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Abstract 
 

This note presents a construction of Numerov method from a 
quadratic continuous polynomial solution (degree two continuous polynomial 
solutions).  In contrast with [1, 3, 5] that was hitherto obtained from a degree 
four polynomial, the discrete Numerov method as a special case. This process 
lead to the block method applied to both initial and boundary value problem 
for the more general second order ( , , )y f x y y′′ ′= . 
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1.0 Introduction  

The study of numerical solution of initial and boundary value problem in the second order 
ordinary differential equations 

( , ), ( ) , ( )o oy f x y y a y y a y′′ ′ ′= = =     (1.1) 

( , ), ( ) , ( )y f x y y a y bβ η′′ = = =     (1.2) 

and the more general form of second order ODE’s ( , , )y f x y y′′ ′=   (1.3) 
with two point boundary of the form 

( ) , ( )o ry a y y b y= =  

or with initial conditions, ( ) , ( ) ,y a y aη ψ′= =  wherea x b≤ ≤ , is considered. There are Runge-Kutta 
type of methods which solve (1.1) - (1.3) directly without reducing it to first order system. The present 
approach is found to be advantageous in many ways among this is that the continuous form can be used as 
interpolant for the computed numerical values for dense output for analytical work at no extra cost to 
provide interpolant. Besides this, the continuous form can also be a big advantage in error control for 
choosing a step size adjustment strategy for the proposed block method. Most importantly, obtaining y(x) 
= u(x) in the form (3.2) of section 3.0, involves a matrix inversion once. The continuous solution u(x) is 
evaluated at some meshes for simultaneous (Block) discrete method for the numerical solution in the 
parallel computing form. However, if the sequential computing is desired, the proposed two-step 
Numerov block method can be used to get the single linear multi-step method (LMM), evaluated atn kx + , 

started. The approach is by continuous (LMM) of the form  
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! 1

0 0

( ) ( )
k k

j j j j
j j

x f h x fα β+ +
= =

=∑ ∑    (1.4) 

where k is the step number ( ) 1, ( ), ( )
k o ox x xα α β=  are not both zeros, while αj(x) and βj(x) are real 

continuous coefficients. The three-term recurrence formula  

  2
2 1 2 1

1
2 ( 10 ), 0,1...

12r r r r r r ry y y h f f f r+ + + +− + = + + =   (1.5) 

called the Numerov method was earlier proposed for efficient solution of       (1.1)-(1.2) on a discrete 
mesh point with constant step size h , in [1, 3, 5] whereas rh can be variable step-size h  in the form 

 1 1 1, 0,1,..., 2,r r n n rx x h r n x x h+ − −= + = − = +   (1.6) 

where 1, , 1,..., 1,o r r na x x x r n x b+= < = − = . 

The formula (1.5) is accurate and is of order four with an error constant
6

1

2 4 0
C

−= , its application 

to (1.1)-(1.2) results in a tridiagonal set of algebraic equations. For these two reasons the Numerov 
method is popular. However, its implementation requires the generation of 1k −  initial starting values 

,( ) 1(1) 1n n jy x j y j k++ = = −  using a starting method which is most often Runge-Kutta method 

(RKM). The direct application of (1.4) to (1.1)-(1.2) has been found to be more advantageous in some 
application than the application of conventional LMM (1.4) to the reduced (1.1)-(1.2) in first order 
systems of initial value problem (IVP). 

( , ), ( ) oy g x y y a y′ = =      (1.7a)  

( , ), ( ) oog f x y g a y′ = =      (1.7b) 

Whereas its application to (1.3) as proposed in this paper, without recourse to any special integrator, the 
y′  is replaced accurately as order four finite difference formula, the result is a symmetrical set of 
algebraic equations. Since, the idea behind the multi-step collocation is to let the collocation polynomial 
use information from the previous points in the integration. The method incorporates finite difference 
approximation for the first derivative into the integration from the start which thus allows the values of r  
in the block to be predetermined. 

A parallel algorithm design to speed up the computation with (1.5) was proposed in Yusuph and 
Onumayi [5], and Onumayi et al [3]. Whether for parallel or sequential computations the issue of starting 
with Numerov method accurately has important consequence on the global error of the algorithms. For 
this reason Gonzalez and Thompson [6], obtained using Taylor series approach as a starting formula. 

2
1 0 0 0 0 1 2

1
(7 6

24
y y hy h f f f′= + + + − )    (1.8) 

where (1.8) has a global error of 3( )rO h . Yusuph and Onumanyi [5] sing multi-step collocation approach 

obtained the same formula (1.8). In this paper a report of quadratic polynomial that yields (1.5) at

2nx x += , and a starting formula with error constant 5

1

45
C = (global error 3( )rO h ) is presented. Yusuph 

et al (2002) [5] and Gonzalez et al (1997) [6] reported similar schemes like (1.5) in magnitude using 
different concept, which made them differ. 
 
2.0 Proposed multi-step collocation method for continuous approximation 

Consider the construction of multi-step collocation methods for variable step-size rh   
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and seek a method of the form, 

1 1
2

0 0

( ) ( ) ( ) ( )
t m

r n r r n r
r r

y x U x x y h x fφ
− −

+ +
= =

≅ = + Ψ∑ ∑    (2.1) 

where [ ,n n kx x x +∈ ] and introduce the following notations. The positive integer 2k =  denotes the step 

number of the method (2.1), M > 0 is the number of distinct collocation points used and t is the number of 
interpolation points used 2 t k≤ ≤ . Values of k  and M  are arbitrary except for collocation at the mesh 
points only. 

Let ( ) ( ), 0,..., 1n r n r n rU x y y x r k+ + +≈ = = − . Then a k -step multi-step collocation method 

with m collocation points is constructed using (2.1) which yeild a polynomial U(x) of degree 
1p t m= + −  and such that it satisfies the conditions, 

[ ]( ) , 0,..., 1n r n ry x y r t+ += ∈ −    (2.2) 

( ) 0,... 1n rU x f r m+′′ = = −  

where n rf +  denote [ ], ( ) , ( ) ( )r r r rf x U x x and xφ ψ  are assumed polynomial basis func-tions. 

   
1

1,
0

( ) ( ) , (0,1.. 1)
t m

r i r i
i

x P x r tφ φ
+ −

+
=

= ∈ −∑    (2.3)  

and   
1

2 2
1,

0

( ) ( ) , 0,1.. 1
t m

r i r i
i

h x h P x r mψ ψ
+ −

+
=

= = −∑     (2.4) 

The collocation points are { } { }1, ,.... ,....r n n k n k n kx Q Q x x x x+ + − +∈ = ∪ .  

The constants 2
1, 1,i r i rand hφ ψ+ +  are undetermined element of the following ( ) ( )t m t m+ × +  

dimensional matrix 
 

2 2
1,0 1,1 1, 1 1,0 1, 1

2 2
2,0 2,1 2, 1 2,0 2, 1

2 2
1,0 1,1 1, 1 1,0 1, 1

2 2
,0 ,1 , 1 ,0 , 1

.

.

. . . . . .

.

. . . . . .

.

t m

t m

i i i i i i m

t m t m t m t t m t m m

h h

h h

C
h h

h h

φ φ φ ψ ψ
φ φ φ ψ ψ

φ φ φ ψ ψ

φ φ φ ψ ψ

− −

− −

+ + + − + + −

+ + + − + + −

 
 
 
 

=  
 
 
 
 
 

  (2.5) 

 
where 0,1,..., 1i t m= + − ,  in (2.5). we define the following vectors 

( )
( )

1 1 1 1

0 1 1

, ,..., , , ,...,

( ) ( ), ( ),..., ( )

T

n n n t n n n m

T

t m

v y y y f f f

p x p x p x p x

+ + − + + −

+ −

=

=
 

where ( )p x denotes an arbitrary function and T  denote the ‘transpose’ of. The matrix M  defined by  
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0 1

0 1 1

0 1 1 1

0 0 1 0

0 1 1 1

0 1 1 1

( ) . . ( )

( ) . . ( )

( ) . . ( )

( ) . . ( )

( ) . . ( )

( ) . . ( )

n t m n

n t m n t

n t t m n t

t m

t m

m t m m

p x p x

p x p x

p x p x
M

p x p x

p x p x

p x p x

+ −

+ + − +

+ − + − + −

+ −

+ −

− + − −

 
 
 
 

=  ′′ ′′ 
 ′′ ′′
  ′′ ′′ 

   (2.6) 

is assumed non-singular. 
 
3.0 Numerov method from the quadratic polynomial solution 

We consider the parameter specifications 

{ }1 2( ) , 0,1,2,3,4. 2, 3 2, , ,i
i n n np x x i k t m x x x+ += = = = =  as the interpolation points 

{ }1,n nx x +  as the collocation points. ( )1 2 1, , , ,
T

n n n n nv y y y f f+ + +=  
2 3 4

2 3 4
1 1 1 1

2 3 4
2 2 2 2

2

2
1 1

1

1

1

0 0 2 6 12

0 0 2 6 12

n n n n

n n n n

n n n n

n n

n n

x x x x

x x x x

M x x x x

x x

x x

+ + + +

+ + + +

+ +

 
 
 
 =
 
 
 
 

    (3.1) 

Hence, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

4 3 4 33 3
1 1 1 1 1 1

14 4

4 3 33 2
1 1 1 1 1

24 2

4 3 2 2 3
1 1 1 1

2

3 6 9 3 6 6
( )

6 3

3 6 3

6 6

3 5 3 ( ) 5

6

n n n n n n

n n

n n n n n

n n

n n n n

x x h x x h x x x x h x x h x x
U x y y

h h

x x h x x h x x x x h x x
y f

h h

x x h x x h x x h x x

h

+ + + + + +

+

+ + + + +

+

+ + + +

   − + − − − − − − − − −
   = +

   − + − − − − − + −
   + +

 − − − − + − + −
 + 1nf +

(3.2) 

Differentiating (3.2) twice, we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2

1 1 1 1

14 4

2

1 1 1

24 2

2 2
1 1

12

36 36 36 36
( )

6 3

36 36 6

6 6

36 30 6

6

n n n n

n n

n n n

n n

n n

n

x x h x x x x h x x
U x y y

h h

x x h x x x x
y f

h h

x x h x x h
f

h

+ + + +

+

+ + +
+

+ +

+

   − + − − − − −
   ′′ = +

 − + − − −    + +

 − − − − +
 +

  (3.3) 

Equation (3.3) is the degree-two polynomial equation for the continuous approximation which when 
evaluated at 2nx x +=  yield the scheme 

{ }
2

2 1 2 1 6

1
2 10 ,

12 240n n n n n n

h
y y y f f f C+ + + +

−− + = + + = , 

popularly called the Numerov method. 
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If we also consider the first derivative function derived from the continuous method (3.2) we have 

   
0

( ) ( )
( ),

du x du a
z x z

dx dx
= =     (3.4) 

Thus we obtained from the second equation in (3.4) and (3.2) 

{ }
2

0 0 0 2 0 1

1 1
( ) 2

2 2 3

h
z hy x y y f f′= = − + − +    (3.5) 

with global error 3( )O h r , and an error constant5
1

45
C = − . To start the IVP on the sub-interval [ ]0 2,x x , 

we combine (1.5) (Numerov method) when 0r n= =  together with (3.5), and then obtain  
2

2 0 2 1 0

2

0 0 2 0 1

2 ( 10 )
12

1 1
( 2 )

2 2 3

i

h
y y y f f f

h
hz y y f f


− + = + + 


+ + = − +


    3.6) 

where the form (3.6) has order three given by [4, 3]T and an error constant  

6

5

1

240
1

45

C

C

− = 
 

− = 
 

 

It is thus convergent and simultaneously provides values for 1 2y and y  without looking for any other 

method to provide1y . Hence this is an improvement over the use of (1.5) singly for IVP. 

 
4.0 Application of Numerov method to y″″″″ = f(x,y,y′′′′) 

As an extension to application of Numerov method discussed extensively in [1, 3, 5] and in 
section3.0 of this paper. We shall now consider the more general form of second order ODEs (1.3). The 
solution to a two-point boundary valued program such as that given above by (1.2) and (1.3), involves 

seeking the solution at the points 0ix x ih= + , for 1,2,... 1i r= −  and with 0 , ;rx a x b≡ ≡  
b a

h
r

−= .  

Let the approximate value of the require functions ( )y x  and its derivative ( )y x′  at point ix  be iy′  and 

y′  respectively. Simply replace approximately the derivatives ( ), 0,1,... 2iy x i n′ = −  at each interior 

point in the proposed methods by the finite difference relations given below. 
Central difference formula  

4
1 1/ 2 1/ 2 1 5

1
6 8 8 , ( ),

288i i i i ihy y y y y O h C− − − +′ = − + − =   (4.1) 

Backward Difference Formula 

4
2 3/ 2 1 1/ 2 5

1
6 3 16 36 48 25 , ( ),

80i i i i i ihy y y y y y O h C− − − −′ = − + − + = −  (4.2) 

Forward Difference Formula 

4
2 1/ 2 1 3 / 2 2 5

1
6 25 48 36 16 3 , ( ),

80i i i i i ihy y y y y y O h C− − − − +′ = − + − + − = −  (4.3) 

 
 
(cf: Yahaya and Onumayi [7]).  Thus, obtain a transformation of the form 
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{ }
2

2 1 2 12 10
12r r r r r r

h
y y y f f f+ + + +− + = + +  

to the derivative form 

{ }
2

2 1 2 12 10
12r r r r r r

h
y y y y y y+ + + +′ ′ ′− + = + +  

while 2ry +′ , 1r ry and y+′ ′  will be approximately replaced with either (4.1) or (4.2) or (4.3). the resulting 

systems also in block form. The direct solution of the resulting difference system of equation can be done 
using any of the methods developed specifically for solving system of such kind. Although, In Our Case, 
Microsoft Excel was used. 
 
5.0 Numerical examples 

To test the numerical efficiency of our schemes, presented here are some numerical results.  First 
problem considered is a singular perturbation boundary value problem, while the second is an 
unperturbed initial value problem in the general equation form (1.3). 

 
Example 1 

1

1
1

(0) 0, (1) 1, 0.1, 0.1

( )

x

y y

y y with h

e
y x

e

ε

ε

ε
ε

− −

− −

′′ ′=
= = = =

=

     (5.1) 

Table1: Numerical solution to problem (5.1) (theoretical and approximate solutions) 
 

X Exact Solution
( )y x   

Numerov Block 

2 ( )y x  
Exact Error (

2 ( )y x - ( )y x ) 

0 0 0 0 
0.1 0.6321492584 0.6197084753 1244 x10-5 
0.2 0.8647039743 0.8558765362 883 x10-5 
0.3 0.9502560732 0.9453610404 490 x10-5 
0.4 0.9817289315 0.9792544965 247 x10-5 
0.5 0.9933071491 0.9920991481 121 x10-5 
0.6 0.9975665373 0.9969665768 60 x10-5 
0.7 0.9991334786 0.9988110731 32x10-5 

0.8 0.9997099241 0.9995106981 20 x10-5 
0.9 0.9999219866 0.9997884563 13x10-5 
1.0 1.0 1.0 0 

 
Example 2 
 

Also solve here the problem (IVP) 
0

(0) 2, (0) 1, 0.1

( ) 3 x

y y

y y h

y x e−

′′ ′+ =
′= = =

= −
       (5.2) 
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Table2: Numerical solution to problem (5.2) (theoretical and approximate solutions) 

 
X Exact Solution

( )y x   
Numerov Block 

2 ( )y x  
Exact Error (

2 ( )y x - ( )y x ) 

0 2.0 2.0 2.0 
0.1 2.095162582 2.0951643165 173.4x10-8 

0.2 2.181269247 2.1812726181 343.4x10-8 
0.3 2.259181797 2.2591867846 500.5 x10-8 

0.4 2.329678854 2.3296864006 644.6 x10-8 

0.5 2.39346934 2.3934771098 776.9 x10-8 

0.6 2.451188364 2.4511973472 898.3 x10-8 

0.7 2.503414696 2.5034247931 1009.7 x10-8 

0.8 2.550671036 2.5506821542 1111.8 x10-8 

0.9 2.59343034 2.5934424042 1206.2 x10-8 

1.0 2.632120559 2.6321335595 1300 x10-8 

 
6.0 Conclusion  

A considerable literature exists for the conventional k-step linear multi-step methods (LMM) for 
the discrete solution of ordinary differential equations (ODEs) of the form (1.1)-(1.3). Interestingly, no 
known methods of LMM for (1.1) - (1.2) that can handle (1.3). This however, does not becloud their 
usefulness. 

Method (3.6) as proposed in section (4.0) has substantial advantage as can be seen in numerical 
results. Table1and 2 is a successful application of Numerov method to the general form of second order 
ODEs. In the sense of backward differentiation formula BDF Numerov method have been converted to 
continuous solution form. This is indeed an improvement. 
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