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Abstract 
 

The static buckling behaviour of an imperfect finite cylindrical shell, 
stressed by either a lateral or hydrostatic pressure, is here investigated by 
assuming that the imperfection can be regarded as the first term in the 
Fourier sine series expansion .The buckling modes are assumed to be in the 
shape of the imperfection which is in turn given in the shape of the classical 
buckling mode .Regular perturbation technique  in asymptotic expansions of 
the relevant parameters is used and a simple expression for determining the 
static buckling load of the structure is determined. It is observed that , this 
procedure, perhaps more than other ones ,can be used to  analyze relatively 
more complicated problems particularly where more demands and restrictions 
are placed on the imperfection parameter. The result is strictly asymptotic. 

 
 
1.0 Introduction 

Several studies have been made, over the years, on the buckling of imperfect cylindrical shells 
subjected to various kinds of loading conditions. Many of these investigations have severally addressed 
infinitely long cylindrical shells under various geometrical and structural limitations of the imperfections. 
Such earlier studies include those by Koiter [1], Amazigo and Fraser [2] and Budiansky and Amazigo [3], 
among others. Virtually all the mentioned investigations addressed the buckling of infinitely long 
imperfect cylindrical shells subjected to static loads. On the other hand, Lockhart and Amazigo [4] 
studied the dynamic buckling of externally pressurized imperfect finite cylindrical shell subjected to a 
step load. As a special report in their investigation, they obtained the static buckling load of the imperfect 
circular cylindrical shell investigated.   The investigation undertaken here takes a detour from the special 
report in [4] and reformulates a general procedure that is suitable to a larger, and perhaps, more intricate 
details of the imperfection of finite circular cylindrical shells. 

 
2.0 Karman-Donnell Equations for finite cylindrical shells 

The relevant dimensional Karman-Donnell equations [1-4], in respect of the normal displacement 
W(X,Y) and Airy stress function F(X,Y) of a finite imperfect circular cylindrical shell of length L, radius 

R, thickness h, bending stiffness ( )2

3

112 υ−
= Eh

D , where E is the Young’s modulus and υ  is the Poisson’s 

ratio with P as the external pressure, are respectively given in respect of the compatibility equation and 
the equilibrium equation as 
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( ) PFWWSXXF
R

WD −+−=+∇ ,,
14    (2.2) 

where X and Y are the axial  and circumferential coordinates respectively and ( )YXW ,  is the stress-free 
initial normal displacement , otherwise called, the imperfection .Similarly, S is the bilinear operator 
defined by  
 ( ) XYXYXXYYYYXX QPQPQPQPS ,,2,,,,, −+=      (2.3a) 

while 4∇ is the usual biharmonic operator, namely 
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and a subscript following a comma indicates partial differentiation. We introduce the following non-
dimensional quantities 
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where ∈  satisfies the inequality 10 <∈< , and is a small parameter which is a measure of the amplitude 

of the imperfection  while λ   is a non-dimensional load amplitude. As in [2-4], we assume the 
following: 
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where the first terms on the right sides of (2.5a,b) are the pre-buckling approximations of the Airy stress 
function and the normal displacement respectively. The parameter α takes the value α =1 if the pressure 
contributes to axial stress through end plates, where as α = 0, if pressure acts laterally. On substituting 
(2.4a,b) and (2.5a,b) into (2.1) and (2.2) and simplifying, we obtain the following:  

( ) ( ) 






 ∈++−=+−∇ wwwSHwf
2

1
,21 x x,214 ξξ    (2.6) 
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and Cλ  is the classical buckling load . We assume simply-connected end conditions on the axial 

coordinate characterized by 
  π0,at  x  0,,  x x ===== xx ffww     (2.8b) 
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3.0 Classical Theory. 
The classical buckling load Cλ is defined as the value of the load parameter λ  for there to exist a 

nontrivial solution to the corresponding linear problem of the associated perfect cylindrical shell. Such a 
result was obtained in [4] as  
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4.0 Perturbation solution. 

The technique adopted here is similar to those by Elishakoff [5] and in the references there cited. 
Our intention is to asymptotically determine the static buckling load, namely Sλ , (using regular 

perturbation method ) which is defined as the maximum load that the structure can  support prior to 
buckling. Based on the result in [4], we assume  the imperfection ( )yxw , in the form   

 ( ) 01b sinx,ny sin1, ≠= byxw    4.1) 
We also assume the normal displacement w(x,y) and the Airy stress function f(x,y) as in the following 
asymptotic series 
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and now substitute (4.2) and (2.5a,b) into (2.6) and (2.7) and equate the coefficients of L1,2,3,i , i =∈ to 
obtain the following equations: 

( ) ( ) ( ) ( ) ( ) ( ) 0 x,121141,11 =+−∇≡
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( ) ( ) ( ) ( ) . , 0at  x   0 x x, x x, π===== ififiwiw       (4.9) 

For the solution of equations (4.3) - (4.9), we let 
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4.1 Solution of first order perturbation equations. 
We substitute (4.10) into (4.3), for i =1, multiply  successively in turn by cosny sinmx  and sinny 

sinmx and get respectively for p = n, q = m 
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We now substitute  (4.10) into (4.4) and multiply the resultant equation in turn, first by cosnysinmx  and 
after by sinnysinmx , using (4.1)  and (4.11) and obtain respectively, in the first and second instances, 
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Thus we have  

 ( ) ( ) xnyww sinsin1
2

1 =                   (4.12b) 
4.2 Solution of second order perturbation equations.  

We next substitute (4.12a,b) into (4.5) and (4.6), for i =2 and simplify to get 
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We assume (4.10), for i =2, and substitute same into (4.13) , multiply the resultant equation by  cosnrysin 
mx and see that , for r = 2  and m odd, we get 
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Similarly, if we multiply (22) through  by  sinnrysinmx and simplify , we get 
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Thus we have  
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By denoting the value of ( )2
1f  at m=1 by ( )2
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f , we have 
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where 2
1

~w  is the value of ( )2
1w  at m = 1. We next substitute (4.10) into (4.14), multiply through  in turn by 

cosnry sinmx  and next by  sinnry cosmx and in the first case , obtain ,using (4.15d) and for r = 2 , m odd 
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On further simplifying (25a), using (20) and (24a-c),we obtain 
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Henceforth, any function, say( )i
kf ,evaluated at m=1, will be denoted as( )i

kf
~

.Thus at m=1, we have, from 
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Similarly, the value of ( )2
1f  at m=1, namely ( )2

1

~
f ,is easily evaluated from (4.15e), using (4.17a-c), as 
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We can now write  ( ) ( )∑
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4.3 Solution of third order perturbation equations.   
We now substitute for terms on the right hand sides of (4.7) and (4.8)  and obtain 
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Next, we substitute (4.10), for 3=i into (4.20),multiply  the resultant  equation through by 
,sinsin mxnry β where r and β are to be determined, and so obtain, for r=1, β =1 
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where ( )3
21f  is the value of ( )3

2f   when r=1, β =1 and ( )3
21w  is the corresponding value of ( )3

2w  Similarly, 

when r=3 with  β =1 and r=1 with β =3, we have respectively 

( )
( ) ( ) ( ) ( ) ( ) ( )

 
2292

3
23

221
,5,3,1

2
11

2
1

1
2

242224n 
2

212

3
23






 +

+−













∑
∞

=






 +






 −





 ++

−=

ξ

ξθω
π

ξ

nm

wm
m

wbwwmmnnmm
H

f
L  (4.23) 

( )
( ) ( ) ( ) ( ) ( ) ( )

2229

3
24

21292
11

2
1

1
2 

,5,3,1

242224n 
2

212

3
24






 +

+−



















 +∑

∞

= 





 +





 +Ω+

=
ξ

ξϕ
π

ξ

nm

wmwbww
m

mnmnmm
H

f
L      (4.24a) 

 



Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 323 - 332 
Buckling of circular cylindrical shell A. M. Ette and Joy U. Onwuchekwa J of NAMP 

where  

,
12

1

12

1

15

1

15

1
m, 

41

1

41

1

21

1

12

1

4 








−
+

+
+

−
+

+
=









+
−

−
+

−
−

+
=Ω

mmmmmmmmm ϕπ         (4.24b) 

where m is odd, and  ( ) ( )3
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respectively . Similarly ( ) ( )3
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On substituting (4.10) into (4.21, for 3=i ,and multiplying through by cosnry sin mxβ ,we get ,for r = 1 
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The value of ( )3
21w when m=1,namely ( )3
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~w , now becomes 
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Thus we write   ( ) ( ) sinxsin3
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3 nyww =      (4.29) 
So far, we write the normal displacement w(x,y) as 
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where 2β  is as in (4.12).  The static buckling load Sλ  , is normally evaluated [1-4,6,7] using the 

condition 
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for w(x,y)  as given in (4.31). The usual procedure [6,7] is to reverse the series (4.31) in the form
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which is evaluated at Sλλ = .On substituting into (4.35) for 31 C   and  C from (4.32a,b), we have 
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  (4.36) 

where (4.36) is evaluated at Sλλ = . 

 
5.0 Analysis of result 

The result (4.36) is an asymptotic formula and is implicit in the load parameter Sλ .It is valid for 

small absolute values of  ∈1b   as well as for the condition ( ) QH  ~  
~

4~5 611 αθω + >0 .The result ,which is 

not asymptotically exact, clearly shows the dependence of the buckling load Sλ  on the various parameters 

characterizing the nonlinear problem .Guided by Koiter’s observation [1,4], the applicability of the result 

is limited to imperfection whose amplitude is less than one half of the shell thickness 
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approximate value of (4.36) can be obtained by setting 1≈Q ,to get 
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where ( )
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The approximate results (5.1a,b) are valid provided 0<b  . We can regard b as the imperfection-
sensitivity parameter of the structure. In this case, the structure would be said to be imperfection -

sensitive if 0<b , and imperfection-insensitive if 0>b .The case 1≈Q  implies that we have neglected 

terms of orders ( ) 2 1
2w  and ( )1

2w  in (4.28a) so that the resultant imperfection-sensitivity parameter  b does 

not depend on the load parameter Sλ .  If we substitute for Cλ from (3.1), into (4.36) and (5.1a), we get 

respectively 
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We readily observe from (5.2a,b) that the loss in the buckling  strength of the structure is of order 3

2

∈ .  By 
using an alternative procedure ,a similar result  was obtained in [4]  as  

 ( ) 0b̂ ,   
4

ˆ3
 31 S1

2

1

2

3

<∈









−=− λλ b

b
S        (5.3) 

where b̂  is the imperfection-sensitivity  parameter  as defined in [4].The apparent lengthy nature of 
(5.1a,b) and (5.2a,b) notwithstanding, the striking similarities between (5.2a,b) ,on  one hand, and (5.3) on 
the other hand ,must be appreciated. However the result (5.3) is asymptotically exact. We  observe that 
unlike the results (5.1a,b), the dependence of the static buckling load Sλ on the parameters characterizing 

the problem is primarily concentrated on the imperfection sensitivity parameter b̂  in (5.3).We must stress 
that  while the treatment in [3] focused on highlighting the range of imperfection sensitivity of the 
structure and did not incorporate imperfection in its formulation, the present investigation actually 
determines the effects of imperfection on the static buckling load of the structure.  
 
6.0 Conclusion 

This investigation has concentrated solely on the use of asymptotic analysis in a regular 
perturbation appraisal of the problem. We opine that this method is suitable for analysis of more 
complicated problems including cases where more demands and restrictions are specified on the 
imperfection. 
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