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Abstract 

The stability of triangular points under the influence of radiation 
pressure of the bigger primary, oblateness of the smaller primary and 
variation in mass of the third infinitesimal body has been investigated. It is 
found that these points are stable for 0 < µµµµ < µµµµc, and unstable for µµµµc < µµµµ < ½ .  
It is also seen that the range of stability decreases due to radiation pressure, 
oblateness and variation in mass of the respective body. 

 
 

Keywords: stability, triangular points, generalised photogravitational RTBP, variable mass. 

 

1.0 Introduction 
 The classical restricted three-body problem is unable to discuss the motion of the third 
infinitesimal body when one of the participating bodies is a source of radiation or an oblate spheroid or of 
variable mass.  In recent times, many perturbing forces, i.e. radiation, oblateness, variation of the mass 
etc. have been included in the study of the restricted three-body problem.  One such variation when the 
bigger primary is a source of radiation, the smaller one is an oblate spheroid and the mass of the third 
infinitesimal body varies with time, is of considerable interest in the study of the solar system. 
 Radzievskii (1950) [8] formulated the photogravitational restricted three body problem and 
discussed it for three specific bodies: the sun, a planet and a dust particle.  Chernikov (1970) [3] extended 
his work by including aberational deceleration (the Poynting Robertson effect).  He demonstrated the 
instability of the solutions.  Sharma (1982) [9] studied the linear stability of triangular libration point of 
the restricted problem when the more massive primary is a source of radiation and an oblate spheroid as 
well.  Simmons et al. (1985) [10] gave a classical treatment of the more general problem with radiation 
emanating from both primaries.  Dankowicz (1997) [4] described the motion of grains in orbit around 
asteroids under the influence of radiation pressure originating in the flux of solar photons.  His recent 
paper (2002) accounts for gravitational interactions with the asteroid and the sun and the radiation 
pressure from the sun. 
 Vidyakin (1974) [17] studied the effect of oblateness of both primaries on the existence of five 
stationary solutions.  Subbarao and Sharma (1975) [16] investigated the restricted problem with one of the 
primaries as an oblate spheroid and proved that there was an increase in the coriolis force and the 
centrifugal force due to oblateness.  
 Singh and Ishwar (1984, 1985) [11, 12] studied the effect of small perturbations in the coriolis 
and the centrifugal forces on the location and stability of equilibrium points in the restricted problem with 
variable mass under the assumption that the mass of the third body varies with time.   
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They investigated the above problem with the help of Jeans’ law (1928) [6] and space-time 

transformation comparing it to the transformation of Meshcherskii (1949) [7]. The first order 
normalization in the above problem, which has applications in the study of the nonlinear stability, was 
also performed by Singh (2006) [15]. In the further paper (1999), they examined the stability of triangular 
points when both primaries are sources of radiation and oblate spheroids as well. The stability of collinear 
equilibrium points in the above problem was studied by Singh (2005) [14]. By taking small perturbations 
in the coriolis and the centrifugal forces in the latter two problems, AbdulRaheem and Singh (2004, 2006) 
[1, 2] discussed the combined effects of perturbations, radiation and oblateness on the location, and on the 
stability, of equilibrium points.   
 In this paper, we wish to study the “stability of triangular points in the generalised 
photogravitational restricted three-body problem with variable mass”.  The problem is generalized in the 
sense that the smaller primary is taken as an oblate spheroid.  It is photogravitational because of the 
bigger primary being a source of radiation.  
 Singh (2005) [14] investigated the stability of collinear equilibrium points under the effects of 
both oblateness and radiation, of both primaries; while the present paper considers the radiation and the 
oblateness of the bigger and smaller primaries respectively under the assumption that the mass of the third 
body varies with time.   
 
2.0 Equations of motion  
 The equations of motion of the third body of infinitesimal variable mass when the bigger primary 
is a source of radiation and smaller one is an oblate spheroid, are  
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 Here, the mass m of the third body varies with time t such that m = m0 at t = 0. The parameter µ  
is the ratio of the mass of the smaller primary to the total mass of the primaries and 0 < µ  < ½ .  Dashes 

indicate differentiation with respect to Γ  where dt = ,Γ− dkγ  k is the constant of proportionality.  β  is a 
constant due to the variation in mass governed by Jeans’ law (1928) [6], ω  is the mean motion of the 
primaries given by 
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 where A2 is the oblateness coefficient of the smaller primary q1 is the mass reduction factor 
constant of the bigger primary given by the relation 
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in which Fg and Fp being gravitational attraction force and the solar radiation pressure force respectively. 
 
3.0 Locations of triangular points 
 The locations of triangular points are the solutions of  
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 In order to find the coordinates of triangular points we write ,1 11 β−=q    ,10 1 <<< β  and 

make use of equations (2.3), (2.4), (3.1) and, then neglect second and higher order terms in ., 21 Aβ  
 The coordinates of triangular points L4 and L5 are 
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where the positive sign corresponds to L4 and the negative to L5.  These points form simple triangles with 
the primaries different from the case of the classical problem where these points make equilateral 
triangles.  It is evident that the positions of these points are affected by those factors which appear due to 
radiation pressure, oblateness and variation in mass of the respective body.  If these factors are omitted 
i.e. when ,0,1,0,0 21 ==== βγβ A  we get the same results as the classical case. 
 
4.0 Stability of triangular points 
 We consider now what happens to the infinitesimal body if it is displaced a little from one of the 
triangular points.  We assume that the body has given a very small displacement and small velocity.  If its 
motion is rapid departure from the vicinity of the point, we can call such a position of equilibrium an 
unstable one.  If however, the body merely oscillates about the point, it is said to be a stable position.  In 
order to examine the stability of a solution we apply this small displacement method. 
 
 
 Let the position of any triangular point be ( )00 ,ηξ and let the infinitesimal body be displaced to 

the point ,, 00 vu ++ ηξ  where u,v are small displacements. 
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 Then substituting these quantities into the equations of motion (2.1) and expanding in a Taylor’s 
series, we obtain the linear variational equations as 

( ) ( ),'2" 00
ξηξξω Ω+Ω=− vuvu  

( ) ( ),'2" 00
ηηηξω Ω+Ω=+ vuuv      (4.1) 

 Here only linear terms in u and v have been taken.  The second partial derivatives of Ω are 
denoted by subscripts.  The superscript 0 indicates that the derivative is to be evaluated at the triangular 
points ( )00 ,ηξ . 

 The determinantal equation obtained by inserting a trial solution of the form 

    ,Γ= λAeu  ,Γ= λBev  
into equations of (4.1) is  
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The fourth-order characteristic equation for λ is  
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 If all the λi obtained from equation (4.2) are pure imaginary numbers, then u and v are periodic 
and thus give stable periodic solutions in the vicinity of ( )., 00 ηξ  if, however, any of the λi are real or 

complex numbers, then u and v increase with time so that the solution is unstable.  It can happen, 
however, that the solution contains constant terms in the place of exponentials.  The solution is then stable 
if the remaining exponentials are purely imaginary.  In the case of triangular solutions, we have 
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Applying equations (4.3) and (4.4) in the equation (4.2), we obtain 
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This is a quadratic equation in 2λ .  Its roots are 
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Therefore ∆ is a strictly decreasing function of µ in the closed interval [0, ½] and has values of opposite 
signs at the end points µ=0 and µ = ½ .  Consequently, there is one and only one value of µ say µc in the 
open interval (0, ½ ) for which ∆ vanishes. 
 There are three possible regions of the values of µ: 
(i) When 0 < µ < µc, ∆ is positive, the values of λ2 given by (4.5) are negative and all the four roots 

of the characteristic equation are distinct pure imaginary.  This shows that the triangular point in 
question is stable. 

(ii) When µ = µc, ∆ is zero.  Both the values of λ2 given by equation (4.5) are same.  So the solutions 
of the variational equations contain secular terms and consequently the triangular point is 
unstable. 

(iii) When µc < µ < ½ , ∆ is negative.  This indicates that the real parts of two of the characteristic 
roots are positive and so the triangular point is unstable. 

 
 
Hence for 0 < µ < µc we have stability and for µc < µ < ½ we have instability. 
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5.0 Critical mass and concluding remarks 
The critical value µc of the mass parameter is a root of the equation ∆ = 0.  Restricting only linear 

terms in 2β  in the expansion of the type 
n
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4
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2β and neglecting the second and higher order terms in 
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    ,0 Pc += µµ       (5.1) 

where µ0  is the critical value of µ  in the classical case given as 
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 The range of stability increases or decreases or remains unchanged according as 0>≤P .  It is 

here noticed that µc depends upon the factors 2
21 ,, ββ A  appearing due to radiation pressure, oblateness 

and variation of the mass of the respective body.  This is contrary to the classical case where the critical 

mass is a constant quantity.  If these factors are omitted i.e., when ,0,0,0 2
21 === ββ A  the stability 

behaviour of triangular points coincides with the classical case. 
 If ,0,0 21 == Aβ  then cµ  becomes the same as that of the unperturbed result of Singh and 

Ishwar (1985) [12].   If cA µβ ,0,0 2 == becomes the result of Sharma (1982) [9] in which A1 = 0 If 

β=0, µc corresponds to the result obtained by Singh and Ishwar (1999) [11] in which 0,1 12 == Aq . 

 Hence µc is different from others so obtained.  It is clear from the equation (5.3) that the range of 
stability decreases due to radiation pressure, oblateness or variation of the mass of the respective body. It 
is noticed that, due to the introduction of the variable mass, the range of stability decreases fast. If the 
third body is of constant mass, i.e. 1,0 == γβ , then it verifies the unperturbed results of AbdulRaheem 
& Singh (2006) [2], while the bigger and the smaller primaries be spherical and non luminous 
respectively. In this case, equation (3.2) provides us the same positions of triangular points as those of 
AbdulRaheem and Singh (2004) [1]. However, equation (3.2) shows that the locations of the triangular 
points are affected by radiation, oblateness and varying mass of the respective body and they form simple 
triangles with the line joining the primaries. It is also observed, in the fourth section, that the triangular 
points L4,5 in the present problem are stable for o≤ µ < µc and unstable for µc ≤ µ ≤ ½, while the collinear 
points L1,2,3 in Singh (2005) [14] remain unstable for any value of the mass ratio  µ. 
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