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Abstract

We have looked at the efflux of a viscous liquid from an orifice.
Assuming the steady flow of a Newtonian fluid, a model for the energy loss
due to viscous shearing stress is derived, and a first-order non-linear ordinary
differential equation of second degree is obtained for the speed of efflux.
Numerically, the eguation is quasi-tiff, due to the small value of kinematic
viscosity of common liquids. We resolve the equation numerically using a
modified Rosenbrock formula for the speed of efflux at different depths of the
orifice, below the free surface of the liquid. Generally, the results show that
the speed of efflux for a liquid with a large kinematic viscosity is lower than
that for a liquid with a small kinematic viscosity at any particular depth. At a
low hydrostatic pressure, the speed of efflux of a viscous liquid is less than
that of an inviscid fluid. Thus there is a significant energy loss if the
kinematic viscosity of a liquid is high. Also, the results suggest that liquids
with a large kinematic viscosity are more likely to support steady flow if
subject to a high pressure gradient.

Keywords: speed of efflux; viscous loss; non-linear ordyndifferential equation.

1.0 Introduction

This work is part of an effort to introduce students to mettaddsomputational physics using
illustrations that are conceptually simple, but mathemagicathn-trivial. Easy access to modern
computing resources enable us examine, within a typical undertgaduaiculum, problems which
hitherto we ignore because the resulting equations are oftesmmaiable to simple analytic treatment.
Here, we consider the efflux of a viscous liquid from an agifif a small hole is made on the wall of a
large open reservoir, which is kept full with a liquid, tligiid issues from the orifice as a jet, under the
influence of gravity. Imagine that the speed of efflux of thissieneasured, by say measuring the volume
discharge in a given time interval, for various liquidssiimost likely that the values of speed of efflux
obtained will not be the same for liquids with different visiies. We seek a relationship linking the
speed of efflux with the viscosity of the liquid. Such an expressiay e obtained by considering the
conservation of energy for a fluid particle moving with the fluid.

Usually, to obtain the conservation equation for the energyflafdaparticle we form the inner
(i.e. scalar) product of the velocity)(with the equation of motion (a form of the conservation of
momentum equation consistent with the particular fluid of
interest). This leads to what is essentially an energ@nbalequation. For the steady, incompressible flow
of an inviscid fluid, the integral of the inner product along eastiline in a time independent gravity field
leads to the Bernoulli equation [1]
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wherep is pressurep is density,g is gravitational acceleration aids the position of the fluid particle
above a fixed horizontal reference. In writing (1.1) it is assumed that tlireetion is anti-parallel to the
gravity field. In general, the consta@tvaries from one streamline to another, but is the same for all
points on a streamline.

For a moving fluid particle, the terms on the left-hand-side oktttexgy balance equation (1.1)
represent, respectively, the kinetic energy, pressure ersrdyjotential energy (per unit mass) and their
sum is conserved along a streamline in the steady incomprefsibl®f an inviscid fluid. Thus, in
Bernoulli equation, the terms which involve energy loss or ‘heat’ aréfispig excluded.

1v2+%+gz=C, (1.1)

2.0 Effect of viscosity

The energy balance equation in the steady incompressible flawistous liquid will involve
both mechanical and heat energy components, because of the fast¢hahical energy can be changed
into heat. Thus associated with the flow is the irreversibbegy dissipation arising from the change of
mechanical energy into heat by the action of friction. And so, fterdifit points along a streamline in a
viscous liquid, the sum of the kinetic energy, pressure eramgdypotential energy (per unit mass) is
conserved only if the amount of heat energy arising from visca®ir is included. Consequently, the
energy balance equation in a viscous liquid requires an exprdesitire mechanical energy converted
into heat by viscous friction.

For any two points designated by the symioBnd2 along a streamline, the energy balance
equation implies that 1 L gz -C =1 L gz -C._.

21 p 1 1 22 p 2 2
For these points, the law of conservation of mass leads toqimti@n of continuity which when
expressed as a balance equation for the volume discharge is
AV, = AV,, (2.2)

whereA; and A, are cross-sectional areas at the respective pointsl designate a point on the free
surface of the liquid?2 designate a point on the plane of the orifice, and the origin oficated coincide

with the free surface. Then the presspre p, is atmospheric pressure,
z, =0, z, =-z,v, is the speed of the free surface, and= v, is the speed of efflux of the liquid from
the orifice. Thus equation (2.1) reduces to

1 A12 _A22 2 _
§|: Aiz Vy = gz_(Cl _CZ)' (23)
The term C; — C,) corresponds to the amount of mechanical energy which is cothwetbeheat per unit
mass. In an inviscid fluid this term is zero and (2.3) reduces to thedlbtteorem:

2
ﬁ : (2.4)

3.0  Model of viscous loss

The energy balance equation in a viscous liquidires an expression for the ter@ (
— C,), representing the amount of mechanical energyexted irreversibly into heat by viscous friction.
To determine the energy loss due to viscosity per mass, it is necessary to make an assumption
concerning the nature of the liquid. Assume thatliuid is a Newtonian fluid. In the simple sheari
flow of an incompressible Newtonian fluid whoseogdy field is given by [2]

v, =v(z), v,=0, v,=0, (3.1)

(2.1)

Vyx = |20z
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the stress tensor reduces to

ov,

_ -p 0 7702
T= 0 -p 0 |, (3.2)

N o

57 p

wheren is the shear viscosity of the fluid. Given theess tensoF , the total force due to stress across
any surface S is, the vector sum of the forcessoaléments [3]:

F=[T.dS. (3.3)
For a moving fluid particle, the rate at which wasldone by the stresses on the medium is
Fv=] F.vj .ds. (3.4)
If Sis a closed surface surrounding the volomere define the outward unit nornrato the surface such
that Fv=-] ['I='.v] .nds. (3.5)
Using the Gauss divergence theorem, we then haveF.v = —j L. ('IZ' v) dv . (3.6)

Thus the rate at which work is done by stressgb®medium per unit volume is

d—W =-[. (1='v) : (3.7)
at
Now, consider the generalized (Euler) equation ofiom p% +0T = f , (3.8)

wheref is the body force per unit volume. For a movihgdf particle of massm = psV, the inner
product ofv and equation (3.8) leads tec%(% pvzé\/j = v.(f - D.'?)év : (3.9

Thus, ignoring the body force, the rate of produtof kinetic energy per unit volume due to stresse

Q= —v.(mf) . (3.10)
We know that the work done on a system is equideésum of the change in kinetic energy of theesyst
and the energy loss due to friction. Thus we catewr

D.(‘?.v) = v.(D.?)+ (‘?D) VAN (3.11)
where the last term in equation (3.11) represémsdte at which energy is dissipated by viscoesusig

stress per unit volume in a moving fluid. In thréienensional rectangular coordinates and with the
velocity profile and stress tensor given by (3144 &3.2), respectively,

2
we have ('F.D).V = ;1( dvxj : (3.12)
dz

Thus, for an incompressible Newtonian fluid witte thelocity profile (3.1), the amount of mechanical
energy converted irreversibly into heat by visciiggion per unit mass is

(Q—Cz)=%(%j : (3.13)

Upon substituting equation (3.13) in (2.3), theespef efflux of our incompressible fluid satisfitse
ordinary differential equation
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%(%) +%( A@A}Azzjvf -gz=0, VX(O) =0. (3.14)

The ration/p is the kinematic viscosity of the fluid. Note tratcording to the derivation, z in equation
(3.14) is simply the depth of the orifice below fhee surface of the liquid and thus a positivertdjiia

4.0 Numerical procedure

Mathematically, our task is to solve an initialu@ non-linear first-order ordinary differential
equation numerically. For physical reasons, thetgmi to the problem is expected to remain bounded.
When a numerical solution is (or tends to be) umided, it is an indication of the non-suitability thie
numerical method that is used. Also, the valuehefdpeed of efflux given by Torricelli theorem sladou
be greater than the value obtained from (3.14nwntgaven depth, since viscosity is ignored in Taetii
theorem.

According to Press et al [4] “for many scientifisers, fourth-order Runge-Kutta is not just the
first word in ODE integrators, but the last wordwasll”. Thus, we tried a fourth-order Runge-Kutta
method on this problem. Incidentally, the outcom@at satisfactory. In general, Runge-Kutta methods
assume that the numerical solution to an ordindfgrantial equation is represented using

V.=V, + (p(zi Vi ,Az)Az, (4.1)
where V is the present function value;.Vis the future function value\z is a small increment in the
independent variable andz, Vi, Az) is an increment function. Various Runge-Kuttahnds determine
the increment function using different schemes,daatmetrically the increment function is a geneedl
representation of the slope.

We can re-write (3.14) to obtain a kind of slopadtion, namely,

2 2
dv, _ \/ﬁ{gz—l A-A vz} . (4.2)
dz n 2 N

Common liquids are such that the kinematic visgositnumerically a small quantity, thus the slope
calculated using (4.2) is numerically large sirtds proportional to the inverse of the kinemaigcosity.
This gives the differential equation a kind of fséiftribute. Thus the numerical form of the slopadtion

in this situation seems not to favour the use efdlassical fourth-order Runge-Kutta method, sihee
increment function is evaluated using the slopetion.

The numerical solution is implemented in MATLABT @ll the differential equation solvers in
the MATLAB ODE suite, the ode23s is more efficiémt our problem. ode23s is an ordinary differential
equation solver for stiff problems based on a mediRosenbrock formula of second-order. Basically,
Rosenbrock formula is an implicit Runge-Kutta sckeBi; it is numerically stable when applied tdfsti
ordinary differential equations.

5.0  Numerical experiments and results

We model the efflux of a viscous liquid and cadtalthe speed of efflux of the liquid from an
orifice at various depths. In one instance we camgae speed of efflux for some common liquids. tNex
we consider the speed of efflux for water at défartemperatures. Though temperature does not appea
explicitly in the model, it is incorporated inditgcthrough the kinematic viscosity, which varieghw
temperature. Recall that Torricelli theorem preslitie same speed of efflux (varying only with dgjth
all these situations.

The values of liquid density and viscosity takeanf Kaye and Laby [6] are given in
table 1, and the acceleration due to gravifyi¢ assumed to be 9.80665 msn some instances the
values are an interpolation. All values are in @its. The ratio of the area of the orifice to
the area of the free surfacey/A,, is 0.01. For each liquid the computation wasnapted for values of z
beginning at the liquid surface down to a depthl®f0 m, though it is only for castor oil that the
computation went through to z = 10.0 m.
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In Fig. 1 we present the results when the modedpislied to castor oil, observe the speed
deviation from the value predicted by Torricellettem for an inviscid fluid. Intuitively, we expeitte
speed of efflux of a viscous liquid to be less tiiaat of an inviscid fluid. Generally, the resudtgree
with this during the early part of the computatiblawever, for all samples, beyond a certain dejp¢h t
speed of efflux of the liquid becomes greater ttiet of an inviscid fluid. The depth at which tbiscurs
varies from one liquid to another, but is a maximuntastor oil and a minimum in mercury (Fig. 2).
Beyond this depth the speed of efflux obtained ftbm model increases monotonically, until the ode-
solver is unable to continue with the computatibigure 3 is the result which compares the speed of
efflux of water at temperatures between 10 °C @hf@B Observe that at any given depth the speed of
efflux is less at lower temperatures. Essentidghligre is an indication of the variation of speecfbliux
with temperature, occasioned by the change in gadfi&inematic viscosity.

6.0  Discussion and conclusion

The model has been tested on liquids which maybeotlassified as highly viscous. In this
domain of low to moderate viscosity, the model frsda small but noticeable influence of (kinemhatic
viscosity on the speed of efflux. This is espegialident on comparing the results of the modelrwhe
applied to castor oil and olive oil. These are iliguwith the same density but different viscosities
Observe that, in general, the speed of efflux ¥geloin those liquids with a high kinematic viscgsit
Thus in the flow of a viscous liquid the energysl@s significant if the kinematic viscosity is higilso,
beyond a certain depth,, of the orifice below the free surface of the ldjuhe speed of efflux obtained
from the model exceeds that for an inviscid flufdhis depth is rendered as a hydrostatic prespg,
then it represents the pressure difference caubimgfflux at that depth. According to the restitis
hydrostatic pressure is least in mercury, which thassmallest kinematic viscosity. This sugges# th
there is a critical pressure gradient for eachididaeyond which the model may not be applicables Th
equation on which our derivation is based assuneslyg flow, and a critical pressure gradient beyond
which the model ‘fails’ may imply a change in thew regime, such that the flow regime is differémt
pressure gradient values larger than this critiedile than for lower values. It seems that for albm
pressure gradient the flow is steady, while at @&hmlarger pressure gradient there is a deviatiom fr
steady flow. Thus we anticipate an early deviaffom steady flow as the pressure gradient is irsgéa
in liquids having a low kinematic viscosity than those with a high kinematic viscosity. The
manifestation of a critical pressure gradient, henay be an indication of a change to unsteady or
asymmetric flow, when the liquid is subject to ghpressure gradient.

Essentially, we may conclude from these calculatitiat liquids with a high kinematic
viscosity are much more likely to support steadywflwhen subject to a high pressure gradient. Algcause low
kinematic viscosity liquids tend to lose this dlilat a relatively small pressure gradient, theation may not be
adequately represented by an equation of motioowdssumes steady flow.

Liquid Density (Kg M ) Viscosity(10° N S M?)
Acetone 800.0 0.295
Castor oil 900.0 451.0
Mercury 13521.4 1.499
Olive oil 900.0 52.0

Water 995.21 0.7982

Table 1(8: Density and viscosity of various liquids at 30 ©

Temperature ( °C) Density (Kg M%) Viscosity (10° N S M?)
10 999.02 1.3037
20 998.20 1.0019
30 995.21 0.7982
40 992.22 0.6540
50 987.71 0.5477
60 983.20 0.4674

Table 1(b). Density and viscosity of water at various tempmes.

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 137 - 144
Speed of efflux in liquids. Eghuanoye lkata, Pet O. Eke and Alalibo T. Ngiangia J. of NAMP



Figure 1. Speed of efflux for castor oil and the invisdidid, (a) at small depths and (b) at large depths.

18
16 4 -
14 + B
x
=
5 12— -
5 inviscid
'g 101 castor oil T
7o 1
L
E
s 6 T T
4 + 4
5 =4 4
0 l I l I l I l l l
0 1 2 3 4 5 6 7 8 9 10
z(m), depth of orifice below free surface
Figure 1(a)
15
I I I I I I I I I
10 T B
5 inviscid
5 " castor oil
ks
T -
w
E
>
0 Yo A N N N B N B B
0 0.01 0.02 0.03 0.04 0.05 0.0®07 0.08 0.09 0.1
z(m), depth of orifice below free surface
Figure 1(b)
16 I I I I I I I I I
14 |
12 +
x
2 10 L
©
5 08 _ . .
'g s castor oil -
2 06 P L acetone
il .0 L A S mercury -
z A merct I
£o
02 T T

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 137 - 144
Speed of efflux in liquids. Eghuanoye lkata, Pet O. Eke and Alalibo T. Ngiangia J. of NAMP



(1]

(2]
(3]

[4]
[5]
(6]

I I I [ I I I I
0.02 0.03 0.04 0.05 0.007 0.08 0.09 0.1

z(m), depth of orifice below free surface
Figure 2(a). Speed of efflux for various liquids at small degt

0 I
0 0.01

1.6 [ I I I I I I I I

a— e i
:3< ol L
% L
s 1.0 +
# 08— inviscid L
R olive oil
é 0.6 + S castor oil —
=

0.4 4

02T 4

o L= T Y R N N
0O 0.01 0.02 0.03 0.04 0.05 o0.08&7 0.08 0.09 0.1
z(m), depth of orifice below free surface
Figure 2(b): Speed of efflux for liquids with same density.
16 I I I I I I I I I

v(m/s), speed of efflux

S N T N NN NN T N
0O 0.01 0.02 0.03 0.04 0.05 0.0007 0.08 0.09 0.1
z(m), depth of orifice below free surface
Figure 3: Speed of efflux for water at various temperatures

References

Douglas,J. F., Gasiorek, J. M. and SwaffieldAJ (2001) Fluid Mechanics, 4" ed. Pearson Education Ltd. : Delhi,
India. pp. 168 - 180.

Spurk, J. H. (1997Fluid Mechanics, English trans. Springer-Verlag : Berlin, Germapg. 78 — 99.

Symon, K. R. (1979)Mechanics, 3¢ ed. Addison-Wesley : Reading, Massachusetts.

pp. 431 - 443

Press, W. H., Teukolsky, S. A., Velterling, W. and Flannery, B. P. (199R)umerical Recipes in Fortran, 2" ed.
Cambridge University Press: Cambridge. pp. 7048- 70

Chapra, C. S. and Canale, R. P. (1998erical Methods for Engineers, 39 ed. McGraw-Hill : New York. pp. 719 —
723.

Kaye, G. W. C. and Laby, T. H. (197B3bles of Physical and Chemical Constants, 14" ed. Longman : London. pp. 29
-36

Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 137 - 144
Speed of efflux in liquids. Eghuanoye lkata, Pet O. Eke and Alalibo T. Ngiangia J. of NAMP



