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Abstract 
 
 In this work we present results for the influence of viscous damping 
on the response if a finite beam resting on a Pasternak foundation using 
Galerkin weighted residual method.  Results obtained show that the vibration 
amplitude reduces with increase in the damping term. 
 
 

1.0 Introduction 
 Beams supported along their length are very common in structural configurations.  This type of 
beam problem have beam of most interest to numerous researchers.  In most studies the foundation is 
treated as a one parameter (Winkler) mode.  The work of Hetenyi (1946) [8] provides a thorough 
treatment of the Winkler mode for elastic foundation.  Ding (1993) [4] presented a general solution to 
vibration of beams on variable Winkler elastic foundation. Yokoyama (1991) [6] studies the vibration of 
beam column on a two parameter elastic model using finite element method.  Coskun (2000) [2] studies 
the non-linear vibrations of beam on a non-linear tensionless Winkler foundation.  The results of the 
above authors mostly include the determination of the extent of the lift off regions.  Coskun (2003) [1] 
studied the harmonic vibrations of a finite bean resting on a Pasternak foundation (a two parameter elastic 
model) but neglected the impact of viscous damping.   
 In this paper we investigate the impact of viscous damping on the vibration of a finite beam under 
the action of a harmonic load resting on a Pasternak foundation. 
 
2.0 Problem formulation 
 Consider a finite beam of length 2L, resting on a tensionless elastic foundation, and subjected to a 
central concentrated load force to Ωcosρ  as shown below.  Following the work of Coskun (2003) [1] 

and incorporating the viscous term we have 
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where   KG = the shear foundation modulus 
 K = the Winkler foundation modulus 
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P0cosΩ t 

 W1(x, t) = the vertical deflection of the beam axis in 0 < x < L 
 W2(x, t) = the vertical deflection of the beam axis in < x < ∞ 
 EI = the beam flexural rigidity 
 δ = the dirac delta function 
 Po = the forcing amplitude 
 Ω = the forcing frequency 
 L = the contact length 
 Mf = the mass of foundation/unit length 
 Mb = the mass/unit length of the beam 
 wb = circular frequency of damping 
 
 
 
 
 
 
 

Figure 1: Beam resting on a tensionless pasternale foundation 
 
3.0 Method of solution 
 Equations (2.1) and (2.2) will be solved using the method of Galerkin weighed residual method 
(WRM) while the resulting system of initial value problem shall be solved using the laplace transform. 
Subject to the following initial and boundary conditions: 
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Assuming the solution 
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Putting (3.1) into (2.1) and carrying out the necessary differentiation we have 
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It is required that the residual be orthogonal to the base function.  Such that 
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Using the fundamental mode of vibration for n = k = 1 we 
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on simplification we have 
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We have   tdtqctqwtq ob ηcos)()(2)( =++ &&&  

We shall now proceed to apply the Laplace transform to obtain 
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So that the inverse Laplace transform gives 
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Also following a similar procedure 
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4.0 Discussion of results 
 In figure 2 above we plot a graph of vibration against time for various values of the viscous damping 

µ=bb wM   for 1.0,10,5.10,180,5.0,1.01 ==Ω=°=== XpiPK λ .  It can be shown that the 

viscous damping term reduces the amplitude of vibration of beam increases in the viscous term leads to decrease in 
the mode of vibration.  While in figure 3, we plot the vertical deflection of the shear layer for values of the damping 
coefficient it is also observed that the damping term reduces the amplitude of vibration. 

 
5.0 Conclusion 
 A solution has been presented for the effect of viscous damping for the vibration of a finite beam on a 
tensionless Pasternak foundation subjected to a harmonic load.  The solution we obtained using the fundamental 
mode of vibration using the Galerkin weighted residual method and the resulting initial value problem has been 
solved using the Laplace transform technique result were also presented for various values of the damping 
coefficient.  Result obtained shows that increase in damping reduces the amplitude of vibrations.  It is also observed 
that the results obtained shows lower amplitude of vibration than that of Coskun (2003) [1] as a result of the viscous 
damping. The flexural layer has a negative phase shift and it is also observed that there is a phase differences in the 
mode of vibration of about ¾ of a cycle between the flexural layer and shear layer. 
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