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Abstract

This paper presents a Genetic Algorithm software (which is a
computational, search technique) for finding the zeros (roots) of any given
polynomial function, and optimizing and solving N-dimensional systems of
equations. The software is particularly useful since most of the classic
schemes are not all embracing. For example; Newton-Raphson Scheme can
only solve the zeros (roots) of polynomial, while and Gauss-Jordan scheme
can only solve set of linear simultaneous eguations. This characteristics of
classical schemes, thus pose a limitation to the scope of problems they can
they can used to solve. This limitation is effectively and accurately easily
resolved using the genetic algorithm programme. It is demonstrated using a
number of examples . Thus it solves a wider class of optimization problems,
and also solves for the zeros or roots of polynomial. The program was
designed and implemented using Microsoft Visual Basic object oriented
programming Language.

Keywords: Genetic Algorithm, Optimization, Polynomials Ftioas, Roots or zeros,
N-dimensional equations

1.0 Introduction

Genetic Algorithm (GA) is a probabilistic optimization methobiet is based on the principles
of evolution. It was first discovered and introduced in 1975 by John Hadladchis colleagues at the
University of Michigan, (Goldberg, 1989) [5]. Evidently, John Hollasdeferred to as the father of
genetic algorithms, but the basis of this optimization methodaonbe traced back to the father of
evolution, Charles Darwin (Darwin, 1859) [3].

Genetic algorithms are typically implemented as a computaulation in which a population of
abstract representations called chromosomes of solutionsd(oadigiduals) to an optimization problem
evolves towards better solutions. Practically, solutiongegpeesented in binary as strings of Os and 1s.
Each of these binary strings represents a gene. Each(stihognosome) has its own fitness measure that
reflects how well a creature can survive in its surrounding environment.

Since the inception of this computational, probabilistic searctiode genetic-algorithms has
been applied to so many optimization problems in various fieldgpeofessions with successful results.
For example, Parks et al (2001) [4] used genetic algorithms éstigate the efficacy of various elitist
selection strategies in a multi-objective genetic algoritimplementation, with parents being selected
both from the current population and the archival record of non dtedisalutions encountered during
search. The work showed that it was possible to improve the sgafohmance of the algorithm through
the use of strongly elitist selection strategies.
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Coit et al (1995) [2] researched on the inefficiencies of théicapipn of GA when constrained
optimization problems have feasible solutions that are difftoufind or achieve. Their method resulted
in the adaptive penalty technique, which makes use of feedbadkeubthuring the search along with a
dynamic distance matrix.

Two main methods exist in resolving the difficulties of hamgltonstraints in genetic algorithms. One is
to allow only feasible solutions in the population, and the othéo apply a penalty to those solutions
that violate constraints but neither of these two methods lbas@ito perform satisfactorily in general.
Another researcher, Carlson and Shonkwiler (1995) [1] studied s& of variable fitness genetic
algorithms as a technique for use on constrained optimizationepreb This method has been
successfully applied to a problem of engineering interest: the groatel treatment problem for
unconfined aquifers.

Genetic algorithms has been used in so many applications but fsonfiathe research that has
been carried out to the best of the authors knowledge, no workeleasdone on how to use genetic
algorithm for finding the roots of polynomial functions, optimizimglayenerate optimal (and also solve)
solutions for set of N-dimensional linear and nonlinear systehis.wWork addresses this problem. The
superiority of this method over the other classic methods is illudtvath a number of examples.

Genetic algorithm provides solutions by generating a set of choomassreferred to as a generation.
The new generation of strings is gotten through three major geneticiopeiat processes, namely:
(1) Selection
(i) Crossover
(iii) Mutation
Selection: There are different methods of selection, namely:

D) Roulette wheel method

2) Rank selection

3 Steady-State selection

(4) Elitist selection

(5) Fitness-proportionate selection
(6) Scaling selection

(7 Tournament selection

(8) Generational selection

9) Hierarchical selection
Crossover: There are different methods of crossover namely:
D) One-point crossover

2) Two-point crossover

3) Segmented crossover

The one-point crossover is when crossover or exchange of genes ataure point. It is a
simple and often used method. For example

PARENT 1

I o [o |

PARENT 2

1|0 [ O 1 [0 |

Figure 1: Parents and Cross over segment.

After crossover at the point, the new generations created are:
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OFFSPRING 1

OFFSPRING 2

(1 o Jo Jo [1 |
Figure 2: Offsprings created after crossover

Mutation: This is the chance that a bit within a chromosontiebeiflipped (0 becomes 1, 1 becomes 0).
It must be noted that erroneous reproduction or deformation of genesccar. In genetic algorithms
when these errors or deformations occur mutation is said to have taken plac

2.0  Software design

The Genetic algorithm software developed and reported in this, vpodvides solution to
problems of: optimization, roots (zeros) and system’s equatiomsasltdeveloped, using Visual Basic
(VB) 6.0 as the programming language. Visual Basic 6.0 is artobjented programming language.
This means that it makes use of objects which are a contrinaftidata and codes. Data represents the
relevant information that is used to programme the systems dynavhits the codes represent the series
of programming instructions written to process the systems data needed.
2.1 Programme description

The programme works in the following manner:
Step I When the program is initialized, a message box comes upgagtu if you to specify your
equation.
Step 2 An input box comes up requesting the user to input, the polyneqigition, or equation of the
linear or nonlinear system to be solved.
Step 3:Values for Parent 1 and parent 2 can be chosen at random and thesdingotthe text boxes
associated with them.
Step 4 A crossover point or split point is also inputted. Thighes point at which crossover will occur.
The programme can use any crossover point within the range of 1-15.
Step 5 The roots of the equation or other optimization solutions are solved gtalydis.
Step 6:Click ‘Enter’ and the programme undergo a maximum of 500 iteratmdstermine the roots of
the equation.
Step 7:When one of the roots (or any other optimization parameterousd, the programme
automatically stops iterating. A blue indicator outputs that & (moany other optimization parameter)
has been found.
Step 8 The process continues until other solutions are found.
Step 9 If after 500 iterations the roots have not been found, a messages up telling you to start with
a new set of parents. Go back to 3.
2.2 Software’s algorithm or pseudo code

The software’s algorithm or pseudo code was developed usingotlsv sequence of
programming:
2.2.1 Create a Random Initial State (Population)

An initial population is created from a random selection of swisti These solutions are
analogous to chromosomes.
2.2.2 Evaluate Fitness

A value for fitness is assigned to each solution (chromosdepgnding on how close it actually
is to solving the problem (thus arriving to the answer ofdésired problem). We note that until the
desired answer is obtained, each of these solutions iedraatpossible characteristics that the system
would employ in order to reach the final answer.
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2.2.3 Reproduce (& Children Mutate)

Those chromosomes with a higher fitness value are more likely to reprdtspreng (which can
mutate after reproduction). The offspring is a combination ofgdrees of the parents; this process is
known as "crossing over".

2.2.4 Next Generation

If the new generation contains a result that produces an outpug thase enough or equal to the
desired answer (solution) then the problem has been solved. dthtbavise is the case, then the new
generation will go through the same process as their parentShiédwill continue until a solution is
reached.

Using the technique just discussed the algorithm is given as follows:

Start

Initialize input box
Input equation
Read equation or set of equations
If equation not valid Then
Print “Equation invalid”,
Goto1l
Read inputs; parent 1, parent 2, crossover point
Initialize loop =1
If parent 1 or parent 2 is decimal Then
Convert both parents by to whole integer numbers
Convert parent 1 and parent 2 to binary
If loop =1 then cross parent 1 and parent 2 from inputted crossover point
Elsecross parent 1 and parent 2 from crossover point downwards.
Crossover point chosen at random from 1-15
Evalutate the fitness of offsprings
If Either offspring = one of the roots of the equation or any relegptimization
parameteiThen
Output “Perfect Offspring”

Else
Parent 1 = Offspring 1
Parent 2 = Offspring 2
Loop = Loop +1
Repeat search process.
Stop

3.0 Examples illustrating the use of the software.
The following examples are provided to illustrate the use of the seftwar

Example 1

Find the roots of the polynomiak® - 0.7x* - 0.14&+ 0.048&
Begin the program
At the programme commencement, the user is requested to epegtation to be solved as shown in
Figure 3.
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Figure 3: Shows a message box appear, requesting if yotitevapecify your equation.
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Figure 4: Shows an input box titled ‘entering equation’ aomith the ‘Genetic wizard form’. At this stage the
equation is inputted
For each value you enter, click ‘ok’ to move to the next section tinetilast value is inputted.
The highest polwer (3) is inputted as can be seen above and ‘ok’ is clicked.
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Figure 5: Shows how each coefficient of x is inputted ofterahe other in a descending other with respegt t
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Figure 6: Shows one of the possible roots of the equationd.

As shown in Fig. 6, 0.20 is one of the roots of the equation and the other roots obtain¢aeusing
software are: 0.30, and 0.80
Example 2

Find the roots of the polynomiak® —18x* + 51x* + 28&*- 368— 576
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Figure 8: Shows the final form, one of the possible roats heen found, in this case after 48 iterationgtaphical
display shows the number of generations producddlaoffspring generated.
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Evaluating example 2, using the genetic algorithm software, we haveltwirigl results shown in Table

1
Table 1: Comparison of Exact Solution and This model's Gienglgorithm
Roots (Exact using Newton-| Roots (This model’'s Genetic | Percentage difference
Raphson) Algorithm)
12.000 12.00 0.0000%
8.000 8.00 0.0000%
2.00 2.000 0.0000%
-3.00 -3.000 0.0000%
-1.00 -1.000 0.0000%
Example 3

Evaluate the roots of the following polynomial:
x* +8.5921x% + 23.7768x* + 23.5302x + 7.5857

The using the software the polynomial’s roots was obtained in less therglsebe values are presented

in Table 2.
Table 2 Comparison of Exact Solution and This model’s &&nAlgorithm
Roots (Exact using Newton-| Roots (This model's Genetic | Percentage difference
Raphson) algorithm)
-0.7566 -0.7566 0.0000%
-0.8355 -0.8355 0.0000%
-3.0000 -3.0000 0.0000%
-4.0000 -4.0000 0.0000%

The software developed using this algorithm has an edge over ottfemes in that it is not
limited to the type of problems it can handle. For examplehanse like the Newton-Raphson method
would easily solve for the roots (zeros) of a function but wat provide solutions to problems of
simultaneous equations. This is due to the way the NewtohsBapnethod functions. But the Genetic
algorithm being a search tool that provides improving solutiongagh stage of iteration, can
conveniently handle this problem. In fact it can handle all trasi®f optimization problems which other
schemes cannot. This because they were not developed to be all emibuagraplem type specific.

We illustrate the superiority of the algorithm, by the following Example:

Example5: Simultaneous linear equations.

Consider the set of linear equations:

a X taX,ta, Xt +a,X,=b,
A, X Fa,X,ta,X ... +a,x =b.
A% ta Xt a, Xt +a,Xx, =b,

This can be written in matrix form as:
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a21 a22 a23"' aZ] X2 b2

= ,i.e, AX=Db
8, &, & .3, (%) (b
all a12 al3 cee al] )(l b.l
whereA = 3:21 a,22 a.23 a.z] X = andb = o,
aﬁl ‘%2 %3 aﬁn Xn bn

If we multiply both sides of the matrix equation by the inversa, ofe haveA™ .Ax = A'b. But A' Ax=
|, thereforelx = A*.B. The implication is that if we form the inverse of the matwefficients and pre-
multiply matrixb by it we shall determine the matrix of the solutions of
Numerical data for Example 5:

To illustrate the power of this genetic algorithm software,aonsider a set of 10 simultaneous
linear equations. This is represented in matrix form; AxasBollows:

5 8 5 6 6 11 -3 5 6 1 )(x) (21
4 9 7 -3 11 4 8 6 9 10/|% | |8
7 95 3 -4 1 212 9 3||%| |7
7 89 5 3 1 4 6 6 11|%]| |9
9 7 4 6 -6 1 5 2 3 7 ||x%| |12
6 8 9 4 1 6 3 1 4 6]||x | |17
1 6 3 5 4 3 1 41 6||x ]| |21
8 57 8 4 5 -11 2 3 4||x | |16
126 4 1 3 5 8 5 9||x/| |4
6 51 2 3 1 2 1 5 7)(x,) \11

This is solved using the genetic algorithm software within 3 seconds, amah strot of the solution is
shown in Figure 7.
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Figure 9: Screen shot of the solution obtained for Exangplesing the Genetic Algorithm software.
The solutions, using this genetic algorithm software are (see Figure 9) shoalie 3:

Table 3 Solution to Example 5; using this Algorithm
Variable | Solution (from using | Variable | Solution (from using

the the software) the the software)
X1 -2.43878536985029 Xs 0.19947715306706
Xz 2.98531045781451 X7 0.521586638995311
X3 -0.519788851901298 Xs -1.6056603230911
X4 2.1508838354183 Xq 1.31598046668511
Xs -0.1229699932078406 | X 0.508984318757898

The problem in Example 5 was the solved using the Gauss-Jordaadogtion technique. The
solution obtained using the Gauss-Jordan row reduction was exaetame that obtained using the
software. However the Gauss-Jordan row reduction technique chenesed to find the roots of a
polynomial, which this software can easily be used to obtain, see Examples 1-4.

5.0 Discussion

In this work we have considered a number of examples on solvingdts of polynomials. In
Figures 3-8, the basics computational steps involved in using ftveas® to solve for the roots of a
polynomial. The results obtained in all the cases, showed (0.0%)roenfge deviation from exact
analytical solution. This can be clearly seen in Tables 1 andlsb wfe illustrate the superiority of the
algorithm by solving a set of 10 dimensional simultaneous equalibes.esults are shown in Fig. 9 and
Table 3. The solution obtained using the Gauss-Jordan row reductoexaetly the same that obtained
using the software. The results show that genetic algorithm casdukto optimize and find numerical
solutions to mathematical and applied mathematical problems.

Also most of the classic schemes for example; Newton-Raphdoem®cand Gauss-Jordan
scheme can only solve for specific problems that they werendekfgr. Consequently, Newton-Raphson
is suited for finding the zeros (roots) of polynomial and Gaassah for solving set of linear
simultaneous equations. But this genetic algorithm programameeffectively and accurately, solve all
classes of optimization problems and solve also for treszmrroots of polynomial. The problem may
be in any field of engineering like Petroleum and Production Engineering amongj othe
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6.0  Conclusion

The aim of this work was to design a software, using genetcitilign that can evaluate the roots
of polynomial equations and solve and optimize equations described thmiclymmd a system. From the
examples taken, and the results generated, it can it seethéhgénetic algorithm could handle these
problems in an integrated manner accurately. The softwareyigeeasderstand, easy to use and results
are generated in a very small amount of time (usually kess 3 seconds). Thus, this genetic algorithm
software with crossover substantially out performs all the othesidal methods and heuristics
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