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Abstract 
 

This paper presents a Genetic Algorithm software (which is a 
computational, search technique) for finding the zeros (roots) of any given 
polynomial function, and optimizing and solving N-dimensional systems of 
equations.  The software is particularly useful since most of the classic 
schemes are not all embracing. For example; Newton-Raphson Scheme can 
only solve the zeros (roots) of polynomial, while and Gauss-Jordan scheme 
can only solve set of linear simultaneous equations. This characteristics of 
classical schemes, thus pose a limitation to the scope of problems they can 
they can used to solve. This limitation is effectively and accurately easily 
resolved using the genetic algorithm programme. It is demonstrated using a 
number of examples . Thus it solves a wider class of optimization problems, 
and also solves for the zeros or roots of polynomial. The program was 
designed and implemented using Microsoft Visual Basic object oriented 
programming Language.  
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1.0 Introduction 
 Genetic Algorithm (GA) is a probabilistic optimization method which is based on the principles 
of evolution. It was first discovered and introduced in 1975 by John Holland and his colleagues at the 
University of Michigan, (Goldberg, 1989) [5]. Evidently, John Holland is referred to as the father of 
genetic algorithms, but the basis of this optimization method on can be traced back to the father of 
evolution, Charles Darwin (Darwin, 1859) [3].  

Genetic algorithms are typically implemented as a computer simulation in which a population of 
abstract representations called chromosomes of solutions (called individuals) to an optimization problem 
evolves towards better solutions. Practically, solutions are represented in binary as strings of 0s and 1s. 
Each of these binary strings represents a gene. Each string (chromosome) has its own fitness measure that 
reflects how well a creature can survive in its surrounding environment. 

Since the inception of this computational, probabilistic search method, genetic-algorithms has 
been applied to so many optimization problems in various fields and professions with successful results. 
For example, Parks et al (2001) [4] used genetic algorithms to investigate the efficacy of various elitist 
selection strategies in a multi-objective genetic algorithm implementation, with parents being selected 
both from the current population and the archival record of non dominated solutions encountered during 
search. The work showed that it was possible to improve the search performance of the algorithm through 
the use of strongly elitist selection strategies. 
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Coit et al (1995) [2] researched on the inefficiencies of the application of GA when constrained 
optimization problems have feasible solutions that are difficult to find or achieve. Their method resulted 
in the adaptive penalty technique, which makes use of feedback obtained during the search along with a 
dynamic distance matrix.  
Two main methods exist in resolving the difficulties of handling constraints in genetic algorithms. One is 
to allow only feasible solutions in the population, and the other is to apply a penalty to those solutions 
that violate constraints but neither of these two methods has proved to perform satisfactorily in general.  
Another researcher, Carlson and Shonkwiler (1995) [1] studied a class of variable fitness genetic 
algorithms as a technique for use on constrained optimization problems. This method has been 
successfully applied to a problem of engineering interest: the ground water treatment problem for 
unconfined aquifers. 

Genetic algorithms has been used in so many applications but so far from the research that has 
been carried out to the best of the authors knowledge, no work has been done on how to use genetic 
algorithm for finding the roots of polynomial functions, optimizing and generate optimal (and also solve) 
solutions for set of N-dimensional linear and nonlinear systems. This work addresses this problem. The 
superiority of this method over the other classic methods is illustrated with a number of examples. 

Genetic algorithm provides solutions by generating a set of chromosomes referred to as a generation. 
The new generation of strings is gotten through three major genetic operations or processes, namely:  
(i) Selection 
(ii)  Crossover 
(iii)  Mutation 
Selection: There are different methods of selection, namely: 
(1) Roulette wheel method 
(2) Rank selection 
(3) Steady-State selection 
(4) Elitist selection 
(5) Fitness-proportionate selection  
(6) Scaling selection 
(7) Tournament selection 
(8) Generational selection 
(9) Hierarchical selection 
Crossover: There are different methods of crossover namely: 
(1) One-point crossover 
(2) Two-point crossover 
(3) Segmented crossover 

The one-point crossover is when crossover or exchange of genes occurs at one point. It is a 
simple and often used method. For example 
 

PARENT 1 
1 1 0 0 1 

 
PARENT 2 

1 0 0 1 0 
 

Figure 1: Parents and Cross over segment. 
 

After crossover at the point, the new generations created are: 
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OFFSPRING 1 
1 1 0 1 0 

 
OFFSPRING 2 

1 0 0 0 1 
Figure 2: Offsprings created after crossover 

 
Mutation: This is the chance that a bit within a chromosome will be flipped (0 becomes 1, 1 becomes 0). 
It must be noted that erroneous reproduction or deformation of genes can occur. In genetic algorithms 
when these errors or deformations occur mutation is said to have taken place. 
 
2.0 Software design 

The Genetic algorithm software developed and reported in this work, provides solution to 
problems of: optimization, roots (zeros) and system’s equations. It was developed, using Visual Basic 
(VB) 6.0 as the programming language. Visual Basic 6.0 is an object oriented programming language. 
This means that it makes use of objects which are a combination of data and codes. Data represents the 
relevant information that is used to programme the systems dynamics, while the codes represent the series 
of programming instructions written to process the systems data needed. 
2.1 Programme description 

The programme works in the following manner: 
Step 1: When the program is initialized, a message box comes up asking you if you to specify your 
equation. 
Step 2: An input box comes up requesting the user to input, the polynomial equation, or equation of the 
linear or nonlinear system to be solved. 
Step 3: Values for Parent 1 and parent 2 can be chosen at random and then inputted into the text boxes 
associated with them. 
Step 4: A crossover point or split point is also inputted. This is the point at which crossover will occur. 
The programme can use any crossover point within the range of 1-15.  
Step 5: The roots of the equation or other optimization solutions are solved and displayed.  
Step 6: Click ‘Enter’ and the programme undergo a maximum of 500 iterations to determine the roots of 
the equation.  
Step 7: When one of the roots (or any other optimization parameter) is found, the programme 
automatically stops iterating. A blue indicator outputs that a root (or any other optimization parameter) 
has been found. 
Step 8: The process continues until other solutions are found. 
Step 9: If after 500 iterations the roots have not been found, a message comes up telling you to start with 
a new set of parents. Go back to 3. 
2.2 Software’s algorithm or pseudo code 

The software’s algorithm or pseudo code was developed using the follow sequence of 
programming: 
2.2.1 Create a Random Initial State (Population) 

An initial population is created from a random selection of solutions. These solutions are 
analogous to chromosomes.  
2.2.2 Evaluate Fitness 

A value for fitness is assigned to each solution (chromosome) depending on how close it actually 
is to solving the problem (thus arriving to the answer of the desired problem). We note that until the 
desired answer is obtained, each of these solutions is treated as possible characteristics that the system 
would employ in order to reach the final answer.  
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2.2.3 Reproduce (& Children Mutate) 
Those chromosomes with a higher fitness value are more likely to reproduce offspring (which can 

mutate after reproduction). The offspring is a combination of the genes of the parents; this process is 
known as "crossing over".  
2.2.4 Next Generation 

If the new generation contains a result that produces an output that is close enough or equal to the 
desired answer (solution) then the problem has been solved. If the otherwise is the case, then the new 
generation will go through the same process as their parents did. This will continue until a solution is 
reached.  

Using the technique just discussed the algorithm is given as follows: 
Start 

Initialize input box 
Input equation 
Read equation or set of equations 
If  equation not valid Then 
Print “Equation invalid”,  

Go to 1 
Read inputs; parent 1, parent 2, crossover point 
Initialize loop = 1 
If  parent 1 or parent 2 is decimal Then 
Convert both parents by to whole integer numbers  
Convert parent 1 and parent 2 to binary 
If  loop = 1 then cross parent 1 and parent 2 from inputted crossover point 
Else cross parent 1 and parent 2 from crossover point downwards.  
Crossover point chosen at random from 1-15 
Evalutate the fitness of offsprings 
If  Either offspring = one of the roots of the equation or any relevant optimization 
parameter Then 
Output “Perfect Offspring” 

Else  
Parent 1 = Offspring 1 
Parent 2 = Offspring 2 
Loop = Loop + 1 

   Repeat search process. 
Stop  
 

3.0 Examples illustrating the use of the software. 
The following examples are provided to illustrate the use of the software: 

 
Example 1 

Find the roots of the polynomial: 3 20.7 0.14 0.048 0x x x− − + =  
Begin the program 
At the programme commencement, the user is requested to input the equation to be solved as shown in 
Figure 3. 
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Figure 3: Shows a message box appear, requesting if you want to specify your equation. 

 

 
Figure 4: Shows an input box titled ‘entering equation’ along with the ‘Genetic wizard form’. At this stage the 

equation is inputted 
For each value you enter, click ‘ok’ to move to the next section until the last value is inputted. 

The highest power (3) is inputted as can be seen above and ‘ok’ is clicked.  
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Figure 5: Shows how each coefficient of x is inputted one after the other in a descending other with respect to x. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6: Shows one of the possible roots of the equation found. 
 

As shown in Fig. 6, 0.20 is one of the roots of the equation and the other roots obtained using the 
software are: 0.30, and 0.80. 
Example 2 

Find the roots of the polynomial: 5 4 3 218 51 286 360 576 0x x x x x− + + − − =  
 

 
 

Figure 8: Shows the final form, one of the possible roots has been found, in this case after 48 iterations. A graphical 
display shows the number of generations produced and the offspring generated. 
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Evaluating example 2, using the genetic algorithm software, we have the following results shown in Table 
1 
 
 
 

Table 1: Comparison of Exact Solution and This model’s Genetic Algorithm 
 

Roots (Exact using Newton- 
Raphson) 

Roots (This model’s Genetic  
Algorithm) 

Percentage difference 

12.000 12.00 0.0000% 
8.000 8.00 0.0000% 
2.00 2.000 0.0000% 
-3.00 -3.000 0.0000% 
-1.00 -1.000 0.0000% 

 
Example 3 

Evaluate the roots of the following polynomial: 

     5857.75302.237768.235921.8 234 ++++ xxxx  
 
The using the software the polynomial’s roots was obtained in less the 3 seconds the values are presented 
in Table 2. 
 

Table 2: Comparison of Exact Solution and This model’s Genetic Algorithm 
 

Roots (Exact using Newton- 
Raphson) 

Roots (This model’s Genetic  
algorithm) 

Percentage difference 

-0.7566 -0.7566 0.0000% 
-0.8355 -0.8355 0.0000% 
-3.0000 -3.0000 0.0000% 
-4.0000 -4.0000 0.0000% 

 
The software developed using this algorithm has an edge over other schemes in that it is not 

limited to the type of problems it can handle. For example, a scheme like the Newton-Raphson method 
would easily solve for the roots (zeros) of a function but can not provide solutions to problems of 
simultaneous equations. This is due to the way the Newton Raphson method functions.  But the Genetic 
algorithm being a search tool that provides improving solutions at each stage of iteration, can 
conveniently handle this problem. In fact it can handle all varieties of optimization problems which other 
schemes cannot. This because they were not developed to be all embracing but problem type specific.  

We illustrate the superiority of the algorithm, by the following Example: 
Example 5:  Simultaneous linear equations. 

Consider the set of linear equations: 

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3 2

n n

n n

n n n nn n

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

+ + + + =
+ + + + =

                                                             
+ + + + =

KKK

KKK

M M M M

KKK

 

This can be written in matrix form as: 
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11 12 13 1 1 1

21 22 23 2 2 2

1 2 3

.

n

n

n nn n n nn

a a a a x b

a a a a x b

x ba a a a

              
                   =
                               
     

             

K

K

M MM M M M

K

, i.e, Ax = b  

 
 
 

where A = 

11 12 13 1

21 22 23 2

1 2 3

n

n
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a a a a

a a a a

          
           
                           
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          

K

K
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K
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1

2

n

x

x

x

 
 
 
 
 
 

M
 and b = 

1

2

n

b

b

b

 
 
 
 
 
 

M
 

 
If we multiply both sides of the matrix equation by the inverse of A, we have: A-1 .Ax = A-1b. But A-1 .Ax = 
I, therefore Ix = A-1.B.  The implication is that if we form the inverse of the matrix coefficients and pre-
multiply matrix b by it we shall determine the matrix of the solutions of x 
Numerical data for Example 5: 

To illustrate the power of this genetic algorithm software, we consider a set of 10 simultaneous 
linear equations. This is represented in matrix form; Ax = B as follows:  
 

12

5     8     5       6       6     11      − 3     5     6     1
4     9     7     − 3     11      4       8       6     9     10
7     9     5       3     − 4      1       2          9     3
7     8     9

2

1

       5       3       1        4      6     6     1
9     7     4       6     − 6      1       5            3     7
6     8     9       4       1       6       3             4     6
1      6     3       5      4       3        1       4     1      6
8     5     7       8       4       5     −11     2     3     4
1     2     6       4       1       3       5        8      5     9
6     5     1       2 

1

2

3

4

5

6

7

8

9

10

21

8

7

9

12
.

17

21

16

4

1 11

x

x

x

x

x

x

x

x

x

x

    
    
    
    
    
    
    
  =   
    
    
    
    
    
    

          3       1       2               5     7    

 

 
This is solved using the genetic algorithm software within 3 seconds, and screen shot of the solution is 
shown in Figure 7.  
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Figure 9: Screen shot of the solution obtained for Example 5 using the Genetic Algorithm software.  

The solutions, using this genetic algorithm software are (see Figure 9) shown in Table 3: 
 
 
 

Table 3: Solution to Example 5; using this Algorithm 
Variable Solution (from using 

the the software) 
Variable Solution (from using 

the the software) 
X1 -2.43878536985029 X6 0.19947715306706 
X2 2.98531045781451 X7 0.521586638995311 
X3 -0.519788851901298 X8 -1.6056603230911 
X4 2.1508838354183 X9 1.31598046668511 
X5 -0.1229699932078406 X10 0.508984318757898 

 
The problem in Example 5 was the solved using the Gauss-Jordan row reduction technique. The 

solution obtained using the Gauss-Jordan row reduction was exactly the same that obtained using the 
software. However the Gauss-Jordan row reduction technique cannot be used to find the roots of a 
polynomial, which this software can easily be used to obtain, see Examples 1-4. 
 
5.0 Discussion 

In this work we have considered a number of examples on solving for roots of polynomials. In 
Figures 3-8, the basics computational steps involved in using the software to solve for the roots of a 
polynomial. The results obtained in all the cases, showed (0.0%) no percentage deviation from exact 
analytical solution. This can be clearly seen in Tables 1 and 2.  Also we illustrate the superiority of the 
algorithm by solving a set of 10 dimensional simultaneous equations. The results are shown in Fig. 9 and 
Table 3. The solution obtained using the Gauss-Jordan row reduction was exactly the same that obtained 
using the software. The results show that genetic algorithm can be used to optimize and find numerical 
solutions to mathematical and applied mathematical problems.  

Also most of the classic schemes for example; Newton-Raphson Scheme and Gauss-Jordan 
scheme can only solve for specific problems that they were designed for. Consequently, Newton-Raphson 
is suited for finding the zeros (roots) of polynomial and Gauss-Jordan for solving set of linear 
simultaneous equations. But this genetic algorithm programme, can effectively and accurately, solve all 
classes of optimization problems and solve also for the zeros or roots of polynomial.   The problem may 
be in any field of engineering like Petroleum and Production Engineering among others.  
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6.0 Conclusion 
 The aim of this work was to design a software, using genetic algorithm that can evaluate the roots 
of polynomial equations and solve and optimize equations described the dynamics of a system.  From the 
examples taken, and the results generated, it can it seen that the genetic algorithm could handle these 
problems in an integrated manner accurately. The software is easy to understand, easy to use and results 
are generated in a very small amount of time (usually less than 3 seconds).  Thus, this genetic algorithm 
software with crossover substantially out performs all the other classical methods and heuristics 
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