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Abstract 

 The problem studied in this paper is that of obtaining appropriate 
electron density function and a pair potential function for an FCC metal 
within the EAM format.  The approach adopted is to use the experimental 
dilute limit heats of solution of the binary alloys of FCC metals as input 
parameters into Johnson analytical model, (Phys. Rev. B. Vol. 39 12554 
(1989) [1]), for calculating the dilute limit heats of solution; and to try to 
determine the needed functions consistently.  The functions that emerge from 
this approach satisfy the experimental information used as input and 
Johnson’s equation for this same quantity, but they do not support the 
assumption, often employed in literature, of a single exponentially decreasing 
function of r for these functions.  This then constitutes our explanation for the 
hitherto observed discrepancy between theory and experiment.  [See 
references 1 and 3]. 

 

1.0 Introduction 
 The sole aim of this study is to obtain appropriate expressions for electron density and the pair 
potential functions which will best fit into the analytic nearest neighbour model within the embedded 
atom method (EAM).  Before now the problem of obtaining such functions plague most of the research 
works focused on surface defects, alloy energetics and all allied defects. Johnson [1] in an attempt to 
solve this problem and advanced the inflexible single exponentially decreasing expressions for these two 
functions.  The theoretical predictions for the dilute limit heats of solution to the binary alloys of the six 
selected FCC (Cu, Ag, Au, Ni, Pd and Pt) elements from the combination of the functions in the short 
range model of the EAM format showed a remarkable disagreement from the experimental values for this 
some alloy energetics [2, 3], that is, the wrong trends was predicted for the properties of the dilute-limit 
heats of solution of alloys involving Pd.  This disagreement between theory and experiment persisted, 
particularly for the case of Pd in Ni, even in the recent analytic embedding atom potential model 
including a long range force within the EAM format developed by Cai and Ye [3], which was carried out 
in the same spirit as Johnson’s work.  The failure of these two theoretical efforts has prompted us to re-
examine the assumptions of a single exponentially decreasing function of r, often employed for the atomic 
density, in applications of the EAM.  Hence developing a semi-empirical method, which can solve this 
problem within the analytic nearest neighbour within the EAM format, is put in place. 
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 This work is arranged as follows: in section 2, appropriate EAM theory and EAM equations are 
briefly reviewed.  The method of obtaining the expressions for the electron density and the pair potential 
functions is given in section 3. Calculated values of the parameters as surfaced in each of the functions 
are tabulated and presented in section iv, and concluding remarks are made in section 5 
 
2.0 EAM theory 
 Daw and Baskes [4] originally evolved the EAM theory, and its basic ideals can be interpreted in 
the framework of density-functional theory as developed by Hohenberg and Kohn [5].  The significant 
contribution of Baskes et al, is that they have used the ideals within the density functional theory to write 
out the total internal energy for the collection of atoms constituting the metallic solid, the embedding 
energy plus a core-core repulsive potential that can be fully determined by experimental data.  From this, 
the basic equations of EAM [4] as expressed by Foiles et al ]6] for a monatomic metallic solid are given 
as 
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where totE  is the total internal energy for the collection of atoms constituting the metallic solid. 

),( ihρ  is the electron density at the site of atom i due to the contribution from all the other atoms.  The 

summation over n in equation (2.2) picks up the number of the neighbour atoms at some distance r(h,i)
 

from atom i, each of these neighbour atoms contributing same density )( , jnh rρ to the atom at position i.  

Fi (ρ) is the embedding energy as a function of density ρ(r) 
φ(ri, j) is a two-body potential between atoms i and j separated by distance ri, j. 
Equation (2.1) as a function of r can be written as 
   ))(()(6)( rFrrE ρφ +=       (2.3) 
Since there are twelve nearest neighbour atoms in unit cell, thus the ground state equation representing 
equation (2.3) is given as 
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The first derivative of equation (2.3) with respect to r is  )()()(6)( rFrrE ρρφ ′+′=′  (2.5) 

and at r = re this equation reduces to )()()(60 eee rFr ρρφ ′+′=    (2.6) 

The other EAM equations as related to the lattice constants expressed within the equilibrium conditions 
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Alternatively equation (2.7) can be written as 

 [ ] )(
4

582)(
4

)(
4

3
111211 eeee F

a
VWWF

a
raB ρρφ ′′

Ω
−−−′

Ω
+′′=   (2.8) 

  2
1111111 44224

VF
a

tWF
a

r
C

a

ee

ee ′′
Ω

+′
Ω

+






 ′′
+

′
=

φφ
   (2.9) 

   2
1121212 4444

5

4
VF

a
tWF

a

r
C

a

ee

ee ′′
Ω

+′
Ω

+






 ′′
+

′−
=

φφ
  (2.10) 

 



Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 435 - 444 
Binary alloys of FCC metals D. D. Abajingin, J. I. Agbi and J. O. A. Idiodi   J of NAMP 

 

   2
1131244 4444

5

4
VF

a
tWF

a

r
C

a

ee

ee ′′
Ω

+′
Ω

+






 ′′
+

′−
=

φφ
  (2.11) 

 
Be and C11, C12 and C44 are respectively the bulk and the elastic constant written in the Voigt notation.  

2are = , and 43ao =Ω , are respectively the equilibrium nearest neighbour-distance, and the 

volume per atom in FCC lattice that has one atom per lattice and a is the equilibrium lattice constant.  eφ  

is a nearest neighbour repulsive pair potential whose first and second derivatives with respect to the radial 
distance r, are respectively eφ ′  and eφ ′′  {all quantities being evaluated at r = re}.  )( eF ρ′  and  

are the first and the second derivatives of the embedding function F(ρ) with respect to the density 
evaluated at the equilibrium density 1111,, WVeρ  and 12W , are basic parameters of the EAM.  Finally, 

F
IVE is the mono vacancy formation energy.  In the original EAM equations t1 = t2 = 0 and t3 = 0.  These 

equations are obtained at the equilibrium condition r = re.  Equations (2.3) – (2.11) are sufficient to 
determine the known parameters eeeee andWWV ρρφφ ′′′′′′ ,,,,, 1111 .  The expressions for these 

parameters are written below. 
2.1 Expression for V11 
 Since t1 = t2 = φ and t3 = 0, subtract equation (2.11) from (2.10) we have that 
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2.2. Expression )( erρ ′ first derivative of electron density function 

 Daws and Baskes [4] had shown that  11e

3
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Re arranging equation (2.14) in terms of V11 and substitute this in equation (2.13), we have that 
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Re arrange equation (7), by making )( erρ ′′  subject of formula then 
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)( erρ ′′  can absolutely be determined when  )( erφ ′′  is known. 

2.3 Expression for )( erφ ′  and )( erφ ′′  from the EAM Equations 

 From equation (2.6) we have that    
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Subtract equation (2.20) from equation (2.19), thereafter subtract the result from equation (2.8) to have 
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Substitute equation (2.21) and the expression for )( erρ ′  in equation (2.16) to have 

  [ ]
2

11
2

11
441211

5

2

)(11
4423

8
)(

a

VF

r

VF
CCCB

a
r

e

e
ee

′
+

′
−++−=′′ ρφ  (2.22) 

Solving completely equation (2.22) becomes 
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 From the equations above the bulk values of the parameters reflected in the EAM equations could 
be determined, the first and the second derivatives of the electron density and the pair potential functions 
can respectively be determined from equations (2.14 and 2.16) and (2.18 and 2.23). 
 
3.0 Methods for obtaining the alloy functions 
 From the equations (2.1) and (2.2) put together above, three fundamental equations are clearly 
seen, these are (i) embedding energy function, F(ρ), (ii) electron density function, ρ(r) and (iii) pair 
potential function, φ(r). 
 Idiodi [7] have put in place these two forms of embedding function F(ρ) for a monatomic FCC 

metal;  
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of the two functions we have adopted the embedding function of the form in equation (3.1) because it 
readily satisfies Foile’s [6] characterization for embedding function.  When we consider equation (2.3), 
the pair potential function takes the form 

   
6
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 This clearly shows that the potential function is a function of r and ρ.  The function E(r) can 
easily be determined from Rose et al [10] energy equation.  One basic deduction from equation (3.3) 
above is that for a specified value of the pair potential function there is always a compatible value of the 
electron density function.  To be able to specify both the electron density and the pair potential functions, 
this concept of the compatibility of the values of this function is strongly stressed in this paper.  In 
determining these compatible values for these parameters we have used the impurity expressions in the 
set of equations in Johnson’s paper [1], with the provision that the value of the electron density function is 
not known but needs to be determined.  The values of the electron density function thus obtained from the 
procedure are put together in table 4.  These values are first substituted in equation (3.1) to obtain the 
corresponding values of the embedding function F(ρ).  The values obtained are thereafter substituted in 
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equation (3.3) to be able to determine the values for the pair potential function, which are put together in table 
5. 
 The electron density curve fit show humps which can be said to be features of a Gaussian function 
while that of the pair potential is best matched by a polynomial as represented by (Poly. Series) line which is 
better than the exponential function as represented by (Expo. Series 1).  These were accessed from a mat – lab 
programmer.  From these observations we are representing the electron density function by a Gaussian 
function modulated by a polynomial of order seven while the pair potential function is represented by a 
polynomial of order seven, given as, 
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 The choice of polynomial of order seven is most appropriate for this study, six metals are selected.  So 
when an impurity metal is chosen there are five order metals which will in turn serve as the host metal, knowing 
fully that P1 and h1, P2 and h2 are respectively first and derivatives obtainable from EAM equations.  The values of 
the parameters in the functions above are completely defined when the value of β have been determined.  The 
formula derived for the determination of this parameter is given in appendix 1.   

Five sets of simultaneous equations are to be solved in each case as the host metal varies from metal to 
metal respectively with a specified impurity metal.  The values for the parameters in equations (3.4) and (3.5) are 
put together in tables 4 and 5 respectively. 

 
4.0 Results and discussion 
 This model for the FCC metals requires some physical input parameters.  These input parameters are the 
experimental values of the pure metal properties.  They are used as input to determine the functions to be used for 
this work.  These input parameters are the three bulk elastic constants (C11, C12, C44), the bulk cohesive energy Ec, 

Lattice constants ae, the Bulk modulus Be, and the vacancy formation energy FivE .  The pure metal inputs used to 

determine the EAM functions are elastic constants (C11, C12, C44) are in 1012 erg/cm3.  Bulk modulus in 1012 erg/cm3 

and the cohesive energies are in eV  Elastic constants are in 1012 erg/cm3.  The vacancy formation energy FivE  is 

expressed in eV.  The values for these parameters are taken from Ref. [1].  All these are put together in table 1. 
 

Table 1: The physical input parameters 
Metal Cohesive 

Energy (eV) 
Lattice 
Constants 

)(
0

Aae  

Vacancy 
Formation 
Energy 

F
ivE (eV) 

Elastic Constants Bulk 
Modulus 
Be C11 C12 C44 

Cu 3.54 3.615 1.30 1.700 1.225 0.758 1.380 
Ag 2.85 4.090 1.13 1.240 0.934 0.461 1.040 
Au 3.93 4.080 0.90 1.860 1.570 0.420 1.670 
Ni 4.45 3.520 1.60 2.465 1.473 1.247 1.804 
Pd 3.91 3.890 1.40 2.341 1.760 0.712 1.950 
Pt 5.77 3.910 1.50 3.470 2.510 0.765 2.830 

 
 
 
 
 



Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 435 - 444 
Binary alloys of FCC metals D. D. Abajingin, J. I. Agbi and J. O. A. Idiodi   J of NAMP 

Table 2: Calculated EAM parameters for the bulk solid 

ffeVf λα ,),(,1 are model parameters, )( eF ρ  is the equilibrium value of the embedding function at ρe, while 

)( eF ρ′ and )( eF ρ′′ are respectively the first and the second derivatives of the embedding function in equation 

(3.2).  They are expressed in (eV), V11 (ρe) is the charge per unit length and determined from the bulk EAM 
equations. Idiodi [9] have given the method of obtaining the EAM parameters in table 2. 
 Cu Ag Au Ni Pd Pt 

X 10.615 1.0635 1.0321 1.0594 1.0309 1.0459 

)(1 eVf  122.6297 204.2813 3.2195 93.3626 2.2118 21.0187 

fa  0.1195 0.05800 1.30228 0.19054 1.37668 0.68213 

fλ  0.7273 0.7273 0.7273 0.7273 0.7273 0.7273 

)(11 eV ρ  -1.3472 -1.8948 2.2274 -0.7816 2.1971 2.0279 

))(( eVF eρ  -73626 -6.1666 -4.8382 -8.7051 -3.9234 -9.0136 

[ ]ee eVF ρρ )(′  -5.0411 -4.3560 -1.7011 -5.7470 -1.3263 -4.5718 

[ ]ee eVF ρρ )(′′  1.8967 1.4065 2.4564 2.5178 1.9941 3.9881 

 
Table 3:  Calculated EAM Parameters for the Bulk Solids from this model. 

ee ρρ ′,  and eρ ′′  are the equilibrium values respectively, for the electron density, its first and second 

derivatives with respect to r, at an atom site in a perfect crystal.  The dimensions of ρe cancel (that is, it is 
a scaling factor). ee φφ ′,  and eφ ′′  are the values respectively, for the pair potential, its first and the second 

derivatives with respect to r and evaluated at the equilibrium value of the nearest – neighbour distance re. 
These values were determined using equations ((2.4b, 2.17 or2. 18 and 2.23), respectively. 
 Cu Ag Au Ni Pd Pt 

])[( eVF eρ  -7.3643 -6.1665 -4.8356 -8.7025 -3.9234 -9.0164 

Gλ  0.7262 0.7270 0.6545 0.7268 0.6438 0.7009 

Ga  0.0414 0.0206 0.3041 0.0666 0.3065 0.1935 

])[( ee eVF ρρ′  -5.0429 -4.3559 -1.6946 -5.7437 -1.3236 -4.5747 

ee eVF ρρ )(′′  1.8945 1.4060 2.5712 2.5341 2.0796 3.9983 

)(eVeφ  0.6374 0.5527 0.1509 0.7088 0.0022 0.5411 

0

AeVeφ ′  
1.3311 1.4349 0.6407 0.9260 0.5196 1.6754 

20

AeVeφ ′′  
4.0097 3.4668 3.6047 4.2212 3.9128 6.2839 

eρ  11.5453 17.1253 3.4884 5.1737 2.0780 21.4831 








′
0

Aee ρρ  
1.5837 1.9765 2.2685 0.9673 2.3553 2.1974 









′′

20

Aee ρρ  
-0.7849 3.2935 9.6597 -0.6055 10.7060 5.6214 

eV ρ11  -1.3494 -1.8948 2.2274 -0.7816 2.1971 2.0276 
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Table 4:  Calculated values of the electron density function 

 
 Cu Ag Au Ni Pd Pt 

Cu 11.5453 17.4747 24.5771 5.0993 2.3304 23.7185 
Ag 12.8573 17.1253 3.6358 6.2043 2.1839 2.2207 
Au 21.8770 19.0671 3.4884 9.1400 2.4849 3.6742 
Ni 11.5417 17.8859 67.6790 5.1737 2.4223 24.6240 
Pd 2.0596 3.6173 8.1268 7.8541 2.0780 4.8639 
Pt 17.9264 18.1142 3.5364 8.5635 2.0630 21.4831 

 
Table 5:  Calculated values of the pair-potential function 

 
 Cu Ag Au Ni Pd Pt 

Cu 0.6371 0.7015 -0.2036 0.6555 0.5792 0.5962 
Ag 0.6788 0.5521 0.5232 0.7446 0.5423 0.5306 
Au 0.2667 0.1199 0.1509 0.4879 0.1348 -0.0439 
Ni 0.7151 0.8026 -0.2289 0.7088 0.7066 0.6615 
Pd -0.0719 -0.0574 -0.1744 0.1012 0.0022 -0.0538 
Pt 0.4008 0.5289 0.5579 0.5300 0.5478 0.4511 

 
Table 6:  Calculated values for parameters 7654321 ,,,,, PandPPPPPP  

 
   HOST METAL   
 Cu Ag Au Ni Pd Pt 

ββββ 0.532 8.5652 5.8912 8.5652 4.5628 8.5652 
P1 -4.0416 -5.7133 -6.6822 -2.3452 6.5914 6.0673 
P2 -2.0284 -3.3862 40.2019 -1.8756 4.5011 21.4840 
P3 -6.4457e4 6.3573e7 2.607e7 3.6352e^5 1.0536e5 5.9346e6 
P4 -1.3834e6 3.7536e9 1.6048e11 -1.6586e7 -1.5767e8 -1.2903e8 
P5 7.2458e7 7.7005e9 3.415e11 2.4392e8 -4.5929e9 -2.4289e10 
P6 -7.4383e8 6.3819e11 2.9173e12 -1.4583e9 3.9866e9 3.4399e11 
P7 2.2918e9 1.8328e10 8.5944e12 3.0517e9 6.1481e11 3.9903e11 

  
Table 7:  Calculated values for parameters 7654321 ,,,,, handhhhhhh  

 
  HOST METAL    
 Cu Ag Au Ni Pd Pt 

h1 -5.3294 -7.4658 12.5039 -3.1671 651.0429 8.5499 
h2 1.8454 1.1513 2.2730 17.6402 0.0331 89.0337 
h3 -1.0551e4 5.6868e6 1.43638e8 -1.6591e5 -2.2928e8 -36707e5 
h4 -1.5302e5 3.3456e8 8.8302e9 5.2043e6 3.4090e9 7.1090e6 
h5 1.3435e7 6.8469e9 1.8780e13 -6.0171e7 9.9784e10 1.4857e8 
h6 -1.7423e8 5.6662e10 1.6031e12 3.0388e8 -8.6153e11 -2.0574e9 
h7 6.5180e8 1.6257e11 -4.7210e12 -5.66202e8 -1.3326e13 -2.4038e10 
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The curve fits for the analytic functions are shown in figures. 1 - 6 for the electron density and figures 7 – 
12 for the pair potential function. 
 
5.0 Conclusion 
 The problem studied in this paper is that of obtaining appropriate electron density function and a 
pair potential function for an FCC metal within the embedded atom method (EAM).  The approach 
adopted is to use the experimental dilute limit heats of solution of the binary alloys of FCC metals as 
input parameters into Johnson’s analytical model for calculating the dilute limit heats of solution, and to 
try to determine the needed functions consistently.  Both the curve fit and actual numerical values 
obtained for the electron density function and pair potential function satisfy Johnson’s equation for the 
dilute limit heats of solution and also the EAM equations.  However, the functions obtained do not 
support the assumption generally made of a single exponential function of r for the electron density 
function and the pair potential function. 
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