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Abstract 
 

We investigated in this paper the effect of non-linear vibration of a 
circular cylindrical shell subject to axially symmetric loading. We consider the 
approximation of the equation using the regular perturbation technique and 
thereby solving the resulting linear equation analytically. The result indicates 
an exponential decay away from the edge of the shell, which is one of the 
unique characteristics of a shell. From the numerically simulated results it 
was observed that increase in the excitation amplitude produces a wrinkling 
effect on the shell. 

 
 
 

1.0 Introduction 
The word shell is an old one and is commonly used to describe the hard covering of eggs, 

crustacean, tortoises etc. The dictionary says that the word shell is derived from the Latin scalus, as in fish 
scale. But to us now there is a clear difference between the tough but flexible scaly covering of a fish and 
the tough but rigid shell of, say a turtle. In this paper we will be concerned with man made shell structures 
as used in branches of science and Engineering. Vol’mir et. al. [7] studied nonlinear oscillations of simply 
supported, circular cylindrical panels and plates subject to an initial deviation from the equilibrium 
position (response of the panel to initial conditions) by using Donnell’s nonlinear shallow theory. Results 
were calculated by numerical integration of the equations of motion obtained by Gerlerkin projection, 
retaining three or five modes in the expansion. Mikhlin,[3] studied vibrations of circular cylindrical shells 
under a radial excitation and an axial static load, using Donnell’s nonlinear shallow-shell theory with 
Gerlerkin projection and two different mode expansions. Amabili et. al. [1] experimentally studied large 
amplitude vibrations of a stainless-steel circular cylindrical panel supported at four edges. The nonlinear 
response to harmonic excitation of different magnitudes in the neighborhood of three resonances was 
investigated. Experiments showed that the curved panel exhibited a relatively strong geometric 
nonlinearly of softening type. Nayfeh A. H. [5] used a perturbation technique to reduce the eight-order 
vibration problem for presstred, clamped cylindrical shells to an equivalent sixth-order membrane 
problem. In the transformation to a membrane problem composite expansion are utilized, uniformly over 
the length of the shell, to form modified boundary conditions that account for the effects of bending near 
the shells. In most of these works one form of loading is considered.  We demonstrate in this paper the 
approximation of the equation using the regular perturbation technique and thereby solving the resulting 
linear equation analytically. The forms of loading considered are the axially symmetric loading and the 
axial-inplane stress function as that of an equivalent lateral distributed load. 
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2.0 Shell model equation 

The Donnell’s non – linear shallow shell theory, gives the equation for transverse vibration of a 
very, thin, circular cylindrical shell as 
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where D = 
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 3Eh
 is the flexural rigidity, E is the Young’s Modulus, ν is the Poisson’s ratio, L the 

shell thickness, R the mean shell radius, ρ  the mass density of the shell, c the damping coefficient and  

f the radial pressures applied to the surface of the shell as a consequences of external forces. The radial 
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where 4∇ is the bi-harmonic operator  
Using Donnell’s non linear shallow shell theory, the middle surface strain – displacement 

relationships are obtained. 
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were wvu ,, are displacement at the middle surface of the shell. 
 
3.0 Solution technique 

The governing equation in cylindrical coordinate is given as 
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Assuming a solution of the form 
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Neglecting the radial pressure i.e. f = 0 results in the equation 
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We introduce the following non dimensional quantities: 0N – prestress, L – unit length, D – 

bending rigidity and 0T  – Time. Hence 
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We take ε = 
2

1

DR
 to be the perturbed parameter (normalized bending rigidity) where 2DR  >>1 equation 

(3.4) now becomes 
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 also substituting eqn. (3.2) into eqn. (2.2) and dividing through by Sinnθ gives 
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also introducing the perturbed parameter into eqn. (3.7) gives 
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By seeking an asymptotic expansion of the form 
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We have from eqn.(3.6) and eqn.(3.8) the following system of equations: 
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3.1 Solution of Order zero Radial Deflection ( )txW ,)0(  
Equation (3.8) is the governing equations for the order zero for the Radial Displacement.  This is 

the free vibration of a beam resting on an elastic foundation.  Using the usual superposition method of 
separation of variables 

( ) ( ) ( )tTxXtxW =,0                  (3.1.1) 

Results in the following system of Ordinary differential equations: 
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The first of these equation is the familiar steady state free vibration of a beam while thesecond equation 

represents a damped free oscillation, where  1 D

hρα = , 
D

ch=2α  and α3 is an arbitrarily introduced 

constant.  The spatial component is solved subject to the following boundary conditions: 
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In addition to the above conditions we invoke a technique [2] for solving shell problem in which 
the boundary conditions involving w at the two ends are uncoupled from one another. Thus we have the 
following conditions satisfied by )(xX : 
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In addition we recall that the displacement ( )txw ,  must be finite for all values of ( )tx,  
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On the other hand if we consider an over-damped system for the time dependent equation starting from a 
neutral position at a velocity 0u  we thus have; 
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3.2 Order zero solution for the in-plane-stress function F 
The steady state stress equation  
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3.3 Order one solution for radial deflection ( ) ),(1 txW   
The governing differential equation of the problem is given as 
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To solve eqn (3.3.1) we assume that ( )txW ,1  can be expressed as a series of eigen functions  
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)()( xmvmcxm =φ                 (3.3.5) 
 
 
Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 301 -110 
 

305 
Dynamic Analysis of a non-linear vibrating M. Jiya, and Y. M. Aiyesimi J of NAMP 
 

 
( )xvm  is then chosen to satisfy the boundary condition  
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where the si,α  are as defined earlier.  Equation (3.3.11) is the forced motion of a particle where 

∫= l dxxmxG0 )()(md φ  and ∫= l dxxmxH0 )()(ma φ .   
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3.4 Solution of the order one in–plane stress function ( )( )txF ,1  
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Solving (3.1.4) via the Finite Fourier Sine transformation technique subject to the conditions 
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4.0 Numerical Simulation 

The displacement profiles of the shell are displayed graphically in what follows demonstrating 
the effect of bending moments, shear force and the damping parameter on the amplitude of vibration. 
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Figure 1: Displacement profile at a time t . 

 
Figure 2: Displacement profile with time 
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5.0  Discussion of results and conclusion 

The deflection profile is characterized by exponential decay away from the edge of the shell. This 
decay in the lateral deflection is due to edge stress couple or an edge transverse shear resultants. Since the 
shape bending number, and shear resultant away from the edge are all proportional to the derivatives of 
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the lateral deflections, each of these also decays away from the edge where the edge load is acting 
(boundary layer) Jack R. V. [2] 

From the graphs (figure 1 and figure 2) the nonlinearity is of the weak, softening type. An 
increase in the excitation amplitude produces wrinkling of the shell which my respond nonlinearly to 
disturbance with the amplitude of the breathing mode as well as the flexural mode increasing dramatically 
yielding a much larger response. This instability and the saturation phenomenon were first found 
analytically and verified numerically by Nayfeh et. al., [4] where consideration was given to circular rings 
with harmonic loading. However, in this paper we have a finite nonlinear circular cylindrical shell 
subjected to axially symmetric loading and the response obtained as shown in figure 1 and figure 2 
physically depends on the initial condition with velocity 0u , whereas the long time response in [4] exhibit 

Hopf Bifurcation. 
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