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Abstract

In this paper, efforts are directed towards generating a 2-block 3-
point numerical method for solving the special second order initial value
problems of the form Y7 = F(X,Y), Y(0) = Yo, Y/0) = Yoo , where Y/isthe total
derivative of Y with respect to X. The scheme so developed, is an extension of
Aladeselu, V.A (2006)[1], in which a 2-block 2-point scheme was devel oped..
The scheme is of orders 8/9, zero-stable and convergent. It is thus possible,
with this scheme, to assign computational tasks at 3 points within the block to
three different processors working simultaneoudly.
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1.0 Introduction.

Traditional computers are built on the Von Nuemann model of computatiarhvidiion the
concept of a single central processing unit (C.P.U), whichdwessa to a linear array of fixed-sized cells,
called memory.

Due to the fact that modern problems are characterized by coropatatomplexities that are
either difficult to solve or take unduly long time to solvetlhy Von Nuemann model of computation, on
one hand , and the recent advances in speed and memory capacity of supercomputers, ohahe,agthe
has become necessary to modify existing algorithms or developatgmwithms to cope with the
numerical solutions of the special second order initial value probl¢ne dbrm

Y = F(X,Y), Y(0) = Yo, Y(0) =Yoo (1.1).

Problems of the form (1.1), wheré ¢ absent in F, are of interest because they often atcur
satellite tracking/warning systems; celestial meclsmigass action kinetics, solar systems, molecular
biology and spatial discretization of Hyperbolic partidledential equations or spatial discretization of
infinite dimensional systems. However, the theoretical wolsitof these equations are usually highly
oscillatory and so restricts, very severely, the megh-sizof the conventional Linear Multistep Method
(LMM)

200 Yooy = W22 3 fouj, | = O(1k (1.2)
wherey, is the numerical approximation to the theoretical solutieg) gtx = x, andf, = f(X,, Yr) = V.

In this paper, we propose a 2-block 3-point numerical integrataslers 8/9, by extending the
ideas in Aladeselu (2006)[1]. The resultant numerical integrapossess the following desirable
properties:

(@) Zero-stability i.e stability at the origin;

(b) Cheap and reliable error estimates;

(© Facility to generate solutions at 3 points simultaneously.

(d) Ability to generate higher order schemes with relagishaller step-sizes than the equivalent
traditional LMM (1.2)
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2.0  Development of Scheme
The r-point k-step block method for the equation (1.1), Aladeselu(200&)Hs represented by
the matrix difference equation
0=3A0y . + KB, ., i=0(1k (2.1)
where, 0AY, BY, arer by r real matricesA® is an identity matrix of order andym., fm, arer-vectors
such that

Y = Vet Yoezr Yoeas <oy Yr -1 Yoery)

1:m = (fn+l- 1:n+21 1:n+3v ey fn+r -1 1:n+rv) (22)
In this paper, our focus is ore 3,k = 2 and s@ = mr = 3m, while
A e as] e b b
Al = ag% ag% ag% 10 bg% bg% bg% i = 00)2 2.3)
) ]|l o) ol

Assumption 2.1

The scheme (2.1) is normalized for easy analysis and consistency of.scheme

Let zn = [Y(%uw1), Y(Xn+2), Y(X3)]" be the theoretical solution of equation (1.1) and let it be
sufficiently differentiable. If Taylor's series expansisrapplied ta(x), z(x + jh) andZ'(x + jh) and then
inserted in the linear difference operator

L[z(x), h] =X [ogz(x + jh) — BB, 2/ (x + jh)], j=0(1}o (2.4),
it follows that
L[z(x), h] = Zc,h'Z(x) + 0h*?), v = 0(1)y (2.5)
where thec,'s , which are independent g(), are called error constants given by the relation
C, = @WM) [Z)¥a —v(v — 1)5j"?4], j = O(1k, (k= 2, in this case) (2.6)

Definition 2.2

The order P of the difference operaltain (2.4 ) and consequently of the LMM (1.2) is a unique
integer which is defined by the relations

C,=0forallv=0(1P + 1 andC,., # 0. (2.7)

NOW Y = (Yns1, Yne2 » Yiea )T = (Vame1, Yame2,Yams3)_ » since in this cas@,= mr = 3m=> Y1 = (Yam-1)+1 Yam
12 Yam1pd) = Vama Yams,Yam)' = (o2, Yor,Yn)'- Similarly, it can be shown thatz = (s, Yna, Yns),'s
fm = (fren, Trez ,fn+1)T; f1 = (Frz, fn—l,fn)T; fm2 = (frs,fra ,fn-s)T .
Using these last six results in equation (2.1) gives

@ 1 1 .2 2 2
0 oTyna] [A1 Y3 A3 [ypo] A 42 A3 [yns

o =1 0fynz |- oD ol o ons oo oD oD s
o o -thisl [ o 8 Gl ) | a3 2 r-s

o 0 0 e o o o8y L (oD 62 6
+n2 b b Q| o |+ b bD | fnog |+[bP D BB | 11_4 which
32 bsg |3 [ng) ng bgd | ) (b)) b b |In-s
componentwisely can be written as

0
b?El) b

t=2s=3 o1=25=3
Yn+q= X X ags()¥n+s-3t +h™ X X bgs()fn+s-3. 9=1D3 (2.8)
t=1s=1 t=0s=1
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Caseq=1
Vet = 811 W2 + 8127 Yot + 813 7Yn + a1 Yos + @122 Ynd® + 213%n s
+ hz[bll(O)fml + D1 ez + D1d ez + 011V + D1V + b1y + b s 015 g + 157K I
Matching with the LMM
Y aYnisr =X B, j = 0()M, m=r(k+1) -1 (= 8 =p, in this case)  (2.9)
it follows that
Op=0=0y0,=1,03=- 3-13( , Og = - 3-12(1), s = ‘311(1), Og = 3-13(2), az = '3-12(2). Og = - 3-11(2)
Bo= b13(o), B.= b12(0) » P2 = b11(0), Bs= b13(1), 4= b12(1)1 Bs = b11(1), Be = b13(2)1[37 = b12(2)a Bg = b11(2)
=> ast + 312(1) + 311(1) + a3 2+ 312(2) + 3—11(2 =1
3a13(1) + 48.12(1) + 53_11(1) + 68.13(2) + 7a12(2) + 8a11(2) =2
Seta,;; = 0 =a;,?, anda;,Y = 0=a,,? in the last two equations to obtain™ = 4/3, as® = -1/3. By
settingg = 0, forj = 2(1)9 and,s” =a , a free parameter, the following 8 relations were obtained
D1 ? + b1 @ + b1 + b + by + by +b? +byP =2 -a
b1 ? + 201, + 301D + 4o, + B0y, + B2 + Ty, + 801D = 22/3
bi2? + 4o, @ + by + 160, + 250y, + 360,52 + 4%, + 640, = 85/3
b1, ? +80,,? +270, Y +64b, Y +1250,, Y +2160,5? +34F,,P +51D,,? = 115
b1 +160,,? +81b, " +2560,, + 625, +1296,5? +240Db,,? +4096,,® = 7322/15
bi2? +3201,? +2470, Y +1024,, +312%,, Y +7776,5? +1680h,,? +32768,,? = 6466/3
bi2? +640,, +72%, 7 +4096,, +1562%,," +46656,52 +11764D,,? +262144,,? = 137845/14
b1, +128,,9 +218," +1638b,,Y +7812%,,"Y +27993®,52 +82354%,,2
+209715p,,Y) = 833375/18
= b1, @ = 80/1(7!) + 2&, b,V = 7791/18(7!) - &;
by, = 32594/18(7!) - 56,
b.,Y =58030/18(7!) +76;
b3 = 81300/18(7!) - 56,
by ® = - 31/18(7") +q,
b, ? = 184/18(7!) - &;
bys? = 1563/18(7!) +28
Caseq=2
By settinga, ¥ =0 =a,1?, a,,” =0 =a,,? andb,3? = B, a free parameter, the following results
were obtained , employing the same technique as above:
agg(l) = 5/3;a23(2) =-2/3
= b,,? = 11359/36(7!) - B,
= b, = 49538/9(7!) +2B;
b3 = 102103/12(7!) - 58,
b, =137975/18(7!) +7B,
b, = 95945/36(7!) - 5B,
b,a? = 1913/3(7!) + 2B ;
b,,? = -3917/36(7!) - B,
b, ® = 223/18(7!) 43

1

Caseq=3
By settingas;™ =0 =ay®, as;™ =0 =az,? andbs® =y, a free parameter, the following results
were obtained , employing the same technique as above:

a33(1) =2, a33(2) =-1
= bs? = 32022/4(7!) - §,
b @ = 1647/4(7!) + 28,
bss™ = 32967/(7!) - 56,
bs " = -51651/4(7!) +7Q.
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bs ™ = 92934/4(7!) - 56,
bss® = -34263/4(7!) + 2§
D = 2538/(7!) - § by® = -1269/4(7") +y
Thus the resultant 2-block 3-point scheme is given by the relation

4 1
003 00 -3 8045/187)+28& 779V187)-8¢ a
ym=|0 0 gym_1+ 00 —% ym-2 +h?|| 99076187!)+283 11359367!)-84 B|fm
00 2 00 -1 1647/147)+28y  320224(7)-8y y
32504197')-560 58039187 +70r  81300187!) 56 -31/187) +a
+| 9594536(71) -568 275950367!)+708 306309367)-568 |f_1 +| 446/367)+B  with
92934 4(7')-56y -5165124(7)+70y  329677-56y ~1269 47)+y
184/187)-8a  1563187)+28
~3917/1836)-88 2295636(7!)+288 || fry_o 210

101524(7))-8y  —342634(7")+28y

error constan€y, = ( 3.511676036& 10” - a, -2.00307264 10° - B, -3.68678819y)" and of order 8 ,
which is also evident from (2.9 ) in which 3,k = 2.

The scheme (2.10) will be of order 9Gf, = (0, 0, 0J in which casex = 0.000351167603@ = -
0.00200307264, angl= -3.68678819.

3.0 Zero-stability test for scheme 2.10
The first characteristic polynomial of the block thred (2.10) is given by the relatign(R) =
| SAOR®) = 0,i = 0(1)2
SR(R(RP - R+ 1) =0 => R=0(4 times), 1(twice). Thus scheme ie-s&able. Hence, by
Henrici(1962)[4], scheme 2.10 is convergent as it is zero-stable and of order greafer tha

3.1 Explicit form
Suppose the scheme of interest is explicit. Tthercoefficients of matriB(0) will each be zero
and as such , employing the same procedure tonoktheme (2.10), relation (2.8) takes the form

4 _1
003 00 -3 1324 -356 986
v9 =0 o %ym_1+ 00 —% ym—2 +h2|| 20840 -13855 6880 |fyn-1
00 2 00 -1 124578 -82782 29079

-52 314 -776
-1055 6280 -15490|fm-2 (211)
-6966 40743 -98172

Scheme (2.11) is of order 6 and has error con&anivhere G = (0.069080688, 1.53034061,
11.20044643)
The scheme (2.11) could be adopted as a predatscheme (2.10), which could it self be used
as a corrector. We adopted this approach andeptiiem to the scalar test equation
y’ =-100y ; y(0) = 1 and’y(0) = 10 .
The following tables were obtainedxat Tt.
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H Theoretical Solution = 1.000001430511475 Point
Predictor Corrector
0.001 1.000021815299988 | 1.000022649765015 | First
1.000052094459534 | 1.000052094459534 | Second
1.000092506408691 | 1.000092506408691 | Third
0.0025 | 1.000126838684082 | 1.000132322311401 | First
1.000314593315125 | 1.000314593315125 | Second
1.000565052032471 | 1.000565052032471 | Third
0.005 1.000501751899719 | 1.000523924827576 | First
1.001252174377441 | 1.001252174377441 | Second
1.002252578735352 | 1.002252578735352 | Third
Table 3.2 (Error comparison)
H Errors in Point
Predictor Corrector
0.001 -2.038478851318359D-05 -2.121925354003906D-05 First
-5.066394805908203D-05| -5.066394805908203D-05 Second
-9.107589721679688D-05| -9.107589721679688D-05 Third
0.0025 | -1.254081726074219D-04 -1.308917999267578D-04 First
-3.131628036499023D-04| - 3.131628036499023D-04 | Second
-5.636215209960938D-04| -5.636215209960938D-04 Third
0.005 -5.003213882446289D-04 -5.2449431610107742D-04 | First
-1.250743865966797D-03| -1.250743865966797D-03 Second
-2.251148223876953D-03| -2.251148223876953D-03 Third
4.0 Conclusion

(a)
(b)
(c)
(d)

(e)

Table 3.1(Output comparison)

In this paper, we developed 2-block 3-point nuoarintegrators of orders 8/9. The resultant
numerical integrators possess the following dekrptoperties:
Zero-stability i.e stability at the origin;
Cheap and reliable error estimates;

Facility to generate solutions at 3 points simudtausly.

Ability to generate higher order schemes withatively smaller step-sizes than the equivalent
traditional LMM (1.2)

It is Convergent scheme

In addition, the new scheme compares favourablly thié theoretical solution. Recall that it is a

desirable property for a numerical solution to lvehsimilar to the theoretical solution to a problatall
times. Secondly, it is more accurate than AladesélA.[1].

The normal approach to implement these schemesaddpt the®(EC)’E mode for somé > 1

(ideally, & < 3). After every integration step ( or attemptg exploit the error at the immediate past
integration step to select a new step size givetihéyelation

hnew= 0.9* (tolerance/errgr)™ * hyq ,

where p is order of schem,q is the step size adopted in the last attemptee#dhsuccessful or a failed
step andh,e is the step size to adopt for the next integratitep, tolerance is the specified error
tolerance while errqr, is the computed error in the last integratiop ste
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