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Abstract 

In this paper we developed a Mathematical Model of bacteria-
nutrient dynamics which results in a system of first order ordinary differential 
equations.  The analysis of the model was done using dynamical systems.  It 
was found out that the product of the maximum nutrient uptake per cel; and 
the number of cells produced per unit of nutrient uptake is a constant (VY = 
In 2).  It is also shown that there is a linear relationship between the 
concentration of the limiting nutrients and number of bacteria with a negative 
slope.  It is finally shown that after a long time, the number of bacterial will be 
a constant and will depend on the initial concentration of the nutrient and the 
initial number of bacterial. 
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1.0 Introduction 
 Regular patterns of organisms occur frequently in a variety of biological settings, and they are 
caused by a variety of mechanisms.  There are two main different mechanisms for pattern formation.  The 
first describes the patterned growth of bacteria in response to diffusing nutrient.  The bacteria do not 
move; instead, they act as a living record of past events that have been favourable or unfavourable to their 
growth. 
 The key ingredients are the nutrient, which promotes growth, and acid, which inhibits growth. 
When the process is complete, there is no detectable patter structure for either the nutrient or the acid; 
only the differing cell population numbers at various points indicate the way in which nutrient and acid 
approach their uniform distributions.  The second illustrates a reverse mechanism. This shows how a 
population’s genetic structure can adapt to a pattern structure of the environment that influences genetic 
fitness.  In this case, the population adapts to a patterned profile of fitness coefficients [4]. 
 Bacteria can grow in spatial patterns in response to diffusion of a needed nutrient.  This describes 
an immobile bacterial population distribution on a Petri dish.  The diffusing nutrient is taken up by 
growing cells, and acid is produced as a by-product of cell growth. [5]. A novel feature of the model is 
that the cell’s growth has a hysteretic dependence on the amount of nutrient and acid present.  It is known 
that hysteretic kinetics can lead to spatial patters in chemical systems, such as liesegang rings formed by 
precipitating colloids.  In that case, the hysteresis is described by Ostwald’s theory of super-saturation.  
Other hysteretic systems that lead to patterns arise in electrophysiology and epidemiology: [3]. 
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 Some major work have been done on the mathematical model of bacteria-nutrients dynamics.  
Hoppensteadt, F.C. [4] presented the crystal test model involving the bacterial population size B(r,t), 
histidine diffusion and uptake, H(r,t) and buffer concentration G(r,t).  He observed that when growing, 
cells will continue to grow even as PH decreases until a higher, more favourable PH threshold is reached. 
 Tyson, R. et.al [8] modeled the dynamics of the bacteria-nutrient and chemoattractant and this 
gave rise to non-linear partial differential equation system.  They presented a simple and intuitively 
revealing analysis of the patterns generated by their model.  They observed that patterns arose from 
disturbances to a spatially uniform solution state.  A linear analysis gave rise to a second order ordinary 
differential equation for the amplitude of each model present in the initial disturbance. 
 Marcello Vichi [7] said “Nutrient dynamics are mostly connected to carbon dynamics, except for 
the direct can behave as remineralization or as competitors with the phytoplankton taking up inorganic 
nutrient directly from the water: 
 Marcellor Vichi [7] modeled nutrient and carbon dynamics which resulted in a partial differential 
equation.  He analysed the model using dynamical systems. 
 Kraigsley, A. et.al. [6] studied the dynamics of motile bacteria in nutrients.  They looked at the 
analogy between spreading motile bacteria and other self-propagating fronts with respect to the dynamical 
properties of such fonts.  Initial experiments they conducted using the E coli bacterium indeed showed 
behaviour analogous to reaction-diffusion system. 
 Most microbiological studies focuses on individual bacterium and counting the behaviour of 
individuals [6].  In this study, we apply thermodynamics laws and study aggregate behaviour of a large 
number of individuals.  The test case we choose to focus on for this study is the very common and widely 
studied Escherichia coli bacterium, a motile bacterium that (like many others) swims using it’s tentacles 
or flagella in it’s nutrient media while frequently changing direction to seek regions of higher nutrient 
concentration.  Specifically the bacterium has two modes of behaviour “run” mode in which it’s flagella 
rotate to propel it in a more or less straight line and “thumble” model where the flagella cause it change 
orientation with little net motion [1]. 
 Using this knowledge of the behaviour of bacteria in nutrients we now formulate the model of the 
bacteria-nutrient dynamics since “pattern formation in microbiological systems is well know” [2], but 
reaction-diffusion theory (model) has not sufficiently been used to quantify and predict such patters. 
 
2.0 The model 
 Let us first present the symbols we are going to use in this model. 
B(t) = number of bacterial at time t. 
N(t) = concentration of the limiting nutrient in a growing chamber at time t. 
t = time and is chosen to correspond to the cell’s doubling time when sufficient nutrient is present 
V = maximum nutrient uptake per cell 
K = Michaelis or saturation constant, which is the value of N at which uptake is half it’s maximum rate. 
Y = the yield, that is, the number of cell’s produced per unit of nutrient taken up 
We observed that  

(1)  The rate of change in the number of bacteria is a product of the yield, Y, the number of 
bacteria and the total nutrient uptake. 

(2) The rate of change in the concentration of limiting nutrient is a product of the number of 
bacterial and the negative of the nutrient uptake.  This means that: 
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where uN  is the nutrient uptake. But the Jacob-Monod model of nutrient uptake is described by: 
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Putting (2.2) in (2.1) gives 
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(2.3) is now the required model of bacterial-nutrient dynamics. 
 
3.0 Analysis of the model 
 In this section we 

(1) Find the value of VY 
(2) Solve the model for N as a function of B 
(3) Described the dynamics of B as a function of t 

3.1 The Value of VY 
 When sufficiently nutrient is present (N > 1), then 

VYtBINVYdt
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Since the time scale corresponds to cell doubling, B(1) = 2 B(0).  Hence 
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This shows that YV is a constant. 
3.2 Solving N as a function of B 
 Divide the second equation of (2.3) with the first equation to get 
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Let N(0) = N0,  B(0) = B0, then 
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3.3 The dynamics of B as a function of t 
Put (3.2) in the first equation of (2.3) to get 
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Resolving this into partial fractions we have 
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As t → ∞, a - α B = 0 and by the value of a and α defined above, it means that as t → ∞, B(t) →N0 +B0 / 
Y which is also a constant. 
 
4.0 Summary and conclusion 
 We have been able to develop a model for the bacteria-nutrient dynamics.  We found out that  VY 
= In 2.  This means that the product of maximum nutrient uptake per cell and the number of cells 
produced per unit of nutrient uptake is a constant.  We also found out that N(t) = a – b(B(t).  This means 
that there is a linear relationship with negative slop between the concentration of limiting nutrient and 
number of bacteria.  Which means that the yield (the number of cells produced per unit of nutrient taken 
up) is inversely proportional to the maximum nutrient uptake per cell.  We finally found that 

∞→+= tasYBNtB /00)( .  This means that the number of bacteria after a long time will be a 
constant and will be dependent on the initial concentration of the limiting nutrient and the initial number 
of bacteria. These results are in agreement with the crystal test model presented by Hyppensteadt, F.C. 
[4]; though Hoppensteadt’s crystal test model was a system of first order linear differential equation while 
the model presented here is a system of non-linear first order differential equation.  This paper has 
succeeded in throwing more light on what happens when bacteria are in nutrient. 
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