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Abstract

In this work we present results for the influencd wiscous damping
on the response if a finite beam resting on a Pastk foundation using
Galerkin weighted residual method. Results obtainghow that the vibration
amplitude reduces with increase in the damping term

10 Introduction

Beams supported along their length are very common in structumfijurations. This type of
beam problem have beam of most interest to numerous researtihergst studies the foundation is
treated as a one parameter (Winkler) mode. The work of He{@@6) [8] provides a thorough
treatment of the Winkler mode for elastic foundation. Ding (199Bpresented a general solution to
vibration of beams on variable Winkler elastic foundation. Yokoyéft881) [6] studies the vibration of
beam column on a two parameter elastic model using finiteeatemethod. Coskun (2000) [2] studies
the non-linear vibrations of beam on a non-linear tensionless|&ifdundation. The results of the
above authors mostly include the determination of the extenedifttoff regions. Coskun (2003) [1]
studied the harmonic vibrations of a finite bean resting on a Raktyundation (a two parameter elastic
model) but neglected the impact of viscous damping.

In this paper we investigate the impact of viscous damping on the vibratiomaéd&am under
the action of a harmonic load resting on a Pasternak foundation.

20  Problem formulation
Consider a finite beam of length 2L, resting on a tensionlesscdiagtidation, and subjected to a

central concentrated load forge, cosQt as shown below. Following the work of Coskun (2003) [1]
and incorporating the viscous term we have

w n azwl an —
WE" - KW, +(Mb+Mf)at—2+2MbWbE+kW1—p0 cosQt O<x<L (2.1)

9°w, a°w, ow.
—2-m —2-2M, w kw,—2—-kw, =0 <x<o 2.2
G axz f atz b""b 1 at 2 ( )
where Kg = the shear foundation modulus

K = the Winkler foundation modulus
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Wi(x, t) = the vertical deflection of the beam axis in <L

Wa(X, t) = the vertical deflection of the beam axis iR <o
= the beam flexural rigidity

0 = the dirac delta function

P, = the forcing amplitude

Q = the forcing frequency

L = the contact length

M = the mass of foundation/unit length

M, = the mass/unit length of the beam

w, = circular frequency of damping

Figure 1: Beam resting on a tensionless pasternale foundati

3.0 Method of solution

Equations (2.1) and (2.2) will be solved using the method of Galesighed residual method
(WRM) while the resulting system of initial value ptem shall be solved using the laplace transform.
Subject to the following initial and boundary conditions:

W, (0.1) =0=W, (0,1)

W, (L,t) =0=W,(L0)

W/(0,t) =W, (0,t) =0 (3.1)

W/(L,t) =W,(L,t) =0

W, (x.0) =W, (x0) =V
Assuming the solution

O

Wi =3 q,®sin j (3.2)

Putting (3.1) into (2.11) and carrying out the necessary differentiation vee hav

J47T4 0 J 2772 0

—4EI > qj(t)sm—+KJ > qj(t)sm—+(mb+mf)E 2 qJ(t)sm—ﬂx
it = L J j=1 j=1 L

(3.3)

+ 2MpWp 2 qJ(t)S|nﬂ+K 2 qJ(t)sm——Pocoth—O
j=1 L =1 L
It is required that the residual be orthogonal to the base function. Sich th
44 0 i2
| iEI > qj (t)sm—smj— dx+ | KGi > qi (t)sm—smJ dx +
o) 4 J L 0 ) L L
L =1 L4 =1

(Mo =mf) 2 qj(t)smTSmJ_]dXH(\){ZMbWb z q1(t)S|nTS|nJL ]dx+

=1 =1

—
o
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j(l)-K 2 qJ(t)sstmJ—dx Po cothjO le_udxzo (3.4)
j=1

Using the fundamental mode of vibration for k=1 we
4 v 2,2 2
—El Eliq(t) +Kg —E"—q(t) +(mp +ms )Eliq(t)+2M bWp diq(t)+—q(t)
L4 L4 (3.5)

- P cos Qt[L @a- cosn)} =
T

on simplification we have

2 4 4 4 4 4
KgL . L™ L M L KqL
)+ S a) + £ + AT L g + 2B L + 15 g
El Elmr 7T 77 El 7T (3.6)
4 :
=2'OLL[1— cogcosQt
El
2 4
take A, = KL and A= KII , we have
G(t) + 2w, g(t) + K, {1+—} cosQt (3.7)
M, A
Againif C, = K {1+A—°+i}
M,7| m
(3.8)
We have 4(t) + 2w, q(t) + c,q(t) = d cospt
We shall now proceed to apply the Laplace transform to obtain
ds
S?q(s) = 2w, S+co q(s) S (3.9)
S 1
Hence s)=d[ 3.10
s S*+Q% S*+2w, +co (310
So that the inverse Laplace transform gives
_02 co-2w2 - Q2
q(t) = > d > 7 € ;2 sin 02t ——bfwbtwbt
co—-Q“ +4wbhb“-Q Q co—wg (3.11)
- ZWb[coswbt ALl C0S,/co - wkz)t} }
. TK
H WA (X, t) = q(t)smT (3.12)

Also following a similar procedure
- M, w,t {v MW,

W, (x,t) =/
L (%,1) mf P

sin  AQt +V, cos AQt}smT (3.13)
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mf ’mf  mf
2

MW, Ko | K

where An =

4.0  Discussion of results
In figure 2 above we plot a graph of vibration agaitime for various values of the viscous damping

M,w, =u for K1=01 A=05 R =180, p0 =15 Q=10 X=01. It can be shown that the
viscous damping term reduces the amplitude of tifmeof beam increases in the viscous term leadetoease in

the mode of vibration. While in figure 3, we ptbe vertical deflection of the shear layer for wswf the damping

coefficient it is also observed that the dampirrgiteeduces the amplitude of vibration.

fig.3:vertical diflection of shear layer w2(x,t)

vibration

Time(t)

fig.2: vertical diflection of the beam axis w1(x,t)

0.1

e =

time(t)

50 Conclusion

A solution has been presented for the effect oforis damping for the vibration of a finite beaman
tensionless Pasternak foundation subjected to mdmac load. The solution we obtained using thedamental
mode of vibration using the Galerkin weighted rasidmethod and the resulting initial value probleas been
solved using the Laplace transform technique rewsgte also presented for various values of the dagnp
coefficient. Result obtained shows that increasgamping reduces the amplitude of vibrationss #lso observed
that the results obtained shows lower amplitudelftion than that of Coskun (2003) [1] as a resfithe viscous
damping. The flexural layer has a negative phaseasid it is also observed that there is a phaSerdnces in the
mode of vibration of about ¥ of a cycle betweenftéeural layer and shear layer.
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