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Abstract

The static buckling behaviour of an imperfect finite cylindrical shell,
stressed by either a lateral or hydrostatic pressure, is here investigated by
assuming that the imperfection can be regarded as the first term in the
Fourier sine series expansion .The buckling modes are assumed to be in the
shape of the imperfection which isin turn given in the shape of the classical
buckling mode .Regular perturbation technique in asymptotic expansions of
the relevant parameters is used and a simple expression for determining the
static buckling load of the structure is determined. It is observed that , this
procedure, perhaps more than other ones ,can be used to analyze relatively
more complicated problems particularly where more demands and restrictions
are placed on the imperfection parameter. The result is strictly asymptotic.

1.0 Introduction

Several studies have been made, over the years, on the buckimpesfect cylindrical shells
subjected to various kinds of loading conditions. Many of thesestigetions have severally addressed
infinitely long cylindrical shells under various geometricadl atructural limitations of the imperfections.
Such earlier studies include those by Koiter [1], Amazigo and H2lsend Budiansky and Amazigo [3],
among others. Virtually all the mentioned investigations adddceghe buckling of infinitely long
imperfect cylindrical shells subjected to static loads. @& dther hand, Lockhart and Amazigo [4]
studied the dynamic buckling of externally pressurized imperfrite fcylindrical shell subjected to a
step load. As a special report in their investigation, theyirsdmlahe static buckling load of the imperfect
circular cylindrical shell investigated. The investiga undertaken here takes a detour from the special
report in [4] and reformulates a general procedure thattsbdeito a larger, and perhaps, more intricate
details of the imperfection of finite circular cylindrical shells

20 Karman-Donnél Equationsfor finite cylindrical shells
The relevant dimensional Karman-Donnell equations [1-4], in reghe¢lse normal displacement

W(X,Y) and Airy stress functioR(X,Y) of a finite imperfect circular cylindrical shell ofrgth L, radius
3

. , , Eh . , :

R, thickness, bending stiffnesd = AL whereE is the Young's modulus and is the Poisson’s
12(1—0 i

ratio with P as the external pressure, are respectively given in tegpdte compatibility equation and

the equilibrium equation as

1 4. 1 —
— O - =W, xx =-SW,=W +W 2.1
= 2 VXX 5( > J (2.1)
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DD4W+%F,XX=—S(\N+W,F)—P (2.2)

whereX andY are the axial and circumferential coordinates respéytarel W(X,Y) is the stress-free

initial normal displacement , otherwise called, the impedectiSimilarly, S is the bilinear operator
defined by

S(P’Q) = Py Quy TPy Qo =2P, 5y Quyy (2.33)
while O%is the usual biharmonic operator, namely
2 Y
0* = + 2.3b

and a subscript following a comma indicates partial differeatialWe introduce the following non-

dimensional quantities
2rp L2 /12(1—02)
A= A=

7X Y w w
X=— ,y=—,0wW=— w=— VA= (24&)
L " R h h 72D 72 Rh
2 AY . _h
=——~ ,K{$)=-|——| H=— 2.4b
Gy <Ol = e
wherel satisfies the inequalit§) <[1<1, and is a small parameter which is a measure of the tanpli
of the imperfection whiled is a non-dimensional load amplitude. As in [2-4], we assume the
following:
1 5 1 o) Eh2L%f
F =——PR{X +=aY j+— (2.5a)
2 2 7'12R(1+ {)2
PRZ(l—aZUJ
W= +hw (2.5b)
Eh

where the first terms on the right sides of (2.5a,b) arergbyrckling approximations of the Airy stress
function and the normal displacement respectively. The parametdes the valuer =1 if the pressure
contributes to axial stress through end plates, whem a9, if pressure acts laterally. On substituting
(2.4a,b) and (2.5a,b) into (2.1) and (2.2) and simplifying, we obtain the following:

0% - (1+8)2w, y x =—(1+&)? H§(W,%W+DV_VJ (2.6)

EREINELS xx+/MC[%(W+DV_V)v xx+f(w+Dv‘v),yy} =-HK(&)S(w+DW,f) (2.7

where

2
2 42 3

—4_| 0 0 s .
%=L+ % | T=Mc.A=2;
[ax2 ayZJ Ac (2.8a)

S(P.Q)=P.xx Qyy*P.yy Qxx=2P.xy Quxy
and A. is the classical buckling load . We assume simply-connectedcenditions on the axial
coordinate characterized by

w=w, =f=f,  =0at x=0,7 (2.8b)

IXX IXX
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3.0 Classical Theory.
The classical buckling load.. is defined as the value of the load parametefior there to exist a

nontrivial solution to the corresponding linear problem of the assatperfect cylindrical shell. Such a
result was obtained in [4] as

e 02512 - @rE)?KE)
(1 E) (1+ nzsz (3.1)

?”‘2“]

N
@]
1
VS
Q

4.0  Perturbation solution.
The technique adopted here is similar to those by Elishakoff [Sinatié references there cited.

Our intention is to asymptotically determine the static bogkload, namely Ag, (using regular
perturbation method ) which is defined as the maximum load tkastthicture can support prior to
buckling. Based on the result in [4], we assume the imperfew((my)in the form

W(x, y)=by sinnysinx,by #0 4.1)
We also assume the normal displacemg(xty) and the Airy stress functioffx,y) as in the following
asymptotic series

f(X! y) _ - f(i)(X, y) i
(W(x, Y)J ) ;{\N(i)(x, y)}D (4.2)

and now substitute (4.2) and (2.5a,b) into (2.6) and (2.7) and equate thei@usfiofd' ,i =1,2,3;--to
obtain the following equations:

L(l)(f (1)""’(1)) =54t 0 — @+ 620l =0 (4.3)
L)1), w0) =Tl - k(@)1 @, + Mc[%[w(l) 0w +W)'yy} 0 (44)
L(l)( ¢(2) W(Z)j -1+ &)2H B §(W(1) | W(l)j . §(W(1) , \,—vﬂ (4.5)
L(Z)( f (2),W(2)) - _HKig(W(l), f (1)) . §(v—v, f (1)H (4.6)
L(l)( ¢, W(S)) - {1+ &)2H [g(w(l) , W(Z)j . §(W(2) | \,—VH @.7)
L(3)( f (2),W(2)j - _HKié(W(l)’ f (2)) . §(W(2), f (1)) + §(V—v, f (Z)H 4.8)
) 2wy =10 =10 =0 at x=0, (4.9)

For the solution of equations (4.3) - (4.9), we let

(i) S (i) (i)
e e
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4.1 Solution of first order perturbation equations.
We substitute (4.10) into (4.3), foe=1, multiply successively in turn by cosny sinrard sinny
sinmx and get respectively fpr=n, g=m

2 2
m2 + nzf m2 + nzf

We now substitute (4.10) into (4.4) and multighg tresultant equation in turn, first by cosnysin@xd

after by sinnysinmx , using (4.1) and (4.11) ahthim respectively, in the first and second instanc

ACA(Z + nzfj
w£1) =0 and W(21) = Boby , Bp = 5 (4.12a)
2
2 a 2 A
1+ncé| -A /1(+n Ej+
portef e 2
Thus we have
w? = wd sinnysinx (4.1
4.2 Solution of second order perturbation equations.
We next substitute (4.12a,b) into (4.5) and (4d), =2 and simplify to get
2
L(l)( i) W(Z)j =-(1+&)2n2H [% ng) + blwgl)} (cos2ny+ cos2y) (4.13)
L(Z)[ f (2),W(2)j = - HKn? [blfz(l) + ng) fz(l)} (cos2ny+ cos2y (4.14)

We assume (4.10), fdr=2, and substitute same into (4.13) , multiply rbgultant equation by cosnrysin
mx and see that , for= 2 andm odd, we get

22—t !
7T

f(2 =M (4.15a)
' (m2 + 4n25)2

where

Ql=-(1+f)2n2HEvv£“2+b1W£”} (4.15
Similarly, if we multiply (22) through by sinnriysnx and simplify , we get

f2(2) =0 (4.15¢)
Thus we have

£ = > f% cos2nysinmx (4.18

m=135, -
By denoting the value of,? at m=1 by f?), we have
2 ~
£, s (L+2) lez (4.15€)

A+ an2ef [+ 4n%¢)
where W is the value ofn? atm= 1. We next substitute (4.10) into (4.14), muitiiirough in turn by
cosnry sinmx and next by sinnry cosmx and irfitise case , obtain ,using (4.15d) andrfer 2 ,m odd
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4Q | 4mA%Qy

mir 2
) 1+ E)z(mz +4n25)
w™ = 5 (4.16a)
2 2 2
(mz + 4n25) M| I s an?e [+ A
2 m2 + 4n2<‘
Q= —Han[blfz(l) +w(21) fz(l)} (4.160)
On further simplifying (25a), using (20) and (29aae obtain
W =hawd) +a,w® (4.172)
where
AHKM?n2(1+£)2  4HmM?A?
2 2
mn(m2 + nzg‘) lr(m2 + 4n25)
ay = > (4.1B)
2 2 2 a m2 2 m2A
(m +4n fj ~ M van2g |+ MA
2 m? + 4n25
AHKMPn2(1+£)2  2Hmn2A2
2 2
m77(m2 + nzfj /7(m2 + 4n25j
as = (4.17¢)
2 2 2 a m2 2 m2A ?
(m +4n fj M| ———+4n"¢ |+ 5 o
2 m< +4n“<§

Henceforth, any function, saﬁfi) ,evaluated at m=1, will be denoted%@ .Thus at m=1, we have, from

1) 2

L ) and where

(4.16a) - (4.17c)é? = W2 where W_F) = blﬁlwg) + ﬁzwg
AHKkn2(1+ €2 4HN2AZ
2 2
[1+ nzfj [1+ 4n25j

ay = , (4.17d)
2 A )
2 a2
1+4n -Ac| —+4n +
Vg ( 5) C( 2 5} [1+4n25]
aHkn2(1+£)2  2Hn2A2
2 2
(1+ nzfj (1+ 4n2<‘)
o= (4.17€)

2
2
22 _ (9 4 an? A
i (“4” ‘tj MC(Z“‘” EJ+[1+4n2<{J
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Similarly, the value offl(z) at m=1, namelyﬂ(z),is easily evaluated from (4.15e), using (4.17aas),

- 2
fl(z) = blﬁgwgl) + 574ng) where
2 2 2 2
Gg=-| || @+ MR gy 2|7y 20T (4.18)
1+4n<¢& T 1+4n<¢& T
We can now write W2 = ZW{Z) cos2ny sinmx (4.19)

m=135,---
4.3 Solution of third order perturbation equations.
We now substitute for terms on the right hand saddg.7) and (4.8) and obtain

PRSI ()

m=135,-- (4.20)

2

X{ (4n2 +m2n )sinxsin ny cos2ny sinmx }— 4mn“ cosny sin2ny cosxcosmx}

) 2 [l )

m=135, - (4.21)

{ (4n2 + mznz)sin X sinny cos2ny sinmx }— 4mn?2 cosny sin2ny coSXcosmMx }

Next, we substitute (4.10), foi =3into (4.20),multiply the resultant equation thgbu by
sinnrysin Smx, where r andS are to be determined, and so obtain, for r851

2

N I OO BN (LR

(e efomeuf)

> (4.22a)
)
where wm = E[z 1 1 }gm - E{ 1 1 } (4.2B)
4 1-2m 1+2m 412m+1 2m-1

where £ is the value off¥ when r=1,8=1 andw{ is the corresponding value o> Similarly,
when r=3 with =1 and r=1 with3 =3, we have respectively

2[  w
2H(1+¢) [ 3 {am(mz +m2n2j 46, }( () ( )+ w( )ﬂ—(h )2m2W£33)

f(S) __ ;7'2 m=135,--

(4.23)
23

(mz +9n2£)2

WL:E,S,..{Q (4”2*m2”2J+4¢mm“2}(W9)W§2)+MW52))}‘9”“2(“‘:)2W§) (4.243)
(9m2+n2<‘j2
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where

szfl ! .1 Pm = 1+l+1+l, (4.28)
42m+1 1-2m 1-4m 1+4m 5m+1 5m-1 2m+1 2m-1

wherem is odd, and f2(3 and f24 are the values off2(3) when r=3 with =1 and r=1 with 5=3

respectively . Similarl 22) and W(;;) are the values owf) for the two respective combinations of r
and S. Of the values in (4.22a) — (4.24b), it is orh;&?), evaluated at m=1,that will yield a buckling

mode in the shape of the imperfection By dendliylg?z(s) the value offz(f) at m=1, we write

3 2011+ &)2H 5y + 491( + le( )) L+ {)ZVT/gS)
f —
2 2
(1+ nzf) n2 (1+ nzf)
where &, and glare the values ofu, and &, respectively at m=1 am'zl'/gs) is also the value owg) at
m=1. By multiplying (4.20) by cosnry sjfmx, we get
=0 (4.26)
On substituting (4.10) into (4.21, for= 3,and multiplying through bgosnry sinsmx ,we get ,for = 1
and 8 =1, (using(4.22a,b))
2
Z(mzAj H ©

3 ”.H%(mhmznz)ﬂmz%}{ W ()+le( )H

(4.25)

HAZ 2 T ) (2), )0, () 2, 22\, 42
- f f f 4 4 g
3 _ (1+<‘)2m:1,235,..[w2 1T me( o ¢+ am m}
Wo1 = ,  \2
2, 25 I’y (a . 2{j+ m<A
(m n ) c n 2 +n2e
(4.27)
The value ofv\éi)when m=1,namely@? , now becomes
2.2 ~ A 2 3
v~vg3’) AN H,(Bsfl+491){ blwgl) as +56Wg1) +bfﬁ7wg1) } (4.28a)
2
where BL= (1+n25) MC( in 5} A (4.28)
2 1+ nZE
s 2(a'1+a'2) 673 1+ )22+54 - 20 54 (1+{)2522 (4.28¢)
i A
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a_ _ a3
77(1+ nzsz L+ 5)2

Thus we write w® = w sinnysinx (4.29)
So far, we write the normal displacement w(x,y) as

W(X. y) =0 W(1)+ DZ W(2)+ D3 W(3) +...

a7 =

(4.28

) 4.30
=Dw(1) sinnysinx+ 02 > W(Z) cosZnysinmx+D3 W(S)sinnysinx+-~ ( )
2 m=135 1 2

In reality, we have merely written down the terfi$ ZV\ﬁ(Z) cos2nysinmx In (4.30) mainly for
m=135,

completeness because ,as terms of drflegthey are not in the shape of the imperfectiotdid). They
are henceforth omitted. Despite this omission ,westmhowever still note that the very terms

Zvvl(z) cos2nysinmx, have been used in determining the te&h (or VT/(23)) which is of order

m=135, -
.Thus, we now recast (39) simply as

w=0C,+* C, +0 () (4.31)

where

C= ng) sinny sinx= B2b1 sinny sinx, (4.32a)
202003 57 1 45 ) 5o 0cinmy i
n“A“wS” H\5w + agQsinny sinx

C3 =Wg3)sinnysinx: 2 ( “ ﬁ1451) 62 Y (4.32)

1] oo L s 25D 2
Q [ +56{a5b1W2 +ha7wy (4.32¢)

where B, is as in (4.12). The static buckling loat} , is normally evaluated [1-4,6,7] using the
condition

au_, (4.33)
dw
for w(x,y) as given in (4.31). The usual proced{f¢7] is to reverse the series (4.31) in the form
O=dw+dw +--- (4.34a)
By substituting into (4.34a) for w(x,y) from (4.3ahd equating the coefficients @fand [ ,we have
1 C
d=—,d,= - =3 4,
1 Cl 3 Cl4 ( 33‘9
where ,it must be stressé€t}, and C,depend on A .The full invocation of (4.33) eventually yields
=216 (4.35)
37 3cC,
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which is evaluated ad = A5.On substituting into (4.35) fo€, and C,from (4.32a,b), we have
3

2 2 a 2 A 2|2
e sl

(4.36)

=¥lb1 ElAAsAcn[%mzfjJ(s@+451)H56Q

where (4.36) is evaluated dt= A .

5.0 Analysisof result
The result (4.36) is an asymptotic formula andviplicit in the load parametei.It is valid for

small absolute values ob, I as well as for the conditio(ﬁcﬁ + 46~?1)H as Q>0 .The result ,which is

not asymptotically exact, clearly shows the depandef the buckling loadg on the various parameters
characterizing the nonlinear problem .Guided byt&&s observation [1,4], the applicability of thesult

is limited to imperfection whose amplitude is lésan one half of the shell thickneEEe L< %j . An

approximate value of (4.36) can be obtained byrge® = 1,to get

3
2| o 1
2
(1+n2£) —ASAC[g+n2$]+( A J :£b1QAASACn(£+nZE](-B)2 (5.1a)
2 1+n2¢ 2 2
h _ - 5 25 5 5.1b
Where ey sai ) T4 08PF 2 (5.1b)

(L1+¢)? (1+ nzsz 77(1+ nzsz

The approximate results (5.1a,b) are valid provides O . We can regard as the imperfection-
sensitivity parameter of the structure. In thisecathe structure would be said to be imperfection -

sensitive ifb <0, and imperfection-insensitive § > 0.The caseQ =1 implies that we have neglected

terms of ordersx/\él)2 and vvgl) in (4.28a) so that the resultant imperfection-giity parameter b does

not depend on the load parametr. If we substitute for Ac from (3.1), into (4.36) and (5.1a), we get
respectively

Wik

o

3
(1-1s)>

2
=—3\b1[‘A)ls (1+n2g‘)2+[ A ] ”\/(554+4§1)HC76Q (5.2a)
2 1+ nzf
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1

o
3 33 2.)2 A 3 o\t
(1-4s)2 ==l 0Ads (1+n fj oz [ (-b)2

(5.2b)

2
We readily observe from (5.2a,b) that the loshetiuckling strength of the structure is of ordér By
using an alternative procedure ,a similar resudis wbtained in [4] as

(- 1) :3[—%T|blt|/ls ,b<0 (5.3)

where b is the imperfection-sensitivity parameter asirdaf in [4].The apparent lengthy nature of
(5.1a,b) and (5.2a,b) notwithstanding, the strilsmgilarities between (5.2a,b) ,on one hand, &8) On
the other hand ,must be appreciated. However thetrgs.3) is asymptotically exact. We observe tha

unlike the results (5.1a,b), the dependence ostiic buckling loadigon the parameters characterizing

the problem is primarily concentrated on the impetibn sensitivity parametdy in (5.3).We must stress
that while the treatment in [3] focused on hightigg the range of imperfection sensitivity of the
structure and did not incorporate imperfection t® formulation, the present investigation actually
determines the effects of imperfection on the statickling load of the structure.

6.0 Conclusion

This investigation has concentrated solely on tke of asymptotic analysis in a regular
perturbation appraisal of the problem. We opinet thés method is suitable for analysis of more
complicated problems including cases where moreades and restrictions are specified on the
imperfection.
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