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Abstract 

 
 This paper proposes a way of obtaining non-equilibrium transient 
electron-lattice temperature of several thousands of Kelvin in semiconductor 
thin films by applying satisfactorily boundary conditions to Anisimov coupled 
differential equations .This is possible by adjusting some of the parameters in 
the equations and tailoring the characteristics of semiconductors to achieve an 
enhanced transient carrier concentration and transverse spread in energy that 
will enhance the performance of the free-electron laser technology. 
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1.0 Introduction 

Thermal enhancement technique involves laser pumping of electrons from valence band to 
conduction band and emitting those excited electrons by a delayed laser pulse in addition to those usually 
photoemitted from valence band to the conduction band (Milonni and Eberly, 1988 [11]; Berthod, et al., 
2004) [4]. Hence, in order to obtain thermally enhanced photoemission using ultra short laser pulses; time 
resolved measurement of the electron (Te) and lattice (Tl) temperatures has to be the focus of attention 
(Jensen, et al., 2003) [9]. To do this, Anisimov, et al., (1974) [1] developed a coupled nonlinear 
differential equation (two temperature model) of heat transfer from electron to lattice of a metal irradiated 
with ultra shot laser pulse incident normally on the surface of a metal. An analytical solution to the 
equations developed by Anisimov, et al., (1974) [1] is next to impossible as only approximate numerical 
solution and experimental results is possible as has been done. In the previous papers, appropriate 
boundary conditions are applied to the equations and finite difference method used to develop an 
algorithm for numerical solution whose results of computations and applications are obtained in 
Musongong, et al., (2006) [13] ; De and Musongong, (2007) [6] and Musongong, et al., (2007) [14] for 
intrinsic semiconductors of thickness d = 1.2, 1.1 and 0.9 µm. In this paper, we are presenting an 
algorithm developed for n-type extrinsic GaAs semi-conducting thin film with doping concentration Nd 
=1021  cm-3 and thickness d = 280A0  for two temperature model.   

The two temperatures model was first introduced and applied to a metal by Anisimov, et al., 
(1974) [1] and subsequently applied by Fujimoto, et al., (1984) [7] to tungsten. Papadogiannis, three 
years later applied the same equations to tungsten metal  

(Papadogiannis, et al., 1987) [15] while Rethfeld recently applied the same idea of two 
temperature model (Rethfeld et al., 2002) [16] to investigate theoretically the transient evolution of the 
distribution function of the electron gas in a metal during and after irradiation with a subpicosecond laser 
pulse of moderate intensity making use of Bloch functions.  Moos applied the same coupled differential 
equations (Moos, et al., 2002 [12]; Anonymous 2007) [3] to single-wall carbon nanotube bundles to 
determine energy transfer from electrons to lattice while Jensen, et al., 2003 [9] applied the coupled 
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differential equations to the measurement and analysis of thermal photoemission from a dispenser (coated 
with metal of low work function) free-electron laser cathode. He discovered that photocathodes for free-
electron laser are required to produce nano-Coulomb pulses in picosecond time scale with demonstrable 
reliability, lifetime and efficiency. Low work function coatings on semiconductors photocathodes, 
produced by empirical techniques have excellent quantum efficiency but suffer the fact that their response 
times are too large. Therefore a great deal of heat energy will be dumped into the crystal (space charge) 
altering their operations and leading to nonlinear performance. In general, photocathodes are often 
preferred to thermionic cathodes which consist of a metal with relatively low work function that is heated 
until electrons are emitted. This emission is explained by treating the free electrons in the metal as a 
Fermi-Dirac gas (Clendenin et al., 1999) [5].  Thermionic cathodes are characterized by low life time, 
high emittance, low current density, high space charge, and non repeatability (Anonymous, 2006) [3].  
Thermionic cathodes sources have been used in the past for free-electron laser have had the problem of 
not being switched on the picosecond time scale, and the resultant emittance of the electron beam is too 
large to allow for lasing at desired wavelengths (Jensen et al., 2003) [9]. 

 
2.0 Theoretical model 
 The coupled nonlinear differential equations for the two temperature model are 
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is valid. Part of the energy is transferred to the lattice through the term ( ).le TTg −  whereas radiation can 
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where m is the effective mass of the electrons or holes, ne is the electronic concentration and Vs is the 
velocity of sound in the metal and epτ  is the relaxation time given by the expression 
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for any material, while a and b are constants and determined experimentally. 
( )tzA ,′  represents the source term, which is actually the z-gradient of the incident laser pulse probe 

intensity and R being the reflectivity at the surface of the material thin film at time t. Both eC and lC are 

functions of t(i) and z(j). Ce and Cl are the electronic specific heat capacity per unit volume and lattice 
specific heat respectively. Kt represents the thermal conductivity of the material ( cmKWKt /81.0= for 
GaAs thin films). For a given thickness d, relaxation time τep, and gradient of the laser intensity A (z,t) we 
apply numerically the finite difference method for the solution if( )tzA ,′  is known explicitly. 
 
3.0 The Equation of Incident Intensity (Source term) 

Consider a very short incremental interval of timet∆ with the time T. If we let ( ) ttp ∆  to be the 

probability of ejecting an electron from the surface in a time interval ,t∆ the ( ) ttp ∆ is given by  

  ( ) ( ) ttIttp ∆=∆ α     (3.1 

where ( )tI  is the incident intensity average over a few optical periods and α  is a constant depending on 

the nature of the detector (density of atoms, size of exposed surface, etc). The time interval t∆ is taken to 
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be so short that the probability of ejecting more than one electron during this time is completely 
negligible. t∆  is chosen not to be an intrinsic parameter of experiment but merely a theoretical construct, 
so that we can make it as small as possible. Then, ( )tPn  is defined to be the probability of n photons 

incident on the surface at time Tt ≤≤0 . We conveniently choose ( )ttPn ∆+  where t∆  is defined above 

so that there will be two mutually exclusive ways of getting n photons in the time interval .tt ∆+  We get 
1−n  photons in the time interval t and 1 more in the interval from t to tt ∆+ so that its probability is 

given as 
( ) ( ) ( ) ( )ttimeinphotonofprobttimeinphotonnofprobttptPn ∆×−=∆− 1.1.1  (3.2) The 

other alternative is that we get n photons in the time t and more in the interval from t to tt ∆+ , i.e.  
( ) ( )[ ] [ ] [ ]ttnttptnP ∆×=∆− timeinphotonnoofprob.timeinphotonsofprob.1   (3.3) 

Since both cases we want n photons, then adding (3.2) and (3.3) we have  
( ) ( ) ( ) ( ) ( )[ ]ttptPttptPttP nnn ∆−+∆=∆+ − 11    (3.4) 

Rearranging (3.4) we obtained  
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Since t∆ is at our disposal to make it small as possible we let it become a derivative of ( )tPn  so that the 

left hand side of (3.5) becomes  
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Therefore equation (3.5) becomes 
( ) ( ) ( ) ( )[ ]tPtPtp

dt

tdP
nn

n −= −1      (3.7) 

Using equation (3.1) for P(t) we obtain 

    ( ) ( ) ( )[ ]tPtPtI
dt

dP
nn

n −= −1α     (3.8) 

Solving (3.8) we obtained
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Hence    ( ) ( ) ( )tXn
n etX
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      (3.10) 

which is an exact solution of (3.8) and  
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Equation (3.9) is equivalently written as 

    ( ) [ ] ( )tX
n
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!
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where    ( ) ( )∫=
T

dttITX
0

α      (3.13) 

Equation (3.13) is an elegant solution of the integral but the interval of time goes from zero to T. We are 
dealing with large interval of time not starting from zero hence we modified equation (3.13) for interval 
of time t to t + T as 
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t
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or   ( ) ( )TtITTtX ,, α=        (3.15) 
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is the average incident intensity during the time interval from t to t + T .Then equation (3.12) becomes 

 ( ) ( )[ ] ( )[ ]TtXTtX
n
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1
, −=     (3.17) 

For a two dimensional thin film of incident laser pulses, equation (3.17) is modified as we took into 
consideration the duration of the pulses and the depth of the penetration on the surface of the thin film. 
Hence equation (3.17) is equivalently written as  
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for a Gaussian surface.  

Therefore:  ( ) ( )
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4.0 Application of boundary conditions 
 The boundary conditions that exist at the surface are: 
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for Gaussian pulse. 

t
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K e
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for square pulse for .0 τ≤< t   For a given thickness d, relaxation time τep, δ the skin depth and gradient 
of the laser intensity A (z,t) we apply numerically the finite difference method for the solution. We took N 
= 1000 being the divisions of both the time τ (the laser pulse width) = 1 nanosecond and the thickness d. 

We calculated the values of Te (i,j) and Tl(i,j) and obtained the average temperature )(iTe  and )(iTl  

respectively for intrinsic Gallium Arsenide (GaAs) thin film. Here we have assumed 1
1 =

lepTτ
for 

simplifications. We took d = 280 A0 and 100 A0 respectively for different thicknesses and peak pulses of 
0.01, 0.1, 5, 10 and 350 MW/cm2 respectively. We compared our results with the well known result of 
Jensen, et al. (2003) and Fujimoto, et al. (1984) to cross-check our method of calculations. We also 
extended the divisions from 1000 to 5000 or more for a better result. 

For a two dimensional thin film with pump laser incident along the z-direction where 
jzit == ,  as running index we have 
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Equations (4.3) are boundary conditions and  
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Equations (4.4 - 4.7) cannot be solved directly. Applying the boundary conditions (4.4) and taking 
,9990,9990 −=−= ji we solve the equations simultaneously. We modified the boundary condition 

by letting  ( ) ( ) .300,0,0 kjTjT le ==  (4.8) 

also, ( ) ( ) .3000,00,0 kTT le ==  (4.9) 

 We are interested in averages. In this case we consider the length of the pulse width. Since this is 
very small, it is clear that this can be done in one dimensional where the temperature distribution at the 
surface is determined by the intensity within the laser beam. Then, integrating equation (2.1) we have 
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where ( )tA  is the source term and taking the integrals in (4.10) term by term we have 
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where ( )iTe  is the mean electron temperature and the summation is over j. Hence, 
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also, 
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Bringing (4.18), (4.19) and (4.20) together we obtained 
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The boundary conditions are applied as:- 
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for Gaussian pulse.  At the surface 0=j , or  
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We have set in the method of finite difference and adjust the running integers to suit the equations. The 
calculations of <Te(t)> is shown in figure 1 for GaAs semi-conducting thin film material. In the finite 
difference method an algorithm for the solution of differential equation, Ce(Te) has to vary as shown in  
Musongong, et al., (2007) [14]. Hence 
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where C(Te(i,j)  is a function of transient electron temperature Te(i,j). We incorporate (4.28) into (4.27) to 
obtain: 
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where ( ) ( )( )∑=∗∗ iTCiC eee , and  
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where the sum is over j and ne(Te(i)) incorporated in the expression for g in equation (2.3). We have to 
develop an equation incorporating ne(Te(i)) . 

When an electromagnetic field is incident on a semiconductor sample, energy is supplied to the 
free carriers at the rate( ) ( )tzAA ,′σ , where σ  is the intensity-independent free carriers absorption cross 
section, and A(z,t) represents the intensity inside the sample. A steady state is attained when the average 
rate of energy gained from the field equals the average rate of energy lost by the emission of phonons 

dt

dε
.That is, 

 

( ) ( ) 0, =+′
dt

d
tzAA

εσ      (4.32) 

At low light intensity, free electrons occupy states near the conduction band in minimum number 
while the valence band is filled. At high light intensities, the electron temperature becomes much greater 
than the lattice temperature. This modification in the carrier distribution introduces intensity dependence 
in the free carrier absorption cross-section. For the indirect intra conduction and intra valence band 
transition, the excitation rates are assumed to depend only on the density of the final states to which the 
free carriers can be excited by the absorption of a single photon. Thus, the indirect free carrier absorption 
depends on the electron temperature and increases as the intensity of the incident light increases. 

The indirect free carrier cross-section for photon energyωh  is given by: 
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( ) ( ){ } ( ){ }e
k
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where ( ){ }eTkf ,ε  is the distribution function for a state with energy ε and carrier temperature Te with 

( )ωσ  as the cross-section. It is assumed that ( )ωεσ ,  is proportional to the density of electronic states at 

ωε h+  where the constant of proportionality is determined by requiring that at low light intensities 
( )ωσ  is experimentally determined. From equation (4.33), to determine the carrier temperature as a 

function of the light intensity, we require the rate of energy loss from the electron system to the lattice 
system. For a covalent semiconductor, the carrier-phonon interaction was described by James, (1983) [8], 
as a deformation potential. Based on the James model, the matrix element of scattering by acoustical and 
optical models are given by: 
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2

acM  is the squared acoustic phonon scattering matrix element (summed over both absorption 

and emission), 
2+

opM  is the square matrix element for optical emission and 
2−

opM is the squared matrix 

element for optical phonon absorption, acε  is the deformation potential for acoustical phonon scattering. 

lT  is as defined before,ρ represents the density of sample and lµ  has been taken as the sample 

longitudinal sound velocity, V is the volume of the sample. opN  represents the optical phonon Bose 

factor, while D is the shift of the band edge per unit relative displacement of the sub lattices. Then, 
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where opε  represents the deformation potential for optical phonon scattering and opω  is the angular 

frequency of the optical phonon. The average rate at which a carrier loses energy to the lattice over all 
possible emission and absorption processes that the carrier may undergo and this is done using the 
Maxwell Boltzmann distribution function. That is 
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lB
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Also oK is a modified Bessel function of the second kind.   

For n-type, a direct group III and V semiconductor such as GaAs, the acoustic term is negligible 
and the non-polar optical scattering may be important for highly energetic carriers only. Therefore, the 
polar optical scattering is dominant, hence, 
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h is the normalized Planck constant and DΘ  is the Debye temperature. 
In the above calculation, the carrier concentrations are considered sufficiently low to ignore any 

screening effects, which would reduce the interaction of the carriers with the lattice. For hot carriers, 
impact ionization events are energetically allowed, leading to the formation of additional electron-hole 
pairs. To calculate the rate of formation of non-equilibrium excess free carriers for light intensity I, it is 
necessary to first calculate the impact ionization rate for hot electron energyε . Following Kane, (1967) 
[10], the impact of ionization rate for an electron with energy ε  is given by: 

( ) ( ) ( ) ( ) 432432432)( εεεεεεεδερερερεω dddA −−−= ∫  (4.46a) 
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Here eN  represents the number of unit cells and ρ  is the density of electronic states. ba MandM  are 

the direct and exchange coulombs matrix element defined by: 
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where   ( ) ( ) ( ) 3,,, drrkrkkkF nnnn ′′=′ ∫
∗

′ UU     (4.49) 

and nU is periodic part of Bloch function.DL represents the Debye length,2k  is the wave vector of the 

initial hot electron in the conduction band,1k ′  is the wave vector of the additional hole in the valance band 

produced by impact ionization event,1k  is the wave vector of the additional electron in the conduction 

band produced by impact ionization event and 2k ′  is the wave vector of the free electron in the conduction 

band after the impact ionization ( )1−sα .  Hence 
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where in is the free electron density in the ith energy interval. 

Using the Maxwell Boltzmann distribution with electron temperatureeT , we calculate the impact 

ionization as a function of intensity( )Aα . That is the exponential growth rate α of the semiconductor. 
Following the theory of James, we calculated the exponential growth rate as a function of 

intensity and electron-hole temperature as function of intensity of 10.6 and 9.6 micron wavelengths of 
CO2 laser for various semi-conducting materials. We also consider the effect of thickness of the material 
on the exponential growth rate while being irradiated by a pulse of given time duration. Also we 
calculated the hot electron temperature as a function of time and depth within the material. That is  

( )Aαα =      (4.51) 
Then we get the electron temperature as function of intensity, as 
     ( )ATT ee =      (4.52) 

We then combine the equations (4.51) and (4.52) to eliminate A(z,t) and obtain the exponential growth 
rate as a function of transient hot electron temperature. That is 

( )eTαα =      (4.53) 

Then with the help of equations (2.1) - (2.4) and (4.29 – 4.31) we calculate <Te(t)> and also <Tl(t)> for 
semiconductor films of different thicknesses in the nano-second regime. Thus we get   
  ),(tTT ee =      (4.54) 

and     ( )tαα =      (4.55) 

so that    ( ) ∫=
t

eoe dttNtN
0

)(exp α     (4.56) 

and      ∫ ∑ ∆= ttdtt )()( αα     (4.57) 

where eN  represents the density of the transient hot electrons in the conduction band and eoN  is the 

equilibrium electron density in the conduction band of the semiconductor. 
 
5.0  Results and conclusions 

The results of our calculation of the enhanced concentration of GaAs is shown in Figure 2 
alongside that of non-equilibrium temperature average <Te(t)> Figure1. These results have been obtained 
after a series of computer programming as shown in Appendix. It is shown in figure 1 that non-
equilibrium temperature exists in semiconductor just like the metal counterpart.  

Hence, the non-equilibrium signifies increase (enhancement) in the concentration in the 
conduction band (James, 1983) [8] of semiconductors and others. 
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Figure. 1 .  Transient electron temperature profile in
/m3 ) and tungsten metal with τ  =  1ns. 
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Figure 2: Transient electron concentration profile in

It has been shown from Figure 2 that there is an enhancement factor of 10
nanosecond at FWHM (full wave at half maximum).
 
APPENDIX  
A computer programme for solutions.
Option Explicit 
Public alf  As Single 
Public bet As Single 
Public gam As Single 
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Transient electron temperature profile in GaAs semiconductor (with  doping concentration, N
=  1ns. The film thickness =  2.8 x 10-6 cm =  280 A0.  (It is seen that due to 

electron phonon coupling in semiconductor, the electron temperature Te is much higher than the corresponding 
temperature for metal W is the same as that  of semiconductor thin film 

temperature. Ao  =  10 MW/cm2 ). 

 
Transient electron concentration profile in GaAs irradiated with 10 MW/cm2 and pulse width 

Thin film thickness = 280A0. 
It has been shown from Figure 2 that there is an enhancement factor of 108 in the concentration within 1 
nanosecond at FWHM (full wave at half maximum). 

A computer programme for solutions. 

ELECTRON CONCENTRATION/TIME PROFILE
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in the concentration within 1 
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Public i As Integer 
Public finishI As Integer 
Public t As Single 
Public tau As Single 
Public tFactor As Integer 
Public interval As Integer 
Public Te() As Single 
Public Tl() As Single 
Public Const fourLNtwo = 2.772588722 
 
Option Explicit 
Private Sub cmdOK_Click() 
Dim rowCount As Integer 
   alf = CSng(txtAlf) 
   bet = CSng(txtBet) 
   gam = CSng(txtGam) 
   finishI = CInt(txtFinishI) 
   tau = CSng(txtTau) 
   tFactor = CInt(txtTFactor) 
   interval = CInt(txtInterval) 
   ReDim Te(finishI) 
   ReDim Tl(finishI) 
   Te(0) = 300 
   Tl(0) = 300 
  Te(1) = alf * Exp(-1 * fourLNtwo) + Te(0) 
   Tl(1) = Tl(0) 
   Te(finishI) = Te(0) 
   Tl(finishI) = Tl(0) 
   For i = 1 To finishI - 2 
      t = i * 10 ^ -12 'tau / finishI 
      Te(i + 1) = alf * Exp(-1 * (t / tau - 1) ^ 2 * fourLNtwo) - bet * (Te(i) - Tl(i - 1)) + Te(i) 
      Tl(i + 1) = gam * (Te(i) - Tl(i - 1)) + Tl(i) 
   Next i 
   With FlexGrid 
      .Rows = finishI \ interval + 2 
      .Cols = 3 
      .TextMatrix(0, 0) = "i" 
      .TextMatrix(0, 1) = "Te<i>" 
      .TextMatrix(0, 2) = "Tl<i>" 
      rowCount = 0 
      For i = 0 To finishI Step interval 
         rowCount = rowCount + 1 
         .TextMatrix(rowCount, 0) = i 
         .TextMatrix(rowCount, 1) = Te(i) 
 
         .TextMatrix(rowCount, 2) = Tl(i) 
      Next i 
   End With 
End Sub 
Private Sub cmdToTextFile_Click() 
Dim i As Long 
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      Open "C:\values.txt" For Output As #1 
      Print #1, "Te(i)" 
      For i = 0 To finishI 
           Print #1, Te(i) 
      Next i 
      Print #1, 
      Print #1, 
      Print #1, "Tl(i)" 
      For i = 0 To finishI 
           Print #1, Tl(i) 
      Next i 
      Print #1, "alpha ="; alf 
      Print #1, "beta ="; bet 
      Print #1, "gamma ="; gam 
      Print #1, "tau ="; tau 
      Close #1 
End Sub.  
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