function of the above mentioned 
metals and did not compare the results they obtained with experimental values. Our calculated 
work function for Li, Na, K, Rb, Cs, Ca, Sr and Ba are close to experimental values although 
generally lower than experimental values. The work function of Li, Na, K, Rb, Cs, Ca, Sr and 
Ba calculated by Perdew et al.,[11] are generally higher than experimental values and they are 
not in good agreement with experimental values. The results of Perdew et al.,[11] for Pb, Zn, 
Al and Mg are lower than experimental values and are not in good agreement with 
experimental values. But our calculated work function for Pb, Zn, Al and Mg are close to 
experimental values but lower than the experimental values. The work function of Li, Na, K, 
Cs, Rb, Ca, Mg, Sr, Ba, Pb, Zn, Mg and Al calculated in this work are in better agreement with 
experimental values than that of Perdew et al.,[11], This may be due to stabilization potential of  
the different faces that was fully considered in this work.     
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The results obtained in this work is in better agreement with experimental values than 
the results of Serena et al.,[19] that performed full-self-consistent calculation of electron 
density and work functions of Li, Na, Cs,Al and Pb at (111), (110) and (100) faces. The 
stabilized jellium model results for the work functions of AL, Li, Pb, Zn, Mg, Na compares 
favourably well with experimental values than the results obtained by Monnier et al.,[9] that 
calculated the work functions of Al, Li, Pb, Zn, Mg, Na within the density-functional theory of 
the inhomogeneous electron gas. 

 
Figure 1: Stabilizing potentials for body centred cubic (bcc) metals 

 
 

Figure 2: Stabilizing potentials for face centred cubic (fcc) metals 

Figure 2: Stabilizing potentials for face centred cubic (FCC) metals 
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Figure 3: Variation of calculated work function for flat metal surfaces and experimental values with 

electron gas parameter. 
 
4.0 Conclusion 

The stabilized jellium model has been successfully used to calculate the stabilizing 
potential and work function of elemental metals and their face dependence. The stabilization 
potential for different faces depends inversely on the electronic concentration of the face. The 
calculated work functions for the (111), (100), and (110) faces for body centred cubic (bcc) and  
face centred cubic (fcc) metals revealed that the most closely packed faces have the highest 
work function.  The work function of elemental metals obtained from the stabilized jellium 
model calculation was in fairly good agreement with experimental values.  The stabilized 
jellium model gave more accurate results for the work functions of bcc metals, followed by 
hexagonal closed packed (hcp) metals and was least accurate for face centred cubic (fcc) 
metals, and majority of the fcc metals are in the high-density limit (rs<3.0a.u).  This shows that 
the stabilized jellium model could be used to calculate and predict the work function of metals 
and other metallic properties. 
 
Table 1: Stabilized jellium, Abinito and experimental work function of body centred cubic (bcc) metals 

 
Metal   crystal rs(a.u)  Face    Work function W (eV) 

             Structure    Stabilized jellium  Ab inito[10]      Exp[1] 
 

Li  Bcc 3.25  flat  2.92    2.9 

        111  2.94 
100  3.36  3.33   

      110  3.64  3.15 
 
Na  Bcc 3.93  Flat  2.57    2.75 

111  2.14     
100  2.64  2.76 
110  2.99  2.94 

 
K  Bcc 4.86  Flat   2.23    2.30 

111  1.45  2.41 
100  2.08  2.34 
110  2.49  2.38 
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Rb  Bcc 5.20  Flat  2.13    2.16
     111  1.26  2.29  
     100   1.94  2.22 

110  2.38  2.32 
 
Cs  Bcc 5.63  Flat  2.02    2.14 
     111  1.08  2.10 
     100  1.79  2.03  
       110  2.28  2.09 
 
Ba  Bcc 3.71  Flat  2.70    2.7 
     111  2.45  2.23 

100  3.21 
110  3.72  2.28 

 
Cr  Bcc 1.86  Flat  4.25    4.5 
     111  4.42 
     100  4.19 

100  5.25 
 
Fe  Bcc 1.86  Flat  4.25    4.5 
      111  4.38  5.54  4.81 
     100  4.75    4.67 
     110  5.01  5.16,  5.78 
 
Nb  Bcc 2.13  Flat  3.88    4.3 
     111  4.17    4.36 

100  4.93 
110  5.49  4.63  4.87 

 
 
Mo  Bcc 1.84  Flat  4.28    4.6 
     111  4.51    4.55 
     100  5.21    4.53 
     110  5.67  5.34  4.95 
 
Ta  Bcc 2.48  Flat  3.51    4.25 
     111  3.72    4.00 
     100  4.39    4.15 
     110  4.84  5.08  4.80 
 
Eu  Bcc 2.98  Flat  3.10    2.5 

111  3.36 
100  4.16 
110  4.70  2.45 

 
Table 2: Stabilized jellium, Ab inito and experimental work function of face centred cubic (fcc) metals. 

 
Metal Crystal   rs(a.u)  Face  Work function W (eV) 

structure    Stabilized jellium Abinitio[10]Expt[1] 
 
Ca  Fcc 3.27  Flat  2.91    2.87 
    110   2.92  2.86 

100   3.27 
111   3.81  2.84 

 
Sr  Fcc 3.57 Flat   2.74    2.59 
    110   2.52  2.42 

100   2.91 
111   3.49  2.39 

 
Pb  Fcc 2.90 Flat   3.16    4.25 

110   3.28 
100    3.87 
111   4.34 

 
Ni  Fcc 2.07 Flat   3.96    5.51 
    110   4.05    5.35 
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    100   4.27    5.22 
    111   4.60    5.04 
 
Cu  Fcc 2.12 Flat   3.90    4.65 
    110   3.99    4.98 

100   4.22    4.59 
111   4.56    4.48 

 
Rh  Fcc 1.95 Flat   4.12    4.98 
    110   4.25  5.91 
    100   4.59    
    111   5.10  6.14 
 
Pd  Fcc 2.28 Flat   3.71    5.12 

110   3.87  5.90  5.6 
100   4.30  5.96 
111   4.85 

 
Ag  Fcc 2.89 Flat   3.16    4.26 
    110   3.24  5.01  4.74 
    100   3.44  5.02  4.64 
    111   3.73  4.40  4.52 
 
 
Pt  Fcc 2.0 Flat   4.05    5.65 
    110   4.19  6.74  5.7 
    100   4.53  6.97 

111   5.05 
 
Au  Fcc 2.39 Flat   3.59    5.1 

110   3.66  6.01  5.31 
100   3.82  6.16  5.47 

    111   4.06  5.40  5.40 
 
Yb  Fcc 2.99 Flat   3.09  
    110   3.17  2.51 

100   3.38 
111   3.68  2.45  

 
Al  Fcc 2.07 Flat   3.96    4.28 
    110   4.08  4.54  4.24 

100   4.37    4.41 
111   4.81    4.06 

 
 
Table 3: Stabilized jellium, Ab inito and experimental work function of Hexagonal closed packed (hcp) 

metals. 
 
Metal crystal  rs(a.u) Face     Work fuction W(eV) 

structure   Stabilized jellium Ab initio[10] Expt[1]  
 
Be hcp 1.88 Flat   4.22    4.98 
   0001   3.34  5.62 
 
Mg hcp 2.66 Flat    3.34    3.66 
   0001   3.25  3.86 
 
Tl hcp 2.48 Flat   3.51    3.81 

0001   3.39 
 
Sc hcp 3.32 Flat   2.88    3.5 
   0001    2.58  3.74 
 
Ti hcp 1.92 Flat   4.16    4.33 
   0001   4.07  4.59 
 
V hcp 1.64 Flat   4.63    4.3 
   0001   4.57  5.2 
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Co hcp 2.07 Flat   3.96    5.0 
   0001    3.88  5.81  
 
Zn hcp 2.31 Flat   3.68    4.33 
   0001   3.59    4.9 
 
Y hcp 2.61 Flat   3.39    3.1 
   0001   3.29  3.38   
Zr hcp 2.11 Flat    3.90    4.05 
   0001   3.79  4.15 
 
Ru hcp 1.93 Flat   4.15    4.71 
     0001   4.04   5.84 
 
Cd hcp 2.59 Flat   3.40    4.22 
   0001   3.31 
 
Gd hcp 2.99 Flat   3.09    3.1 

0001   2.95     
 

Tb hcp 2.92 Flat   3.14    3.0 
   0001   3.00  
 
Dy hcp 2.94 Flat   3.13 
   0001   2.99 
 
Er hcp 2.91 Flat   3.15 

0001     3.01 
 
Tm hcp 2.89 Flat    3.16 
   0001   3.02 
 
Lu  hcp 2.87 Flat   3.18   3.3 
   0001   3.04  3.57 
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