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Abstract 
 

In this paper, efforts are directed towards generating a 2-block 3-
point numerical method for solving the special second order initial value 
problems of the form Y//////// = F(X,Y), Y(0) = YO, Y////(0) = YOO , where Y//// is the total 
derivative of Y with respect to X.  The scheme so developed, is an extension of 
Aladeselu, V.A (2006)[1], in which a 2-block 2-point scheme was developed..  
The scheme is of orders 8/9, zero-stable and convergent.   It is thus possible, 
with this scheme, to assign computational tasks at 3 points within the block to 
three different processors working simultaneously. 
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1.0 Introduction. 

Traditional computers are built on the Von Nuemann model of computation which is on the 
concept of a single central processing unit (C.P.U), which has access to a linear array of fixed-sized cells, 
called memory. 

Due to the fact that modern problems are characterized by computational complexities that are 
either difficult to solve or take unduly long time to solve by the Von Nuemann model of computation, on 
one hand , and the recent advances in speed and memory capacity of supercomputers, on the other hand, it 
has become necessary to modify existing algorithms or develop new algorithms to cope with the 
numerical solutions of the special second  order initial value problem of the form 
    Y// = F(X,Y), Y(0) = Y0, Y

/(0) = Y00    (1.1). 
 Problems of the form (1.1), where Y/ is absent in F,  are of interest because they often occur in 
satellite tracking/warning systems; celestial mechanics; mass action kinetics, solar systems, molecular 
biology  and spatial discretization of  Hyperbolic partial differential equations or spatial discretization of 
infinite dimensional systems.  However, the theoretical solutions of these equations are usually highly 
oscillatory and so restricts, very severely, the mesh-size, h, of the conventional Linear Multistep Method 
(LMM) 
   ∑αj yn+j = h2∑ βj fn+j, j = 0(1)k      (1.2) 
where yn is the numerical approximation to the theoretical solution y(xn) at x = xn  and fn = f(xn, yn) = y/

n. 
 In this paper, we propose a 2-block 3-point numerical integrators of orders 8/9, by extending the 
ideas in Aladeselu (2006)[1].  The resultant numerical integrators possess the following desirable 
properties: 
(a) Zero-stability i.e stability at the origin; 
(b) Cheap and reliable error estimates; 
(c) Facility to generate solutions at 3 points simultaneously. 
(d) Ability to generate higher order schemes with relatively smaller step-sizes than the equivalent 
traditional LMM (1.2) 
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2.0 Development of Scheme 
The r-point k-step block method for the equation (1.1), Aladeselu(2006)[1], was represented by 

the matrix difference equation 
  0 = ΣA(i) ym-i  +  h2ΣB(i)fm-i, i = 0(1)k     (2.1) 
where, 0, A(i), B(i), are r by r real matrices, A(0) is an identity matrix of order r and ym-i , fm-i, are r-vectors 
such that  
   ym = (yn+1, yn+2, yn+3, …, yn+r -1, yn+r,) 

fm = (fn+1, fn+2, fn+3, …, fn+r -1, fn+r,)     (2.2) 
In this paper, our focus is on r = 3, k = 2 and so n = mr = 3m, while  
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Assumption 2.1 
 The scheme (2.1) is normalized for easy analysis and consistency of scheme. 

Let zm = [y(xn+1), y(xn+2), y(xn+3)]
T be the theoretical solution of equation (1.1) and let it be 

sufficiently differentiable.  If Taylor’s series expansion is applied to z(x), z(x + jh) and z//(x + jh) and then 
inserted in the linear difference operator  

L[z(x), h ] = Σ [αjz(x + jh) – h2βj z
// (x + jh)],  j=0(1)∞   (2.4), 

it follows that  
   L[z(x), h] = Σcvh

vz(v)(x) + 0(hq+1), v = 0(1)q   (2.5) 
where the cv’s , which are independent of z(x), are called error constants given by the relation 
  Cv = (1/v!) [Σjvαj – v(v – 1)Σjv-2βj], j = 0(1)k, (k = 2, in this case)  (2.6) 
Definition 2.2 
 The order P of the difference operator L in (2.4 ) and consequently of the LMM (1.2) is a unique 
integer which is defined by the relations  

Cv = 0 for all v = 0(1)P + 1 and Cp+2 ≠ 0.     (2.7) 
Now ym = (yn+1, yn+2 , yn+3 )

T = (y3m+1, y3m+2, y3m+3 )
T , since in this case, n = mr = 3m => ym-1 = (y3(m-1)+1, y3(m-

1)+2, y3(m-1)+3)
T = (y3m-2, y3m-1, y3m )

T  = (yn-2, yn-1, yn )
T.  Similarly, it can be shown that  ym-2 = (yn-5, yn-4, yn-3 ),

T; 
fm = (fn+1, fn+2 , fn+1 )

T; fm-1 = (fn-2, fn-1,fn)
T; fm-2 = (fn-5,fn-4 , fn-3)

T . 
Using these last six results in equation (2.1) gives  
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Case q = 1 
yn+1  =  a11

(1)yn-2 + a12
(1) yn-1 + a13

(1)yn + a11
(2) yn-5 + a12

(2)
 yn-4

(2) + a13
(2)yn-3  

+ h2[b11
(0)fn+1  + b12

(0)fn+2 + b13
(0)fn+3 + b11

(1)fn-2 + b12
(1)fn-1 + b13

(1)fn + b11
(2)fn-5 +b12

(1)fn-4 + b13
(2)fn-3 ]. 

Matching with the LMM    
∑αjyn-j+r   = h2 ∑βjfn-j+r , j = 0(1)m, m = r(k+1) -1 (= 8 = p, in this case) (2.9) 

it follows that  
α0 = 0 = α1, α2 = 1, α3 = - a13

(1), α4 = - a12
(1), α5 = -a11

(1), α6 = a13
(2), α7 = -a12

(2), α8 = - a11
(2)   

β0 = b13
(0), β1 = b12

(0) , β2 = b11
(0), β3 = b13

(1), β4 = b12
(1), β5 = b11

(1), β6 = b13
(2),β7 = b12

(2), β8 = b11
(2) 

=>  a13
(1) + a12

(1) + a11
(1) + a13

(2) + a12
(2) + a11

(2)  = 1 
3a13

(1) + 4a12
(1) + 5a11

(1) + 6a13
(2) + 7a12

(2) + 8a11
(2)  = 2 

Set a11
(1) = 0 = a11

(2), and a12
(1) = 0= a12

(2) in the last two equations to obtain a13
((1) = 4/3, a13

(2) = -1/3.  By 
setting cj = 0, for j = 2(1)9 and b13

(0) = α , a free parameter, the following 8 relations were obtained 
b12

(0) + b11
(0) + b13

(1) + b12
(1) + b11

(1) + b13
(2) + b12

(2)  + b11
(2) = 2 - α  

b12
(0) + 2b11

(0) + 3b13
(1) + 4b12

(1) + 5b11
(1) + 6b13

(2) + 7b12
(2) + 8b11

(2)  = 22/3  

b12
(0) + 4b11

(0) + 9b13
(1) + 16b12

(1) + 25b11
(1) + 36b13

(2) + 49b12
(2) + 64b11

(2) = 85/3 
b12

(0) +8b11
(0) +27b13

(1) +64b12
(1) +125b11

(1) +216b13
(2) +343b12

(2) +512b11
(2) = 115 

b12
(0) +16b11

(0) +81b13
(1) +256b12

(1) + 625b11
(1) +1296b13

(2) +2401b12
(2) +4096b11

(2) = 7322/15 
b12

(0) +32b11
(0) +243b13

(1) +1024b12
(1) +3125b11

(1)  +7776b13
(2) +16807b12

(2) +32768b11
(2) = 6466/3 

b12
(0) +64b11

(0) +729b13
(1) +4096b12

(1) +15625b11
(1) +46656b13

(2) +117649b12
(2) +262144b11

(2) = 137845/14 
b12

(0) +128b11
(0) +2187b13

(1) +16384b12
(1) +78125b11

(1) +279936b13
(2) +823543b12

(2)  
+ 2097152b11

(2) = 833375/18 
⇒ b11

(0) = 80/1(7!) + 28α, b12
(0) = 7791/18(7!) - 8α; 

b11
(1) = 32594/18(7!) - 56α,  

b12
(1) =58030/18(7!) +70α;  

b13
(1) = 81300/18(7!) - 56α,  

b11
(2) = - 31/18(7!) + α, 

b12
(2) = 184/18(7!) - 8α;  

b13
(2) = 1563/18(7!) +28α 

Case q = 2 
By setting a21

(1) =0 = a21
(2), a22

(1) =0 = a22
(2) and b23

(0) = β, a free parameter, the following results 
were obtained , employing the same technique as above:   

a23
(1) = 5/3; a23

(2) = - 2/3 
⇒ b22

(0) = 11359/36(7!) - 8β,  
⇒ b21

(0) = 49538/9(7!) +28β;  
 b23

(1) = 102103/12(7!) - 56β, 
 b22

(1) =137975/18(7!) +70β, 
 b21

(1) = 95945/36(7!) - 56β,  
 b23

(2) =  1913/3(7!) + 28β ; 
 b22

(2) = -3917/36(7!) - 8β,  
 b21

(2) = 223/18(7!) + β 
Case q = 3 

By setting a31
(1) =0 = a31

(2), a32
(1) =0 = a32

(2) and b33
(0) = γ, a free parameter, the following results 

were obtained , employing the same technique as above: 
 

a33
(1) =2, a33

(2) = - 1 
⇒ b32

(0) = 32022/4(7!) - 8γ,  
b31

(0) = 1647/4(7!) + 28γ, 
b33

(1) = 32967/(7!) - 56γ,  
b32

(1) = -51651/4(7!) +70γ. 
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b31
(1) = 92934/4(7!) - 56γ,  

b33
(2) = -34263/4(7!) + 28γ, 

b32
(2) = 2538/(7!) - 8γ; b31

(2) = -1269/4(7!) + γ 

Thus the resultant  2-block 3-point scheme is given by the relation 

)10.2(2
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1
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with 

error constant C10 = ( 3.511676036 × 10-4 - α, -2.00307264 × 10-3 - β, -3.68678819 -γ)T and  of order 8 , 
which is also evident from (2.9 ) in which r = 3, k = 2. 
The scheme (2.10) will be of order 9 if C10 = (0, 0, 0)T in  which case α = 0.0003511676036, β = - 
0.00200307264, and γ = -3.68678819. 
 
3.0 Zero-stability test for scheme 2.10 

The first characteristic polynomial of the block method (2.10) is given by the relation ρ(R) = 
ΣA(i)R(2-i) = 0, i = 0(1)2  
=>R2(R2(R2 – 2R + 1)) = 0   =>  R=0(4 times),  1(twice). Thus scheme is zero-stable.  Hence, by 
Henrici(1962)[4], scheme 2.10 is convergent as it is zero-stable and of order greater than 1. 
3.1 Explicit form  
 Suppose the scheme of interest is explicit.  Then the coefficients of matrix B(0) will each be zero 
and as such , employing the same procedure to obtain scheme (2.10), relation (2.8) takes the form 

( )11.22
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 Scheme (2.11) is of order 6 and has error constant C8, where C8 = (0.069080688, 1.53034061, 
11.20044643)T 
 The scheme (2.11) could be adopted as a predictor for scheme (2.10), which could it self be used 
as a corrector.  We adopted this approach and applied them to the scalar test  equation     

y//  = - 100y ; y(0) = 1 and y/ (0) = 10 .  
The following tables were obtained at x = π . 
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Table 3.1 (Output comparison) 
 

H Theoretical Solution = 1.000001430511475 Point 
Predictor Corrector 

0.001 1.000021815299988 
1.000052094459534 
1.000092506408691 

1.000022649765015 
1.000052094459534 
1.000092506408691 

First 
Second 
Third 

0.0025 1.000126838684082 
1.000314593315125 
1.000565052032471 

1.000132322311401 
1.000314593315125 
1.000565052032471 

First 
Second 
Third 

0.005 1.000501751899719 
1.001252174377441 
1.002252578735352 

1.000523924827576 
1.001252174377441 
1.002252578735352 

First 
Second 
Third 

 
Table 3.2 (Error comparison) 
 

H Errors in Point 
Predictor Corrector 

0.001 -2.038478851318359D-05 
-5.066394805908203D-05 
-9.107589721679688D-05 

-2.121925354003906D-05 
-5.066394805908203D-05 
-9.107589721679688D-05 

First 
Second 
Third 

0.0025 -1.254081726074219D-04 
-3.131628036499023D-04 
-5.636215209960938D-04 

-1.308917999267578D-04   
- 3.131628036499023D-04 
-5.636215209960938D-04 

First 
Second 
Third 

0.005 -5.003213882446289D-04 
-1.250743865966797D-03 
-2.251148223876953D-03 

-5.2449431610107742D-04 
-1.250743865966797D-03 
-2.251148223876953D-03 

First 
Second 
Third 

 
4.0 Conclusion 

In this paper, we  developed  2-block 3-point numerical integrators of orders 8/9.  The resultant 
numerical integrators possess the following desirable properties: 
(a) Zero-stability i.e stability at the origin; 
(b) Cheap and reliable error estimates; 
(c) Facility to generate solutions at 3 points simultaneously. 
(d) Ability to generate higher order schemes with relatively smaller step-sizes than the equivalent 

traditional LMM (1.2) 
(e) It is Convergent scheme 

In addition, the new scheme compares favourably with the theoretical solution.  Recall that it is a 
desirable property for a numerical solution to behave similar to the theoretical solution to a problem at all 
times.  Secondly, it is more accurate than Aladeselu, V.A.[1]. 

The normal approach to implement these schemes is to adopt the P(EC)δE mode for some δ > 1 
(ideally, δ ≤ 3).  After every integration step ( or attempt), we exploit the error at the immediate past 
integration step to select a new step size given by the relation  
   hnew = 0.9* (tolerance/errorn  )

(1/p) * hold , 
 
 
where p is order of scheme, hold is the step size adopted in the last attempt, either a successful or a failed 
step and hnew, is the step size to adopt for the next integration step, tolerance is the specified error 
tolerance while errorn  , is the computed error in the last integration step. 
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