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Abstract

We investigated in this paper the effect of non-linear vibration of a
circular cylindrical shell subject to axially symmetric loading. We consider the
approximation of the eguation using the regular perturbation technique and
thereby solving the resulting linear equation analytically. The result indicates
an exponential decay away from the edge of the shell, which is one of the
unique characteristics of a shell. From the numerically simulated results it
was observed that increase in the excitation amplitude produces a wrinkling
effect on the shell.

1.0 Introduction

The word shell is an old one and is commonly used to describe thectwaedng of eggs,
crustacean, tortoises etc. The dictionary says that the wordsstielived from the Latin scalus, as in fish
scale. But to us now there is a clear difference betwetotigh but flexible scaly covering of a fish and
the tough but rigid shell of, say a turtle. In this paper we will be concerned with marshedidsructures
as used in branches of science and Engineering. Vol'mir et. al. [7] studiedeaordscillations of simply
supported, circular cylindrical panels and plates subjecintanitial deviation from the equilibrium
position (response of the panel to initial conditions) by usiagr@ll’s nonlinear shallow theory. Results
were calculated by numerical integration of the equations atfom obtained by Gerlerkin projection,
retaining three or five modes in the expansion. Mikhlin,[3] stligibrations of circular cylindrical shells
under a radial excitation and an axial static load, using Donmahdinear shallow-shell theory with
Gerlerkin projection and two different mode expansions. Amabikle{1] experimentally studied large
amplitude vibrations of a stainless-steel circular cyliradrganel supported at four edges. The nonlinear
response to harmonic excitation of different magnitudes im#ighborhood of three resonances was
investigated. Experiments showed that the curved panel exhibitedlatively strong geometric
nonlinearly of softening type. Nayfeh A. H. [5] used a perturbagghrtique to reduce the eight-order
vibration problem for presstred, clamped cylindrical shells to guivelent sixth-order membrane
problem. In the transformation to a membrane problem composite expansiotilized, uniformly over
the length of the shell, to form modified boundary conditions thadwat for the effects of bending near
the shells. In most of these works one form of loading is considéfée demonstrate in this paper the
approximation of the equation using the regular perturbation techarguiéhereby solving the resulting
linear equation analytically. The forms of loading consideredtfae axially symmetric loading and the
axial-inplane stress function as that of an equivalent lateralodited load.
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2.0  Shell model equation
The Donnell’'s non — linear shallow shell theory, gives the equatiotrdnsverse vibration of a
very, thin, circular cylindrical shell as

2 2 2 2 2 2
DD4W+chw+,ohw—f+l 07F+ O°F 07w _, 0°F 0w +0 F_otw (2.1)
R gx2 | R2062 ox2  ROx00 ROX0O  gy2 R2yp2
ERS -y . . . .
whereD = — 20-2) is the flexural rigidity, E is the Young's Modulug,is the Poisson’s ratio, L the

shell thickness, R the mean shell radigsthe mass density of the shell, c the damping coefficient and
f the radial pressures applied to the surface of the abellconsequences of external forces. The radial

2
deflection w is positive inwardv = %—\1\, , W= %T\;V , and F is the in plane stress function; F is given by
2 2 2 2 2
LD,;F:iavzv 0°w _6\/2v62W2 2.2)
Eh R dx Roxo & ox° R°08

where0%is the bi-harmonic operator
Using Donnell's non linear shallow shell theory, the middle surfstcain — displacement
relationships are obtained.
_au (awjz Y _v_v+1( awjz y ZOu v wow
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were U,V,W are displacement at the middle surface of the shell.

3.0 Solution technique
The governing equation in cylindrical coordinate is given as
d'w 2 0d'w 1 0'w 1 0°F
et Sraaar T oorags | TOWH o=+ o ——
0X R* 9x°08 R* 06 R ox
2 2 2 2
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Assuming a solution of the form

w=W,(x,t)Snng 32)
F = F,(x)Snné '
and dividing through bidSnné gives
W"”—2n wre ey oDy p Py o T L., (3.3)
! R? R* " D D ! DSmn ¢ DR " DR?
[— n*F W "Snn 6’]— 2n2Fn'Wn'M— n*F"W Snn 6
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Neglecting the radial pressure i.&= 0 results in the equation
. 2 4
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—n2Fn , Sinné - 2n2Fan Cos”ng
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We introduce the following non dimensional quaesti N,— prestressl. — unit length,D —

+ —n2F, W, S nnH] (3.4)

bending rigidity andl, — Time. Hence

2
W = %WD, =No F and T, = enly (3.5)
N, L D DN,
We takee= >>1 equation
(3.4) now becomes
- 4
WV - 2n2D.ew + ”_4Wn + ﬂwn p—hwo = ¢.RF, +¢
R D D (3.6)
- nanWr'{ Sinn @ - 2n? %Fﬁwr} -n2sm GF ) Wn}
also substituting egn. (3.2) into eqn. (2.2) aimitéhg through by Sini# gives
: 2 4 2002
iv _2n° n __Eh Eh | n“Cos“né (,,,\2 2 " 3.7
Fn R2 Fn R4 Fn— RWn R2 I:—Snng (WO) +n SI’II’IH\Nn Wn] ( )
also introducing the perturbed parameter into €8)i7) gives
Fr—2nD.eF"+ " F =—EhDR eW'+ DENe| TS ) 4 esinnawrwy | (38)
R* Snné
By seeking an asymptotic expansion of the form
Wi =W + W) + £2Wp + - 9)
Fr=Fo+ & +£2Fp +---
We have from eqn.(3.6) and eqn.(3.8) the follovggstem of equations:
order zero(£°)
W +—W Ny oAy =g (3.10)
R* D D
F+ n F.=0 (3.11)
R4
order one(fl)
" Ch m " 2y n
W" - 2n’DW, +—W +—W + W = RF"-n’SnngFW,
R’ D D (3.12)
_2nCosnd C_:OS ng FW'—n’SnnéF"W,
Snné
F* - 2n°DF/"+ ;4 F, = -EhDRW"+ DEh ”Sciosg‘gwo' + N SINANV W, (3.13)
nn
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3.1  Solution of Order zero Radial DeflectionWV ©(x,t)

Equation (3.8) is the governing equations for thdeozero for the Radial Displacement. This is
the free vibration of a beam resting on an eldstimdation. Using the usual superposition methibd o
separation of variables

W, (xt) = X (x)T(t) (3.1.1)

Results in the following system of Ordinary diffetial equations:
d*x

—+p 4x =0
dx4
d%T T
and o —tap—+a3T =0 (3.1.2)
a? ot

The first of these equation is the familiar steathte free vibration of a beam while thesecond tmua

oh

represents a damped free oscillation, Wheflj_e:E , ap =C—Dh and oz is an arbitrarily introduced

constant. The spatial component is solved subjettte following boundary conditions:

0°w o*w

M,=D—, Q,=0=-D— at x =0,|
x> ox3

9°w °w (319
M,=0=-D>>, Q, =-D
g ox* Q ox°

at x=0,l

In addition to the above conditions we invoke antegue [2] for solving shell problem in which
the boundary conditions involving w at the two eads uncoupled from one another. Thus we have the
following conditions satisfied byX (X) :

2 3
0°X -M 0°X

2 x:O:—O ; =0 (3.1.4)
ox x=0

D ax3
In addition we recall that the displacemem(b(,t) must be finite for all values c(fx,t)
Hence

M, _ -Q )
X(x) =—2—e ™ (Snpx - Cospx) —=2— - €™Cospx +_ M =pP(-X) gpp(i-
) 2p?D (Snp: P )2p3D SP +2p2De Sinp(I- x)
" —Qé e PU=X)cosp(l - x) (3.1.5)
2p°D
On the other hand if we consider an over-dampegtsyfor the time dependent equation starting from a
neutral position at a velocity, we thus have;

M, ]
e P{SnpxCospk———e PCospx
20" (Sinp sp)< SY
M,
2p2D

&r(erzt ~t) (3.1.6)

W(xt)= -~
—_ g™ (Sing —X)—Cos —x)) + g e”Cosfl -¥ |2 *
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where

(3.1.7)

3.2 Order zero solution for the in-plane-stress function F
The steady state stress equation

FYY +k4Fg =0 (3.2.1)
satisfying the boundary conditions

2
F
F=0 and d > =V (3.2.2)
dX x=0,L
4
where y, is the intensity of the in-plane stress asfd= L4 admits the solution;
R
F,(x) = A e 0gn(x - 1) - Lo e™*gnkx (3.2.3)
2k? 2k?
3.3 Order one solution for radial deflectionW(l)(x,t)
The governing differential equation of the problisngiven as
. 4
ALY YA LRV VAR LYY LT BN &) SRR | 3.3.1
w, +R4w1+Dw1+Dw1 (rz—rl)(e e"HG(x) + H (x) (3.3.1)
where
G(x) = 2n2F{— [Mo + Q;Je_ PXSnpx-Mge™ p>‘Cospx—[M| —%je_ Pl—X)g nal —X)
+Mpe Pl cosy) - x)} _2nCosng ”H[ro & K¥(Cosiorsinky - A-e K19 (cosl - x) - Sink( - x))}
pDSnr@ | 2k 2 (3.3.2)
HMO + %OJe_ PCospx+ % e g npx—(M L —%Je_P(L_X)Cosm -X)+ % Snpl - x)}
2
_n Sjnrﬁ[roe_kXC:os;kx+ Me_k(l _X)Cosr(l - x)} {Moe_ PXg npx—[M0 +Q0Je_ PXCospx
2pD p
—[M L —?Je_ pd _X)Cosdl -x)+M Le_P(L_X)Si ndl - x)}
and
H(x) = R{ yoe ¥coskx + pe KU =X cosk(l - x)} (3.3.3)
To solve egn (3.3.1) we assume t\M(x,t) can be expressed as a series of eigen functions
[o0]
Wi (xt) = X bm(t)gm(X) (3.3.4)
m=1

where
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@ (X) =cmVm(X) (3.3.5)
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Vm(X) is then chosen to satisfy the boundary condition

d2v
v(x)|x=0,| =0 and 2 =0 (3.3.6)
X" lx =0,l

Vm(X) = Snpmx + Snpm(l — x) (3.3.7)
Which satisfy the boundary condition when theywareoupled from each end. The eigen function is now
given by

@m(X) =cm[8'npmx+8'npm(l —x)] (3.3.8)
wherec_,remain arbitrary constant chosen to normalize ihenefunction
Theorem 3.1

Let ¢,(X) be a set of functions which are mutually orthonormal in (a, b) then z K,& (X)
n=1

converges uniformly to f(x) in (a, b)
Proof by Spiegdl, [6]:

Givenf(x) = i K.@ (X) - - - - - 0]

n=1

ThenK, = J'b f (X)@,(X)dx . Multiply both sides of(x) = ZKH(@(X) by ¢,(X) and integrate froma
a n=1

to b to get
j: f (X))@ (x)dx = Z Knj:%(x)%(X)dX (i)

When the interchange of integration and summasqgustified by using the fact that the series coges
uniformly to f(x), and since the functior{%(x)} are mutually orthornomal ir‘(a,b) we have

jg f (X)¢h (X)dx :{i)rrr?:r?so that (ii) becomeg f (X)gm(X)dx=kp as required. H
From equation (3.1.1), we can assume that
[o0]
GK) = Y dmem®) (3.3.9)
m=1
[00]
HX) = Y amemX) (3.3.10)
m=1
substituting equation (3.3.2) into (3.3.1) and sigg(X) # 0, then
ab" () + b m(t) + pHbmt) = (r“—or)(er2t —e"Yd, +am (3.3.11)
27N
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where theaj ¢ are as defined earlier. Equation (3.3.11) is theeed motion of a particle where
dm =[ \G(¥@m(¥)ax andam =5 H (Ygn(x)dx.

. n? 4
Define Z=|—+P, (3.3.12)

rR?

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 301 -310

306
Dynamic Analysis of a non-linear vibrating M. Jiya,and Y. M. Aiyesimi J of NAMP
then the reduced equation is given asalb”m(t) + azblm(t) +Zbm(t)=0 (3.3.13)
-ao +1/a'12—4alz -ao - a§—4alz
if q= and Q2= , then
2m 2m
r-t rt
t oot d e2 el R
bin() =ty —— (eqz —eq1)+ T 5 — + 4amR24 and,
(G~ ) (—1)| (ayrs +ayry+2) (o +a +2) || (N7 -Ropp)
) rot rit 2
WD =g 3 | ——— (e -y +_Im = — e
m=l (O|2‘0|1) (r2‘r1) (a1r22+a2r2 +Z) (a1r12+a1r1 +Z) (n -R Pm)
[SnppXx+sinpl —X)]
(3.3.14)
Thecoefficiertscy, isgivenas
2JPm (3.3.15)
Cm =
(4pml —=3Sn2pml = 4spml +4pm! cospp| )}é
3.4 Solution of the order one in—plane stress functioFr(l)(x,t)
The governing equation is R +ﬁ,:(1) _ g(W(l) F(o)) (3.4.1)
7 :

dx R
where the r.h.s. of (3.4.1) is the consequenc8.8f14).
Solving (3.1.4) via the Finite Fourier Sine tramgfation technique subject to the conditions

d2F
F(x)|X =0, =0 and =0 (3.4.2)

we have
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m=1 2 1
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B3 = ~ |:(k N ?J[l— e Mcos(pl + mn):| - pe Man(u + mr[)i|
2{k2 ¥ (k +”|WJ J

_ . |:(k —%Tj[l— e M cos(pl - mrr)} - pe Man(u + mrr):|

2[k2 +(k —”IWJ J

By = . Kp + %Tj[e‘ Pl Sn(pl + Sﬂ)i| +pa-e Pcos(plpl + mn)):|
{pz {mﬂ }

1 m

- K p- —”j[e_ pI‘Sin( pl - mn)} +pll-e pl Cos(pl - mn))}
2 pT+ p_T
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; (522 - Pl ] o]

2 p + p+7
{( p- mj[l— e P Cos( pl - mn):| - pe pl S’n( pl - mﬂ):|
2 I
2 p%+ p——
- mit -
Be = {p(Cosmn—e plCospl)—(p——)(S’nmn—e pIS’npl)}
) ( T 2 |
P
1 i -pl mir ) —-pl
- p(Cosmr—e " Cospl)+| p+— |(Snmr+e ™ Snpl)
) ( mﬂjz i I
2 p-+ p+|—
1 mmr -pl -pl
B7 = 5 p—l— (Cosmmr—e " CosPl) |+ p(Shnmr—e " Snpl)
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1
mrmr
2[p2+(p+j
|

4.0  Numerical Simulation
The displacement profiles of the shell are dispdageaphically in what follows demonstrating
the effect of bending moments, shear force and&neping parameter on the amplitude of vibration.

mrr _p| _pl
2} |:( p +|—)|:(Cosmn— e Cospl):| - p(Snmr+e Sinpl)}
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Figure 1. Displacement profile at a time.
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Figure 2: Displacement profile with time
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5.0 Discussion of results and conclusion

The deflection profile is characterized by exporamtecay away from the edge of the shell. This
decay in the lateral deflection is due to edgesstowuple or an edge transverse shear resultamts. tBe
shape bending number, and shear resultant awaytfreradge are all proportional to the derivatives o
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the lateral deflections, each of these also deeaymy from the edge where the edge load is acting
(boundary layer) Jack R. V. [2]

From the graphs (figure 1 and figure 2) the nomliitg is of the weak, softening type. An
increase in the excitation amplitude produces Mirigkof the shell which my respond nonlinearly to
disturbance with the amplitude of the breathing enad well as the flexural mode increasing dramtica
yielding a much larger response. This instabilityd ahe saturation phenomenon were first found
analytically and verified numerically by Nayfeh at., [4] where consideration was given to circulags
with harmonic loading. However, in this paper wevéna finite nonlinear circular cylindrical shell
subjected to axially symmetric loading and the oesg obtained as shown in figure 1 and figure 2

physically depends on the initial condition witHaa@ty U,, whereas the long time response in [4] exhibit
Hopf Bifurcation.
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