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Abstract

In this paper, we derived Newton'’s equation of nmtifor a satellite
in the gravitational scalar field of a uniformly rtating, oblate spheriodal
Earth using spheriodal coordinates. The resultingj@ation is solved for the
corresponding precession and the result comparethwimilar ones.

Keywords Oblate spheriodal, Planetary equation, Anomafmesession , Successive
approximation.

1.0 Introduction

The Newtonian theory of universal gravitation treats the angdlanetary bodies around the sun
with the assumption that the sun is a perfect sphere. And gliskmown how to formulate and solve
Newton’s equation of motion for a particle of non- zero rest rimaise gravitational fields of massive
spherical bodies. These equations are given in the spheriealgoalrdinates (1, ¢) with origin at the

center of the body by

F+r92 - rg?sin?g = LZ (1.1)
-r

rd +2t0 - rg? sinfcosd =0 (1.2)

résind + 2t siné + 2rGpcosd =0 (1.3)

Where k = GM and M, is the rest mass of the body and G is universal grantgticonstant. Equations
(2.1), (1.2) and (1.3) can be solve to give the orbit equation (Neamt@ianetary equation) which is
given by

k
- - = 1.4
+Uu > (1.4)

where u(w) = %@

¢ = angular momentum per unit rest mass
k =GM,
The solution of the Newton’s planetary equation (1.4) is given by
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_ K
r(g) = I+ codp + ) (1.5)

where eand a are constants of motion. Consequently the orbit of a planet oliteaiela fixed conic
section of eccentricitgand epocha contrary to the fact that the orbits of planet and stteiteccess
every one complete revolution.

The Einstein’s theory of general relativity equally trehts motion of planetary objects around
the sun under the assumption that the sun is a perfect sphere &dhildispace — time). The Einstein’s
planetary equation as derived from the Schwarzschild’s line element awerdy

2 2
d7u +u=L+3ku (1.6)
dg? 2 ¢
(Anderson 1967) [1], whose solution is(g) = Lz(l + ecodp- o)) (1.7)
/

corresponding to a conic sectional orbit which precessedseirplane in such a way that it precession
angle,A is

p=_5CM (1.8)

02(1—e2ja
per revolution, wherea is the semi-major axis anglis the eccentricity of the orbit. Although the term,

3ku® appearing on the right hand side dequation (1.6) constitute a perturbation which is responsible
for the precession of planetary bodies around the sun and ittteedtellite around their planets, the
spherical assumption for the sun and the planets underscore the real &ateftimat all the planets, stars
and galaxies in the universe are rotating and are spheroidape.sTherefore, treating them as a perfect
sphere is at best an approximation for the sake of mathematical convenience

It is in view of this, that Vinti in 1960 [7] concluded that Gtatipnal scalar potential of the
imperfect spherical earth is governed by the second harmoniesofporder 3) and the forth harmonics
(pole of order 5). Before Vinti's position paper on the need to ¢ake of spheroidal nature of planets,
Garfinkel (1959) [2] and Stern (1957) [6] have suggested a genesttiematical form for the
gravitational scalar potential of the spheriodal earth and ethdnow to estimate some parameters for use
in the study of satellite orbits. Since then, there hasinemdhe need to extend the theory of motion of
planets and satellite from the fields of bodies with perfecerspdl geometry to those of more general
spheroidal geometry. Therefore in this paper we derive amaiiee equation for the orbital precession
of a satellite in the gravitational scalar potential mbalate spheriodal and rotating earth for comparison
with well known similar theories.

2.0 Theory

2.1 The gravitational field intensity of an oblate spheroidal earth rtating uniformly on its Axis
According to Rikitate et al (1987a) [4] spheroidal coordinaes correlated to rectangular

coordinates by

X = (u2 + 52)% sindcosy

1

Y = (u2 + 52)5 sindsing

Journal of the Nigerian Association of Mathematic&hysics, Volumel1l (November 2007), 279 - 286
Gravitational field of an oblate earth. D. D. Bakwaand Y. Y Jabil J. of NAMP



Z = ucosd (2.1)
whereu is the radial distance from the centre of the spheroidal body andae where a is

1
2)2
—) in whichb is the semi-major
a
axis. Using these coordinates, Rikitake et al (1987b) [5] sthahat the gravitational scalar potential of
an oblate spheroidal earth rotating uniformly or its axis is

2.2
CDg (U,H,(D) = ﬂtan_li—w

3 u  3q(b)
The first two terms on the right handside of this equationesgmt the potential due to attraction of a
spheroidal earth and the last term on the right is the pdteingato centrifugal force of a rotating earth

2
the semi-major radius and e is the eccentricity defined as(

po(cosd) + %wz(uz +52jsin2 6 (2.2

: 2
iu 1 3u -1¢&
and u) = - —|==4|1-—|tan T~ - — 2.3
we-of )31 ]wit -2 e
2n+1
oo (_1\N
tan_li = z ﬁ(ij (24)
U p=p2n+liu
following the definition of gravitational field intensity
9(u.6.¢) = ~Ogy = gyl + 9gb +9gpp (2.5)
where
1
od 2 2 E 2.2 '
gy = -9 o | UTHe GM_ _wap2costlq(w) , 2 .24 (2.6)
hyou | Y2420 9 ) |ul+&2 3q(b)
1
0P o[, 2.2 '
gg=-—3 = 1 @ a’qup2cosd) 2,2 2.7)
hgo& u2 +52 co? @ 3q(b)
and gy =0 (2.8)
2.2 Instantaneous acceleration of a satellite in oblate spheriodal coamdtes

Using equation (2.1) together with the theory of orthogonal curviliresordinates, the
expression for the instantaneous acceleration of a satellitesis gy

a =ayl +agl +ayy (2.9)
1
a (UH(D)_ U2+52 2 U+ uuzfzsmzﬁ +U. U2+52
gue o= ————— - s
u2+{200526 (u2+{2c0329j(u2+52) u2+{2005249
- U u?+ &2 sin2 g—| 2ufsingcoss (2.10)
u2+£2c0526’ u2+<‘200526’
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1 2], u2¢? uug
ag (u6,9=| ——-— 0+ +
[u2+5200520} (u2+ 52)(u2+£200526’) u2+5200526’

) 2(.2, 22\
) BszSiHBCOSBSinzH_q) (u +& )sm@cos@

(2.11)
u2+520032«9 u2+{200329

aglu.6.9) = (uz +52j_;{(u2 +52j¢sin8+2[u2 +52j9¢cost9+ 2uu¢sint9} (2.12)

2.3 The Equations of Motion
Newton'’s law of motion in the gravitation field is given by

a=g (2.13)
It follows that the components of the equation of motion of a gatafii the gravitational field of a

rotating oblate spheroidal earth are given by equating (2.10), (h#l1j24l2) to equations (2.6), (2.7)
and (2.8) respectively, thus obtaining

u? + &2 E ) uu?&?sin? @ [ u?+ &2
——————| qu+ +u
(u2+52 cos’ HJ { (u? + &2 cos? 6)u? + &2) H(u2+52 cos’ HJ

_ up u?+ &2 sin? 6 2ufsiné cosl
u®+&%cos @ u®+&%cos’ @

1
2, g2 2 2.2 '
_| ut+d GM _w“a“ps(cosd)q'(u) +L2usin20 (2.14)
u2+&2co0) |al+é2 3q(b) 2

At the equatorial plané = g and equation (2.14) becomes

. UZEZ _GM a)2a2q'(u) u2+52 2 . u2+52

U+ = - - (a) —(pz) _— (2.15)

u(u2+{2j u? 6q(b) u? u

In @ —direction we have the equation of motion as
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1
1 b+ u2g? . uif
u2+520032«9 (u2+52j(u2+{200529j u2+{200328

9262 sin@cos&’sinz o ¢12(u2 +52)sin6?cos«9 - 0P g (2.16)
u2+£200526’ u2+£2c0526? hgo&
1
{ L JZ{wzazq(u) p'Z(COSH) —a)z(u2 +52jsin60039}
u2+&2%cos 6 3q(b)

In ¢ —direction we have the equation of motion as

_1 o .
(uz +52j 2{¢sina+29¢cosa+2”;L‘°"”25} -0 2.17)

uc+¢

Equations (2.15, 2.16, and 2.17) are the requitpations of motion which can be solved as follows:
I

equation 2.17 integrates uniformly to give @ = ——— (2.18)
ul + 52
wherel is a constant. Equation (2.18) is the azimuthhitiEm. Rewriting the radial equation (2.15)
. 0252 _-GM wzazq’(u) u2+<‘2 2 2 u2+52
U+ = - - (a) -@ ) —_— (2.19)
u(u2+52j u? 6q(b) u2 u
Now by the transformations u(u) = w{u) and w2(u) = z(u) (2.20)
equation (2.15) becomes % + P(u)z = Q(u) (2.21)
u
262
where Plu)=—=—— (2.22)
u(u2 +52)
2.2 2,72 2,72
Q)= -2CM _wrata ) um+¢ - P -g) k] (2.23)
u2 3a(b) u u
Equation (2.21) is a linear differential equatidriree first order and the solution is given by
Z(u) = e_h(jQ(u)ehdu " Aj (2.24)
2 2
. . . o uc +¢
whereh = [ P(u)duandA is the constant of integration. Sined' = —
u
2
and eh = ﬁ (2.25)
uc + ¢
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2GM, 1 i[u2+<‘2 J_ a)zazq(u)[u2+52 J

Z\u) = tan
== ul 2 3ab) | 2
A (2.26)
(PP )u2+e?)s A[u ‘g J
u2
At the apsidesl = u, and u = 0. Therefore, the constat above is given by
2.2
_2GM__ -1 _watqu) (2 -2 2.27
A _f tan ; —3q(b) (a) @ )U| ( )
Now from equation (2.19)
i = GM _wa’q'(u)(u®+&? | | 2GM tan‘li u?+&% ) w’a’qu) (u?+é&°
u? 6q(b) u? é u u 3q(b) u
2,72
_ (w2-¢2j(u2+52j ¥ »{” e J} (2.28)
u
or
G = GM w2a2q’(u) u2+f2 _ 2GM tan_li N w2a252q(u)
w2 6ab) | 2 § u 34(b)
of 2 .2 (2.29)
- +
u u3
using the transformatiom(@) = L then it follows from equation (2.18) tha(qp) = |
V(€0) 1+52v2

av and equation (2.28) becomes

2,2 1 2
22 L gy 27 (vaz ) 2 w’a‘q (Vj(l + & )
- 2.2 2.2 - 2 | dom = —GMv' -
1+ &% |1+ &V d¢f (1+£2v2) de 6q(b)
- . {zq'(ljvs
—(a)z —¢2)[—1+EVV } - 266MVP tan (&) + 3a0) g2 (WZ —¢2)V— AE2V3 (2.30)

or
2.2 } 2,2 3
dv 26 () oMy e @ o o)
47 fLeeni)\dp) 6(D)I*v?
2 2
GMtan_lé(l +£2v2j w? azq'(lj(l +52v2j Vv
+ 2& - v
12 6q(b)l 2
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(wz_q;,z)(wzvzf _AgZ(MZVf

2
- 2.31
'3 2 2 (2.31)
From equation (1.3) and (1.4)
q 1 :ltan‘lfv +% tan‘lfv—i
v 2 2&°v 2&v
(1) &2 3 tant& 3
W)™ 2.2\ 2.-2 2, 2 (232)
v 2[fvj 25(1+5v j &y ¢
Using equation (2.32) in equation (2.31) it becomes
d2v ZEZV2 dv 2 _ GM 4EZGMV2 w2a253v2 AEZV 3
_ av)” _GM | _ - +o(v ) (2.33)
dp?  1+&22\dg 12 12 6q(b)! 2 12
2 2 2.2:2),,2
or a7V - AT CM ag?om- L2 TV +o(v3) (2.34)

This equation is hereafter called tb@mplete Newton's equatiaf motion for a satellite moving in the
equatorial plane of a uniformly rotating oblate ejgfidal body in terms of the angular coordingteThis
equation is in agreement with previous result (Hewand Musongon 2004) [3].

2 2. w3 2
If AL <1and?? d < A¢TGM , equation (2.34) reduces approximately to
|2 6q(b) |2
2 2 2
dcv ty= GM + 4£“GMv (2.35)
dg? 12 12

The equation (2.35) compares favourably with Ein&eplanetary equation of motion. Solving equation
(2.35) using the standard method of successiveoajppation for the corresponding precessidn,we
obtain

(2.36)

radian per revolution. This is the Newtonian pdigreprecession of satellite due to the earth’sarm
rotation on its axis and the equatorial bulge.

3.0  Summary and conclusion
In this paper we derive the “complete Newton's diquaof motion” for a satellite moving in the
gravitational field of an oblate spheroidal earthiah is rotating uniformly on its axis. This equati
which apart from recognizing the fact that, Eagtloblate spheroidal also takes into account thietliat,
earth is not stationary (as given by Howusu and dvigeng (2005) [3] in their paper) but rotates
uniformly on its axis. We differ from Howusu and btingong in that, we added the rotational term in ou
formulation in order to take care of the Earth @éid rotation every twenty four hours. Thereforar o
result is available for comparison with their résand other similar equations. Equation (2.35)oisex

2 2
for the corresponding precession using method otessive approximation to e = %Iﬂ

radian per revolution. Our theoretical values far precession compare adequately with that of &iwist
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{Anderson, (1967) [1]}, and therefore stand on ddoating as others. Consequently, the way is now
open for further physical interpretation and heexgerimental investigation of this

The most profound fit of this paper is that we dedi the exact and complete expression of the
‘radial’ equation of motion for closed orbits inettequatorial plane in term of the azimuthal angular
coordinate as (2.34). This is hence forth availdbtecomparison with the well known corresponding
equation in the field a spherical body. For theesak comparison it may be recalled that the radial
equation of motion in equatorial plane of a statignhomogenous spherical body in terms of the
azimuthal angular coordinate is given by

d’v _ k

dg 17
Thus,the major difference between (2.34) and (2i81hat, the right hand side of the former corgai
terms of all orders of. And the second major difference is that, theheftd side of (2.33) contains the

-v (2.37)

2

. dou . . . .

termin d_ which is not present in other similar equations.
@
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