
Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

Journal of the Nigerian Association of Mathematical Physics
Volume 11 (November 2007), 213 - 222

© J. of NAMP

A Genetic algorithm for evaluating the zeros (roots) of polynomial functions, optimizing
and solving n-dimensional systems of equations

1J. A. Akpobi and 2E. D. Akpobi

1Production Engineering Department, University of Benin, Nigeria.
2Petroleum Engineering Department, University of Benin, Nigeria.

1e-mail: alwaysjohnie@yahoo.com

Abstract

This paper presents a Genetic Algorithm software (which is a
computational, search technique) for finding the zeros (roots) of any given
polynomial function, and optimizing and solving N-dimensional systems of
equations. The software is particularly useful since most of the classic
schemes are not all embracing. For example; Newton-Raphson Scheme can
only solve the zeros (roots) of polynomial, while and Gauss-Jordan scheme
can only solve set of linear simultaneous equations. This characteristics of
classical schemes, thus pose a limitation to the scope of problems they can
they can used to solve. This limitation is effectively and accurately easily
resolved using the genetic algorithm programme. It is demonstrated using a
number of examples . Thus it solves a wider class of optimization problems,
and also solves for the zeros or roots of polynomial. The program was
designed and implemented using Microsoft Visual Basic object oriented
programming Language.

Keywords: Genetic Algorithm, Optimization, Polynomials Functions, Roots or zeros,
 N-dimensional equations

1.0 Introduction
 Genetic Algorithm (GA) is a probabilistic optimization method which is based on the principles
of evolution. It was first discovered and introduced in 1975 by John Holland and his colleagues at the
University of Michigan, (Goldberg, 1989) [5]. Evidently, John Holland is referred to as the father of
genetic algorithms, but the basis of this optimization method on can be traced back to the father of
evolution, Charles Darwin (Darwin, 1859) [3].

Genetic algorithms are typically implemented as a computer simulation in which a population of
abstract representations called chromosomes of solutions (called individuals) to an optimization problem
evolves towards better solutions. Practically, solutions are represented in binary as strings of 0s and 1s.
Each of these binary strings represents a gene. Each string (chromosome) has its own fitness measure that
reflects how well a creature can survive in its surrounding environment.

Since the inception of this computational, probabilistic search method, genetic-algorithms has
been applied to so many optimization problems in various fields and professions with successful results.
For example, Parks et al (2001) [4] used genetic algorithms to investigate the efficacy of various elitist
selection strategies in a multi-objective genetic algorithm implementation, with parents being selected
both from the current population and the archival record of non dominated solutions encountered during
search. The work showed that it was possible to improve the search performance of the algorithm through
the use of strongly elitist selection strategies.

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

Coit et al (1995) [2] researched on the inefficiencies of the application of GA when constrained
optimization problems have feasible solutions that are difficult to find or achieve. Their method resulted
in the adaptive penalty technique, which makes use of feedback obtained during the search along with a
dynamic distance matrix.
Two main methods exist in resolving the difficulties of handling constraints in genetic algorithms. One is
to allow only feasible solutions in the population, and the other is to apply a penalty to those solutions
that violate constraints but neither of these two methods has proved to perform satisfactorily in general.
Another researcher, Carlson and Shonkwiler (1995) [1] studied a class of variable fitness genetic
algorithms as a technique for use on constrained optimization problems. This method has been
successfully applied to a problem of engineering interest: the ground water treatment problem for
unconfined aquifers.

Genetic algorithms has been used in so many applications but so far from the research that has
been carried out to the best of the authors knowledge, no work has been done on how to use genetic
algorithm for finding the roots of polynomial functions, optimizing and generate optimal (and also solve)
solutions for set of N-dimensional linear and nonlinear systems. This work addresses this problem. The
superiority of this method over the other classic methods is illustrated with a number of examples.

Genetic algorithm provides solutions by generating a set of chromosomes referred to as a generation.
The new generation of strings is gotten through three major genetic operations or processes, namely:
(i) Selection
(ii) Crossover
(iii) Mutation
Selection: There are different methods of selection, namely:
(1) Roulette wheel method
(2) Rank selection
(3) Steady-State selection
(4) Elitist selection
(5) Fitness-proportionate selection
(6) Scaling selection
(7) Tournament selection
(8) Generational selection
(9) Hierarchical selection
Crossover: There are different methods of crossover namely:
(1) One-point crossover
(2) Two-point crossover
(3) Segmented crossover

The one-point crossover is when crossover or exchange of genes occurs at one point. It is a
simple and often used method. For example

PARENT 1
1 1 0 0 1

PARENT 2

1 0 0 1 0

Figure 1: Parents and Cross over segment.

After crossover at the point, the new generations created are:

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

OFFSPRING 1
1 1 0 1 0

OFFSPRING 2

1 0 0 0 1
Figure 2: Offsprings created after crossover

Mutation: This is the chance that a bit within a chromosome will be flipped (0 becomes 1, 1 becomes 0).
It must be noted that erroneous reproduction or deformation of genes can occur. In genetic algorithms
when these errors or deformations occur mutation is said to have taken place.

2.0 Software design

The Genetic algorithm software developed and reported in this work, provides solution to
problems of: optimization, roots (zeros) and system’s equations. It was developed, using Visual Basic
(VB) 6.0 as the programming language. Visual Basic 6.0 is an object oriented programming language.
This means that it makes use of objects which are a combination of data and codes. Data represents the
relevant information that is used to programme the systems dynamics, while the codes represent the series
of programming instructions written to process the systems data needed.
2.1 Programme description

The programme works in the following manner:
Step 1: When the program is initialized, a message box comes up asking you if you to specify your
equation.
Step 2: An input box comes up requesting the user to input, the polynomial equation, or equation of the
linear or nonlinear system to be solved.
Step 3: Values for Parent 1 and parent 2 can be chosen at random and then inputted into the text boxes
associated with them.
Step 4: A crossover point or split point is also inputted. This is the point at which crossover will occur.
The programme can use any crossover point within the range of 1-15.
Step 5: The roots of the equation or other optimization solutions are solved and displayed.
Step 6: Click ‘Enter’ and the programme undergo a maximum of 500 iterations to determine the roots of
the equation.
Step 7: When one of the roots (or any other optimization parameter) is found, the programme
automatically stops iterating. A blue indicator outputs that a root (or any other optimization parameter)
has been found.
Step 8: The process continues until other solutions are found.
Step 9: If after 500 iterations the roots have not been found, a message comes up telling you to start with
a new set of parents. Go back to 3.
2.2 Software’s algorithm or pseudo code

The software’s algorithm or pseudo code was developed using the follow sequence of
programming:
2.2.1 Create a Random Initial State (Population)

An initial population is created from a random selection of solutions. These solutions are
analogous to chromosomes.
2.2.2 Evaluate Fitness

A value for fitness is assigned to each solution (chromosome) depending on how close it actually
is to solving the problem (thus arriving to the answer of the desired problem). We note that until the
desired answer is obtained, each of these solutions is treated as possible characteristics that the system
would employ in order to reach the final answer.

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

2.2.3 Reproduce (& Children Mutate)
Those chromosomes with a higher fitness value are more likely to reproduce offspring (which can

mutate after reproduction). The offspring is a combination of the genes of the parents; this process is
known as "crossing over".
2.2.4 Next Generation

If the new generation contains a result that produces an output that is close enough or equal to the
desired answer (solution) then the problem has been solved. If the otherwise is the case, then the new
generation will go through the same process as their parents did. This will continue until a solution is
reached.

Using the technique just discussed the algorithm is given as follows:
Start

Initialize input box
Input equation
Read equation or set of equations
If equation not valid Then
Print “Equation invalid”,

Go to 1
Read inputs; parent 1, parent 2, crossover point
Initialize loop = 1
If parent 1 or parent 2 is decimal Then
Convert both parents by to whole integer numbers
Convert parent 1 and parent 2 to binary
If loop = 1 then cross parent 1 and parent 2 from inputted crossover point
Else cross parent 1 and parent 2 from crossover point downwards.
Crossover point chosen at random from 1-15
Evalutate the fitness of offsprings
If Either offspring = one of the roots of the equation or any relevant optimization
parameter Then
Output “Perfect Offspring”

Else
Parent 1 = Offspring 1
Parent 2 = Offspring 2
Loop = Loop + 1

 Repeat search process.
Stop

3.0 Examples illustrating the use of the software.
The following examples are provided to illustrate the use of the software:

Example 1

Find the roots of the polynomial: 3 20.7 0.14 0.048 0x x x− − + =
Begin the program
At the programme commencement, the user is requested to input the equation to be solved as shown in
Figure 3.

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

Figure 3: Shows a message box appear, requesting if you want to specify your equation.

Figure 4: Shows an input box titled ‘entering equation’ along with the ‘Genetic wizard form’. At this stage the

equation is inputted
For each value you enter, click ‘ok’ to move to the next section until the last value is inputted.

The highest power (3) is inputted as can be seen above and ‘ok’ is clicked.

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

Figure 5: Shows how each coefficient of x is inputted one after the other in a descending other with respect to x.

Figure 6: Shows one of the possible roots of the equation found.

As shown in Fig. 6, 0.20 is one of the roots of the equation and the other roots obtained using the
software are: 0.30, and 0.80.
Example 2

Find the roots of the polynomial: 5 4 3 218 51 286 360 576 0x x x x x− + + − − =

Figure 8: Shows the final form, one of the possible roots has been found, in this case after 48 iterations. A graphical
display shows the number of generations produced and the offspring generated.

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

Evaluating example 2, using the genetic algorithm software, we have the following results shown in Table
1

Table 1: Comparison of Exact Solution and This model’s Genetic Algorithm

Roots (Exact using Newton-
Raphson)

Roots (This model’s Genetic
Algorithm)

Percentage difference

12.000 12.00 0.0000%
8.000 8.00 0.0000%
2.00 2.000 0.0000%
-3.00 -3.000 0.0000%
-1.00 -1.000 0.0000%

Example 3

Evaluate the roots of the following polynomial:

 5857.75302.237768.235921.8 234 ++++ xxxx

The using the software the polynomial’s roots was obtained in less the 3 seconds the values are presented
in Table 2.

Table 2: Comparison of Exact Solution and This model’s Genetic Algorithm

Roots (Exact using Newton-
Raphson)

Roots (This model’s Genetic
algorithm)

Percentage difference

-0.7566 -0.7566 0.0000%
-0.8355 -0.8355 0.0000%
-3.0000 -3.0000 0.0000%
-4.0000 -4.0000 0.0000%

The software developed using this algorithm has an edge over other schemes in that it is not

limited to the type of problems it can handle. For example, a scheme like the Newton-Raphson method
would easily solve for the roots (zeros) of a function but can not provide solutions to problems of
simultaneous equations. This is due to the way the Newton Raphson method functions. But the Genetic
algorithm being a search tool that provides improving solutions at each stage of iteration, can
conveniently handle this problem. In fact it can handle all varieties of optimization problems which other
schemes cannot. This because they were not developed to be all embracing but problem type specific.

We illustrate the superiority of the algorithm, by the following Example:
Example 5: Simultaneous linear equations.

Consider the set of linear equations:

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3 2

n n

n n

n n n nn n

a x a x a x a x b

a x a x a x a x b

a x a x a x a x b

+ + + + =
+ + + + =

+ + + + =

KKK

KKK

M M M M

KKK

This can be written in matrix form as:

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

11 12 13 1 1 1

21 22 23 2 2 2

1 2 3

.

n

n

n nn n n nn

a a a a x b

a a a a x b

x ba a a a

      
           =
     
     

     

K

K

M MM M M M

K

, i.e, Ax = b

where A =

11 12 13 1

21 22 23 2

1 2 3

n

n

n n n nn

a a a a

a a a a

a a a a

  
   
 
 

  

K

K

M M M M

K

; x =

1

2

n

x

x

x

 
 
 
 
 
 

M
 and b =

1

2

n

b

b

b

 
 
 
 
 
 

M

If we multiply both sides of the matrix equation by the inverse of A, we have: A-1 .Ax = A-1b. But A-1 .Ax =
I, therefore Ix = A-1.B. The implication is that if we form the inverse of the matrix coefficients and pre-
multiply matrix b by it we shall determine the matrix of the solutions of x
Numerical data for Example 5:

To illustrate the power of this genetic algorithm software, we consider a set of 10 simultaneous
linear equations. This is represented in matrix form; Ax = B as follows:

12

5 8 5 6 6 11 − 3 5 6 1
4 9 7 − 3 11 4 8 6 9 10
7 9 5 3 − 4 1 2 9 3
7 8 9

2

1

 5 3 1 4 6 6 1
9 7 4 6 − 6 1 5 3 7
6 8 9 4 1 6 3 4 6
1 6 3 5 4 3 1 4 1 6
8 5 7 8 4 5 −11 2 3 4
1 2 6 4 1 3 5 8 5 9
6 5 1 2

1

2

3

4

5

6

7

8

9

10

21

8

7

9

12
.

17

21

16

4

1 11

x

x

x

x

x

x

x

x

x

x

    
    
    
    
    
    
    
  =   
    
    
    
    
    
    

     3 1 2 5 7    

This is solved using the genetic algorithm software within 3 seconds, and screen shot of the solution is
shown in Figure 7.

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

Figure 9: Screen shot of the solution obtained for Example 5 using the Genetic Algorithm software.

The solutions, using this genetic algorithm software are (see Figure 9) shown in Table 3:

Table 3: Solution to Example 5; using this Algorithm
Variable Solution (from using

the the software)
Variable Solution (from using

the the software)
X1 -2.43878536985029 X6 0.19947715306706
X2 2.98531045781451 X7 0.521586638995311
X3 -0.519788851901298 X8 -1.6056603230911
X4 2.1508838354183 X9 1.31598046668511
X5 -0.1229699932078406 X10 0.508984318757898

The problem in Example 5 was the solved using the Gauss-Jordan row reduction technique. The

solution obtained using the Gauss-Jordan row reduction was exactly the same that obtained using the
software. However the Gauss-Jordan row reduction technique cannot be used to find the roots of a
polynomial, which this software can easily be used to obtain, see Examples 1-4.

5.0 Discussion

In this work we have considered a number of examples on solving for roots of polynomials. In
Figures 3-8, the basics computational steps involved in using the software to solve for the roots of a
polynomial. The results obtained in all the cases, showed (0.0%) no percentage deviation from exact
analytical solution. This can be clearly seen in Tables 1 and 2. Also we illustrate the superiority of the
algorithm by solving a set of 10 dimensional simultaneous equations. The results are shown in Fig. 9 and
Table 3. The solution obtained using the Gauss-Jordan row reduction was exactly the same that obtained
using the software. The results show that genetic algorithm can be used to optimize and find numerical
solutions to mathematical and applied mathematical problems.

Also most of the classic schemes for example; Newton-Raphson Scheme and Gauss-Jordan
scheme can only solve for specific problems that they were designed for. Consequently, Newton-Raphson
is suited for finding the zeros (roots) of polynomial and Gauss-Jordan for solving set of linear
simultaneous equations. But this genetic algorithm programme, can effectively and accurately, solve all
classes of optimization problems and solve also for the zeros or roots of polynomial. The problem may
be in any field of engineering like Petroleum and Production Engineering among others.

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 213 - 222
Optimizing and solving n-dimensional systems J. A. Akpobi and E. D. Akpobi J. of NAMP

6.0 Conclusion
 The aim of this work was to design a software, using genetic algorithm that can evaluate the roots
of polynomial equations and solve and optimize equations described the dynamics of a system. From the
examples taken, and the results generated, it can it seen that the genetic algorithm could handle these
problems in an integrated manner accurately. The software is easy to understand, easy to use and results
are generated in a very small amount of time (usually less than 3 seconds). Thus, this genetic algorithm
software with crossover substantially out performs all the other classical methods and heuristics

References

[1] Calson, S.E. and Shonkwiler, R. (1995), Annealing a Genetic Algorithm over Constraints, Department of mechanical,
Aerospace and Nuclear Engineering Thornton Hall, University of Michigan.

[2] Coit D.W, Smith, A.E. and Tate, D.M (1995), Adaptive Penalty Methods for Genetic Optimization of Constrained
Combinational Problems, Accepted for

[3] Darwin, C.R. (1859), On the Origin of Species by Means of Natural Selection and The Descent of Man and Selection in
Relation to Sex, third edition, vol. 49 of Great Books of the Western World, Editor in chief: M.J. Adler. Robert P.
Gwinn, Chicago, IL, 1991. First Edition John Murray, London, 1859.

[4] Parks, G.T., Li, J., Blazs, M. and Miller, I. (2001), An Empirical Investigation of Elitism in Multi-objective Genetic
Algorithms, Page 51-74 of the Journal of Foundations of Computing and Decision Sciences, Vol 26. No.1

[5] Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley,
Reading, MA.

