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Abstract 
 

We present a magneto - hydrodynamic flow of a uniformly stretched 
vertical permeable surface undergoing Arrhenius heat reaction. The 
analytical solutions are obtained for concentration, temperature and velocity 
fields using an asymptotic approximation, similar to that of Ayeni et al 2004. 
It is shown that the temperature field and the velocity field depend heavily on 
the thermal grashof numbers, heat generation/absorption, magnetic induction, 
chemical reaction parameters and reaction order. It is also established that 
maximum velocity occurs in the body of the fluid close to the surface and not 
the surface.  
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1.0 Introduction 
 The study of flow and heat and mass transfer in the boundary layer induced by a surface moving 
with a uniform or non uniform velocity in a quiescent ambient fluid is important in several manufacturing 
process in industry which include the boundary layer along material handling. Also many industrial 
processes involve fluid flow, heat and mass transfer in the boundary layers induced by a surface moving 
with a uniform velocity [2]. Chamka [2] examined the boundary layer of an MHD flow when the heat 
generation is linear in temperature. Ayeni et al. 2004 extended the problem posed by Chamka, to heat 
generation that is quadratic in temperature.  

Nomenclatures 
  
 
 
 
 
 
 
 
  

*Corresponding author 
 

c: concentration 
cp: specific heat 
C: fluid concentration 
Cw: wall concentration 
αD: mass diffusion-coefficient 
D: chemical reaction parameter 

0Q : heat generation coefficient 

Nu : Nuselt number 

wT : wall temperature 

v : fluid transverse velocity 

wv : suction velocity 

x : axial or vertical coordinate 
y : transverse coordinate 

Greek Symbols 
γ : chemical reaction parameter 

ρ : fluid density 

Pr : Prandtl number 
Sc : Shmidt number 
E: activation energy 
g : gravitational pull 

0B : magnetic induction 

T : fluid temperature 
n: reaction order 
R: universal gas constant 
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    The study of magnetohydrodynamics of vertically conducting fluids in the presence of a magnetic field 
is encountered in many important problems in geophysical and astrophysics. There has been a renewed 
interest in studying magnetohydrodynamics (MHD) flow and heat transfer aspects in various geometries 
due to the effect of magnetic field on the flow control and on the performance of many system using 
electrically conducting fluids such as liquid metals, water mixed with little acid and others hence a lot of 
work has been reported in the literature. Chamka. [3] has a good review of some of these works. Recently 
Okedoye and Ayeni [3], presented a numerical solution of heat and mass transfer in MHD flow in the 
presence of chemical reaction of order 1 and Arrhenius heat generation of a permeable membrane. In their 
paper, they obtained the solutions numerically.  
 In this paper we extend the problem posed by Chamka [2] to quadratic heat generation and with 
zero order exothermic reaction. We then use the approximation similar to the ones in Ayeni [1] to obtain 
analytical solutions to the concentration, velocity and temperature fields. 
 
2.0  Mathematical formulations 

Consider coupled heat and mass transfer by hydro – magnetic flow of a continuously moving 
vertical permeable surface in the presence of suction, heat generation/absorption effects, transverse 
magnetic field effect and Arrhenius reactions. The flow is assumed steady, laminar and two – dimensional 
and the surface is maintained at a uniform temperature and the concentration species, and is assumed to 
be infinitely long. It is also assumed that the applied transverse magnetic Reynolds number is small so 
that the induced magnetic field is neglected. In addition, there is no applied electric field and all of the 
Hall effect, viscous dissipation and Joule heating are neglected, thermo-physical properties are assumed 
constant except the density in the buoyancy terms of the momentum equation which is approximated 
according to the Boussinesq approximation. 
 With these assumptions, the steady equations that describe the physical situation are given as: 
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where y is the horizontal or transverse coordinate, it is the axial velocity, v is the transverse velocity, T is 
the fluid temperature, c is the concentration, T∞ is the ambient temperature c∞ is the ambient 
concentration, and ρ, g, BT, βc v σ, Bc, Q, D, γ  and n are the density, gravitational acceleration, 
coefficient of thermal expansion, coefficient of concentration expansion, kinematics viscosity, fluid 
electrical conductivity, magnetic induction, heat generation/coefficient and the chemical reaction 
parameter and  real number respectively. 

wT : wall temperature 

v : fluid transverse velocity 

wv : suction velocity 

x : axial or vertical coordinate 
y : transverse coordinate 

Greek Symbols 
γ : chemical reaction parameter 

ρ : fluid density 

θ : dimensionless temperature 

iR : Richardson number 

σ : electric conductivity 

τβ : coefficient of thermal expansion 

cβ : coefficient of mass expansion 

Subscripts 
w : condition on the wall 
∞ : ambient condition 
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With the physical boundary conditions 

   
( ) ( ) ( ) ( )

,,,,

0,0,0,0

∞→∞→∞→∞→
==−==

CTuyas
wCCwTTwvvwuu

   (2.5) 

where uw, vw >0, Tw and cw are surface velocity, suction velocity, surface temperature and concentration 
respectively. 

 
3.0 Method of solution 

We use the non–dimensional variables 
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From equation (2.1) i.e 0=
dy

dv
.  We have v  = constant, but ( ) wvv −=0  = constant ⇒  

     ( ) wvyv −=       (3.2) 

Substituting equations (3.1) and (3.2) into equations (2.2) – (2.5) and dropping (‘), we have 

 02
2

2
=−+Τ++ uMcrcGrG

dy

du

dy

ud θ       (3.3) 

 02
1Pr

2

2
=+++ θεφθφθθ

dy

d
rp

dy

d
      (3.4) 

 02
12

2
=




 +−+ εθθScK

dy

dC
cs

dy

Cd
      (3.5) 

The dimensionless boundary conditions are 
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We assume the approximation similar to the one in Ayeni et. al (2004), and for a reaction of order 
zero, n = 0. Then the system (3.3 – 3.5) becomes 
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which has a quadratic  temperature field. Now expanding asymptotically using the following asymptotic 
variables 
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and equate the powers of ε  we have  
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Now from equations (2.7.1) and (2.8.1), we have the solution 
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Also from (3.9.2), using the solutions (3.13) and (3.14), we obtain 
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Using the (3.12) and (3.13), equation (3.7.2) becomes 
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4.0 Discussion of results 
In this analysis, the parameters ScandRiK Pr,,,0φ  are assigned values –0.1, -0.1, 0.3, 0.71, and 

0.6 respectively except where stated. It should be noted that K  > 0 indicate a destructive chemical 
reaction, while K < 0 correspond to a generative chemical reaction. Also, 0φ  < 0 indicate heat generation 

and 0φ > 0 imply heat absorption. And K  = 0 and 0φ =0 indicate no chemical reaction and no heat 

generation/absorption effects respectively. 
 

 
Figure 1: Graph of concentration C1 against position y for various values of k, 

when Grt = 1, Grc = 1, φ0 =- 0.1, 1φ  = -0.2, Pr = 0.71, Sc = 0.6, M =0 .5,  

 
Figure 2: Velocity profile for various M, when Grt = 1, Grc = 1, � = 0.1, 

1φ  =- 0.2, Pr = 0.71, Sc = 0.6, k =- 0.1, M = 0.5, 

 
Figure 3: Velocity profile for various Thermal Grashof number, when 

Grt = 1, Grc = 1, 1φ  = -0.1, Pr = 0.71, Sc = 0.6, k =- 0.1, M = 0.5, 
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Figure 4.: Graph of maximum velocity against k for various values of 

when Gr t= 1, Grc=1, φ0 =- 0.1, 1φ  =- 0.2, Pr = 0.71, Sc = 0.6, M = 0.5, 

 
Figure 5: Velocity profile for various values of φ0, when Grt = 1, Grc = 1, 

1φ  =-0.1, Pr = 0.71, Sc = 0.6, M = 0.5, k = -1, 

 
Figure 6: Graph of maximum velocity against f when Grt = 1, Grc = 1, 

K =-0.1, 1φ =-0.1, Pr=0.71, Sc=0.6, M=0.5, 

 
Figure 7: Velocity profile for various values of φ, when Grt=1,  

Grcv = 1, 1φ =-0.1 Pr=0.71, Sc=0.6, M=0.5, 
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 The three dimensional graphical presented in figures 8 – 16, show clearly the relationship 
between the fields and the control parameters along the y – axis.  We display in figures 1 – 7, the 
temperature profile, velocity profile and concentration profile for various values of the parameters. In 
figure 1 we display the second asymptotic solution to concentration field, it is shown that concentration 
field increases as chemical reaction parameters (a generative reaction) increases. The effect of magnetic 
induction is shown in figure 2. It could be seen that increase in magnetic induction brings about reduction 
in velocity field, this is explained by Lorentz force and conservation theory. In addition, it could also be 
seen that distinct peaks in velocity field is obtained when the magnetic induction 8.0<M . This indicates 
that maximum velocity occurs in the body of the fluid. Also in figure 3, increase in thermal grashof 
number increases the velocity field. Figure 4 shows the relationship between the maximum velocity and 
chemical reaction parameter k . It could be deduced that maximum velocity reduces as destructive 
chemical reaction increases. In figure 5 and 7 the effect of primary and secondary heat generation was 
shown. In both cases, we can deduce that increases in heat generation brings about increase in velocity 
while in figure 6, we display the maximum velocity as a function of heat generation. It could be seen that 
as the rate of heat absorption increases the maximum velocity increases.  

In figures 8 – 16, we display the 3- dimensional graphs of concentration, temperature and velocity 
fields. Figure 8 shows that increase in chemical reaction parameter k  increase the concentration field and 

reduces along y – direction. While in figures 9 and 10, the symmetry of 1k  about 01 =k  with the 

concentration and velocity fields having maximum for 01 >k  and 01 <k , reduces along the flow 

channel. In figures 11, 12 and 13, we show the effect of 0φ  on concentration, temperature and velocity 

fields, As 1776.00 →φ , a kink is noticed in concentration and velocity fields. These sudden jumps in the 
values of both fields depend on the direction of approach. While a general reduction in the profile is 
obtain near zero in temperature in temperature field. The velocity field is analyzed in figures 14 – 16, 
taking into consideration, the important parametersM , Grc  andGrt . We show the effect M on the 
velocity field in figure 14. It could be seen that maximum velocity occurs at 0=M  when there is no 
opposing force and reduces either way. Also figure 15 and 16 shows the effect of buoyant forces which 
increases as grashof number increases. We could see that maximum velocity occur when there is heating 
of the plate ( 0>Grt )  
 On the other hand, figure 6 shows that the velocity layer increases as K increases. Figure (7) – (9) 
show that the reaction order has significant effect on the reaction, velocity and temperature fields. The 
boundary layers of the three fields get thinner as the reaction order increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Concentration 
profile for 200 ≤≤ k  

Figure 9: Concentration 
profile for 210 ≤≤ k   

Figure 10: Velocity 
profile for 200 ≤≤ k  
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5.0 Concluding remarks 
 Analytical solutions of an electrically conducting fluid on a uniformly moving vertical permeable 
surface in the presence of a magnetic field were reported. Based on the obtained graphical results, the 
following conclusions were deduced: 
(1) The fluid velocity decreases as the strength of the magnetic field was increased and decreased as 
either of the thermal or concentration buoyancy effect were decreased as expected. 
(2) The velocity increases as heat absorption into the system increases. 
(3) Maximum velocity occurs when the magnetic induction is zero within the body of the fluid. 
(4) Magnetic induction could be used to prevent the transition to turbulent flow. 
(5) Maximum velocity decreases as heat generation increases (0φ  < 0) and decreases as destructive 
chemical reaction parameter increases. 
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Figure 15: Velocity profile 
for 1010 ≤≤− Grc  

Figure 12: Temperature profile 
for 17.002.0 ≤≤− φ   

Figure 11: Concentration 
profile for 200 ≤≤ φ  

Figure 13: Velocity profile 
for 175.001 ≤≤ φ  

Figure 14: Velocity profile  
for 55 ≤≤− M  

Figure 15: Velocity profile 
for 1010 ≤≤− Grt  


