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Abstract 
 
 The present article presents a mathematical model to study the time 
dependent two phase magneto-hydrodynamic (MHD) flow in a parallel plat 
channel having one phase occupied by electrically conducting fluid and the 
other phase by non-conducting fluid.  Both the phases were incompressible 
and the flow is assumed to be time dependent.  The two regions are coupled by 
equating the velocity and shear stress at the interface.  Using the Green’s 
function approach, expressions for velocity in both phases were obtained for 
general class of time dependent movement of boundary or sudden change in 
pressure gradient or both.  As a special case, expressions for time dependent 
velocity fields in both phases were obtained due to sudden change in the 
pressure gradient. 
 
 
 

1.0 Introduction 
 The study of two phase flow is of great importance because of their applications in several 
industrial and physical fields.  Due to its practical applications, in last thirty years two-phase flow has 
been widely researched and reported in literature under several idealized assumption [1-5]. For instance, 
Shail [5] considered the two-phase flow of conducting and non-conducting incompressible fluids in a 
horizontal channel in the presence of transverse magnetic field.  It was shown theoretically that significant 
increase in the flow rate of conducting fluid can be obtained for suitable choice of ratio of viscosities and 
the depth of the two phases.  Lohrasbi and Sahai [6] studied the thermal characteristics of [5], by 
accommodating the viscous and Ohmic-dissipation in the energy equation.  The two-phase flow was 
further examined by Malashetty and Leela [7-8] by considering both phases as an electrically conducting 
and solved the momentum and energy equation analytically for short circuit and open circuit cases 
respectively. 
 In all above discussed works momentum and energy equations are assumed to be independent of 
time. The present mathematical model addresses the transient tow phase flow of viscous, incompressible 
fluid in a horizontal parallel plate channel having one phase occupied by electrically-conducting fluid and 
other by non-conducting fluid.  A closed form solution is obtained using Green’s function approach. 
 
2.0 Governing equation and solutions 
 The physical situation corresponds to that of the time dependent two phase mhd  
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(magneto-hydrodynamic) flow in a horizontal parallel plate channel partially filled with conducting fluid.  
The physical model shown in Fig. 1 consists of two infinite parallel plates extending x- and z – directions.  
The region dy ≤≤0 and hyd ≤≤  are occupied by two different fluids of density ρ1 and ρ2 which are 
electrically non-conducting and conducting respectively.  The viscosities of both fluids are also assumed 
to be different.  A constant magnetic field of uniform strength Bo is applied in the y – direction.  The flow 
formation inside the channel is due to the application of constant external pressure gradient or (and) by 
the sudden movement of the boundaries.  With these assumptions, the dimensionless governing equations 
for both phases and corresponding initial, boundary and interface conditions are: 
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The initial boundary and interface conditions are: 
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The dimensional quantities introduced in equations (2.1 - 2.4) are given in list of symbols.  Equation (2.3) 
represents the general nature of initial and boundary conditions.  A specific situation can be handled by 
proper selection of initial and boundary conditions.  It is more convenient to solve the problem with 
homogeneous boundary conditions. To attain, this let 
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This relation transforms the governing equations (2.1) – (2.4) into the following set of equations: 
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The solutions of equations (2.6 - 2.8) are: 
   ,)( 211 YAAY +=φ        (2.18) 
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where A2 = 1, and A1, A3 and A4 are found from the solution of the following set of equations: 
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Also, the solutions of equations (2.9 -2.11) are: 
  ,)( 651 AYAY +=ε       (2.20) 
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where A6 = 0, and A5, A7 and A8 are found from the solution of the following set of equations: 
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Using Green’s function method, equations (2.12 – 2.15) assume the following form: 
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Where Gij is the appropriate Green’s function found from the homogeneous version of the governing 
equations (2.12 – 2.15) are: 
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The values of constants A2n and B2n are found from the solution of the following set of equations: 
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The eigen-values λn and Bn are found as the roots of 
  0)()( 22 =+ nnnn HSinBHCosA λλ      (2.28) 

 
3.0 Particular case 
 The physical situation, in which flow inside the channel is solely caused by uniform pressure 
gradient, i.e. 0)()()()( 2121 ==== tftfYFYF , which yields: 
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Using these values in equations (2.22) and (2.23) the dimensional velocity in both phases are: 
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4.0 Steady-state solution 
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where C2=0, and C1, C3 and C4 are found from the solution of the following set of equations: 
 
 



Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 295 - 300 
Two phase flows in Magnetohydrodynamics     Basant K. Jha and Haruna M. Jibril     J of NAMP 

x 

































+=







































































−

















−


















P

M

PP

M

P

C

C

C

M
hCosM

M
SinM

M
hSin

M
hCos

MH
hSin

MH
hCos

22

2

3

2

1

1

1

0

λ
λ

λ
λ

λλ

λλ
  (4.5) 

 
5.0 Concluding remarks 
 The novel feature of this work is to present an analytical solution of unsteady two phase flow 
where one phase is conducting and other phase is non-conducting using Green’s function approach. 
List of Symbols 
d = width of the non-conducting fluid 
h = total width of channel 
H = dimensionless total width of the channel (h/d) 
Bo = magnetic field strength 
u1 = velocity field in non-conducting fluid 
u2 = velocity field in conducting fluid 
U1 = dimensionless velocity in non-conducting fluid (u1d/µ1) 
U2 = dimensionless velocity in conducting fluid (u2d/µ1) 
y = dimensionless transverse co-ordinate (h/d) 
dp/dx = dimensionless axial pressure gradient 

P = dimensionless axial pressure gradient (-dp/dx(d3/ρ1 2
1v ))  

M = Hartman number (B0d 1/ µσ ) 

f1(t) = dimensionless velocity of lower bounding wall 
f2(t) = dimensionless velocity of upper bounding wall 
F1(t) = dimensionless initial velocity in non-conducting fluid 
F2(t) = dimensionless initial velocity in conducting fluid 
Greek Symbols 
µ = dynamic viscosity 
v = kinematic viscosity 
ρ = density of fluid 
σ = electrical conductivity of conducting fluid 
ϒ = ratio of dynamic viscosities (µ2/µ1)  
α = ratio of densities of fluids (ρ1/ρ2)  
Subscripts 
1 = non-conducting fluid domain 
2 = conducting fluid domain 
 
 Figure 1: Flow domain 
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