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Abstract 
 

 We have looked at the efflux of a viscous liquid from an orifice. 
Assuming the steady flow of a Newtonian fluid, a model for the energy loss 
due to viscous shearing stress is derived, and a first-order non-linear ordinary 
differential equation of second degree is obtained for the speed of efflux. 
Numerically, the equation is quasi-stiff, due to the small value of kinematic 
viscosity of common liquids. We resolve the equation numerically using a 
modified Rosenbrock formula for the speed of efflux at different depths of the 
orifice, below the free surface of the liquid.  Generally, the results show that 
the speed of efflux for a liquid with a large kinematic viscosity is lower than 
that for a liquid with a small kinematic viscosity at any particular depth. At a 
low hydrostatic pressure, the speed of efflux of a viscous liquid is less than 
that of an inviscid fluid. Thus there is a significant energy loss if the 
kinematic viscosity of a liquid is high. Also, the results suggest that liquids 
with a large kinematic viscosity are more likely to support steady flow if 
subject to a high pressure gradient. 
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1.0 Introduction 
 This work is part of an effort to introduce students to methods of computational physics using 
illustrations that are conceptually simple, but mathematically non-trivial. Easy access to modern 
computing resources enable us examine, within a typical undergraduate curriculum, problems which 
hitherto we ignore because the resulting equations are often not amenable to simple analytic treatment. 
Here, we consider the efflux of a viscous liquid from an orifice. If a small hole is made on the wall of a 
large open reservoir, which is kept full with a liquid, the liquid issues from the orifice as a jet, under the 
influence of gravity. Imagine that the speed of efflux of this jet is measured, by say measuring the volume 
discharge in a given time interval, for various liquids; it is most likely that the values of speed of efflux 
obtained will not be the same for liquids with different viscosities. We seek a relationship linking the 
speed of efflux with the viscosity of the liquid. Such an expression may be obtained by considering the 
conservation of energy for a fluid particle moving with the fluid. 
 Usually, to obtain the conservation equation for the energy of a fluid particle we form the inner 
(i.e. scalar) product of the velocity (v) with the equation of motion (a form of the conservation of 
momentum equation consistent with the particular fluid of  
interest). This leads to what is essentially an energy balance equation. For the steady, incompressible flow 
of an inviscid fluid, the integral of the inner product along a streamline in a time independent gravity field 
leads to the Bernoulli equation [1] 
 



Journal of the Nigerian Association of Mathematical Physics, Volume 11 (November 2007), 137 - 144 
Speed of efflux in liquids.    Eghuanoye Ikata, Peter O. Eke and Alalibo T. Ngiangia    J. of NAMP 

   Cgz
p

v =++
ρ

2
2

1
,     (1.1) 

where p is pressure, ρ is density, g is gravitational acceleration and z is the position of the fluid particle 
above a fixed horizontal reference.  In writing (1.1) it is assumed that the z- direction is anti-parallel to the 
gravity field. In general, the constant C varies from one streamline to another, but is the same for all 
points on a streamline. 
 For a moving fluid particle, the terms on the left-hand-side of the energy balance equation (1.1) 
represent, respectively, the kinetic energy, pressure energy, and potential energy (per unit mass) and their 
sum is conserved along a streamline in the steady incompressible flow of an inviscid fluid. Thus, in 
Bernoulli equation, the terms which involve energy loss or ‘heat’ are specifically excluded.   
 
2.0 Effect of viscosity 
 The energy balance equation in the steady incompressible flow of a viscous liquid will involve 
both mechanical and heat energy components, because of the fact that mechanical energy can be changed 
into heat. Thus associated with the flow is the irreversible energy dissipation arising from the change of 
mechanical energy into heat by the action of friction. And so, for different points along a streamline in a 
viscous liquid, the sum of the kinetic energy, pressure energy and potential energy (per unit mass) is 
conserved only if the amount of heat energy arising from viscous friction is included. Consequently, the 
energy balance equation in a viscous liquid requires an expression for the mechanical energy converted 
into heat by viscous friction. 
 For any two points designated by the symbols 1 and 2 along a streamline, the energy balance 

equation implies that  
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For these points, the law of conservation of mass leads to the equation of continuity which when 
expressed as a balance equation for the volume discharge is  

2211 vAvA = ,      (2.2) 
where A1 and A2 are cross-sectional areas at the respective points. Let 1 designate a point on the free 
surface of the liquid, 2 designate a point on the plane of the orifice, and the origin of coordinates coincide 
with the free surface. Then the pressure 21 pp =  is atmospheric pressure, 

121 0 v,zz,z −==  is the speed of the free surface, and xvv =2 is the speed of efflux of the liquid from 

the orifice. Thus equation (2.1) reduces to 
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The term (C1 – C2) corresponds to the amount of mechanical energy which is converted into heat per unit 
mass. In an inviscid fluid this term is zero and (2.3) reduces to the Torricelli theorem: 
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3.0 Model of viscous loss 
 The energy balance equation in a viscous liquid requires an expression for the term (C1  
– C2), representing the amount of mechanical energy converted irreversibly into heat by viscous friction. 
To determine the energy loss due to viscosity per unit mass, it is necessary to make an assumption 
concerning the nature of the liquid. Assume that the liquid is a Newtonian fluid. In the simple shearing 
flow of an incompressible Newtonian fluid whose velocity field is given by [2] 
   ( ) 00 === zyxx v,v,zvv ,     (3.1) 
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the stress tensor reduces to 
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where η is the shear viscosity of the fluid.  Given the stress tensorT , the total force due to stress across 
any surface S is, the vector sum of the forces on its elements [3]: 

    ∫= dSF ....T .      (3.3) 
For a moving fluid particle, the rate at which work is done by the stresses on the medium is 
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If S is a closed surface surrounding the volume V, we define the outward unit normal n to the surface such 
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Using the Gauss divergence theorem, we then have ( )∫∇−= dVT vvF. ........ .  (3.6) 

Thus the rate at which work is done by stresses on the medium per unit volume is 

     ( )v........T
dt
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Now, consider the generalized (Euler) equation of motion f
v =∇+ T
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d
ρ .... , (3.8) 

where f is the body force per unit volume.  For a moving fluid particle of mass δm = ρδV, the inner 

product of v and equation (3.8) leads to ( ) VδTVδvρ
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Thus, ignoring the body force, the rate of production of kinetic energy per unit volume due to stresses is 

   ( )TQ ....∇−= v.  .     (3.10) 
We know that the work done on a system is equal to the sum of the change in kinetic energy of the system 
and the energy loss due to friction. Thus we can write 

     ( ) ( ) ( ) vv.v .................... ∇+∇=∇ TTT  ,   (3.11) 
where the last term in equation (3.11) represents the rate at which energy is dissipated by viscous shearing 
stress per unit volume in a moving fluid. In three dimensional rectangular coordinates and with the 
velocity profile and stress tensor given by (3.1) and (3.2), respectively,  

we have    ( ) 2
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Thus, for an incompressible Newtonian fluid with the velocity profile (3.1), the amount of mechanical 
energy converted irreversibly into heat by viscous friction per unit mass is 
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Upon substituting equation (3.13) in (2.3), the speed of efflux of our incompressible fluid satisfies the 
ordinary differential equation 
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The ratio η/ρ is the kinematic viscosity of the fluid. Note that according to the derivation, z in equation 
(3.14) is simply the depth of the orifice below the free surface of the liquid and thus a positive quantity.  
 
4.0 Numerical procedure 
 Mathematically, our task is to solve an initial-value non-linear first-order ordinary differential 
equation numerically. For physical reasons, the solution to the problem is expected to remain bounded. 
When a numerical solution is (or tends to be) unbounded, it is an indication of the non-suitability of the 
numerical method that is used. Also, the value of the speed of efflux given by Torricelli theorem should 
be greater than the value obtained from (3.14) at any given depth, since viscosity is ignored in Torricelli 
theorem. 
 According to Press et al [4] “for many scientific users, fourth-order Runge-Kutta is not just the 
first word in ODE integrators, but the last word as well”. Thus, we tried a fourth-order Runge-Kutta 
method on this problem. Incidentally, the outcome is not satisfactory. In general, Runge-Kutta methods 
assume that the numerical solution to an ordinary differential equation is represented using 
 ( ) z∆z∆,V,zφVV iii1i +=+ ,    (4.1) 
where Vi is the present function value, Vi+1 is the future function value, ∆z is a small increment in the 
independent variable and φ(zi, Vi, ∆z) is an increment function. Various Runge-Kutta methods determine 
the increment function using different schemes, but geometrically the increment function is a generalized 
representation of the slope. 
 We can re-write (3.14) to obtain a kind of slope function, namely, 

    .   (4.2) 

Common liquids are such that the kinematic viscosity is numerically a small quantity, thus the slope 
calculated using (4.2) is numerically large since it is proportional to the inverse of the kinematic viscosity. 
This gives the differential equation a kind of stiff attribute. Thus the numerical form of the slope function 
in this situation seems not to favour the use of the classical fourth-order Runge-Kutta method, since the 
increment function is evaluated using the slope function. 
 The numerical solution is implemented in MATLAB. Of all the differential equation solvers in 
the MATLAB ODE suite, the ode23s is more efficient for our problem. ode23s is an ordinary differential 
equation solver for stiff problems based on a modified Rosenbrock formula of second-order. Basically, a 
Rosenbrock formula is an implicit Runge-Kutta scheme [5]; it is numerically stable when applied to stiff 
ordinary differential equations. 
 
5.0 Numerical experiments and results 
 We model the efflux of a viscous liquid and calculate the speed of efflux of the liquid from an 
orifice at various depths. In one instance we compare the speed of efflux for some common liquids. Next, 
we consider the speed of efflux for water at different temperatures. Though temperature does not appear 
explicitly in the model, it is incorporated indirectly through the kinematic viscosity, which varies with 
temperature. Recall that Torricelli theorem predicts the same speed of efflux (varying only with depth) in 
all these situations. 
 The values of liquid density and viscosity taken from Kaye and Laby [6] are given in  
table 1, and the acceleration due to gravity (g) is assumed to be 9.80665 ms-2. In some instances the 
values are an interpolation. All values are in S.I. units. The ratio of the area of the orifice to  
the area of the free surface, A2/A1, is 0.01. For each liquid the computation was attempted for values of z 
beginning at the liquid surface down to a depth of 10.0 m, though it is only for castor oil that the 
computation went through to z = 10.0 m. 
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 In Fig. 1 we present the results when the model is applied to castor oil, observe the speed 
deviation from the value predicted by Torricelli theorem for an inviscid fluid. Intuitively, we expect the 
speed of efflux of a viscous liquid to be less than that of an inviscid fluid. Generally, the results agree 
with this during the early part of the computation. However, for all samples, beyond a certain depth the 
speed of efflux of the liquid becomes greater than that of an inviscid fluid. The depth at which this occurs 
varies from one liquid to another, but is a maximum in castor oil and a minimum in mercury (Fig. 2). 
Beyond this depth the speed of efflux obtained from the model increases monotonically, until the ode- 
solver is unable to continue with the computation. Figure 3 is the result which compares the speed of 
efflux of water at temperatures between 10 ºC and 60 ºC. Observe that at any given depth the speed of 
efflux is less at lower temperatures. Essentially, there is an indication of the variation of speed of efflux 
with temperature, occasioned by the change in values of kinematic viscosity. 
 
6.0 Discussion and conclusion 
 The model has been tested on liquids which may not be classified as highly viscous. In this 
domain of low to moderate viscosity, the model predicts a small but noticeable influence of (kinematic) 
viscosity on the speed of efflux. This is especially evident on comparing the results of the model when 
applied to castor oil and olive oil. These are liquids with the same density but different viscosities. 
Observe that, in general, the speed of efflux is lower in those liquids with a high kinematic viscosity. 
Thus in the flow of a viscous liquid the energy loss is significant if the kinematic viscosity is high.  Also, 
beyond a certain depth, zc, of the orifice below the free surface of the liquid, the speed of efflux obtained 
from the model exceeds that for an inviscid fluid. If this depth is rendered as a hydrostatic pressure, ρgzc, 
then it represents the pressure difference causing the efflux at that depth. According to the results this 
hydrostatic pressure is least in mercury, which has the smallest kinematic viscosity. This suggests that 
there is a critical pressure gradient for each liquid beyond which the model may not be applicable. The 
equation on which our derivation is based assumes steady flow, and a critical pressure gradient beyond 
which the model ‘fails’ may imply a change in the flow regime, such that the flow regime is different for 
pressure gradient values larger than this critical value than for lower values. It seems that for a small 
pressure gradient the flow is steady, while at a much larger pressure gradient there is a deviation from 
steady flow. Thus we anticipate an early deviation from steady flow as the pressure gradient is increased 
in liquids having a low kinematic viscosity than in those with a high kinematic viscosity. The 
manifestation of a critical pressure gradient, here, may be an indication of a change to unsteady or 
asymmetric flow, when the liquid is subject to a high pressure gradient. 
 Essentially, we may conclude from these calculations that liquids with a high kinematic  
viscosity are much more likely to support steady flow when subject to a high pressure gradient. Also, because low 
kinematic viscosity liquids tend to lose this ability at a relatively small pressure gradient, their motion may not be 
adequately represented by an equation of motion which assumes steady flow. 

Liquid Density (Kg M -3) Viscosity(10-3 N S M-2) 
Acetone 800.0 0.295 

Castor oil 900.0 451.0 
Mercury 13521.4 1.499 
Olive oil 900.0 52.0 
Water 995.21 0.7982 
Table 1(a): Density and viscosity of various liquids at 30 ºC. 

 
 

Temperature ( ºC) Density (Kg M-3) Viscosity (10-3 N S M-2) 
10 999.02 1.3037 
20 998.20 1.0019 
30 995.21 0.7982 
40 992.22 0.6540 
50 987.71 0.5477 
60 983.20 0.4674 

Table 1(b): Density and viscosity of water at various temperatures. 
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Figure 1: Speed of efflux for castor oil and the inviscid fluid, (a) at small depths and (b) at large depths. 
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Figure 2(a): Speed of efflux for various liquids at small depths. 
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Figure 2(b): Speed of efflux for liquids with same density. 
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Figure 3: Speed of efflux for water at various temperatures 
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