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Abstract

We present a magneto - hydrodynamic flow of a uniformly stretched
vertical permeable surface undergoing Arrhenius heat reaction. The
analytical solutions are obtained for concentration, temperature and velocity
fields using an asymptotic approximation, similar to that of Ayeni et al 2004.
It is shown that the temperature field and the velocity field depend heavily on
the thermal grashof numbers, heat generation/absorption, magnetic induction,
chemical reaction parameters and reaction order. It is also established that
maximum velocity occurs in the body of the fluid close to the surface and not
the surface.
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1.0 Introduction

The study of flow and heat and mass transfer in the boundanyitalyeed by a surface moving
with a uniform or non uniform velocity in a quiescent ambient fluidhigortant in several manufacturing
process in industry which include the boundary layer along mateaiadling. Also many industrial
processes involve fluid flow, heat and mass transfer in the bouladers induced by a surface moving
with a uniform velocity [2]. Chamka [2] examined the boundayeidaof an MHD flow when the heat
generation is linear in temperature. Ayeni et al. 2004 extendeprdidem posed by Chamka, to heat
generation that is quadratic in temperature.

Nomenclatures
c: concentration Pr: Prandtl number T,,: wall temperature

Cp: specific heat S : Shmidt number V: fluid transverse velocity

C .f|UId concentration E: activation energy Vyy ! suction velocity
C.: wall concentration g : gravitational pull

an: mass diffusion-coefficient X axial or vertical coordinate
D! - . : :
D: chemical reaction parameter B0 Magnetic induction Y transverse coordinate
Qq: heat generation coefficient T : fluid temperature Greek Symbols
‘ n: reaction order y : chemical reaction parameter
Nu : Nuselt number R universal gas constant 0 : fluid density
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T, : wall temperature Greek Symbols ﬂr: coefficient of thermal expansion
J : chemical reaction parameter

V : fluid transverse velocity . . . - .

Vi : suction velocity 0 : fluid density ,BC : coefficient of mass expansion
w: , _ .

X - axial or vertical coordinate @ : dimensionless temperature Subscripts

W : condition on the wall

Y : transverse coordinate Rj : Richardson number 0 : ambient condition

O : electric conductivity

The study of magnetohydrodynamics of vertically conducting fluids ipthgence of a magnetic field
is encountered in many important problems in geophysical and asticgphlisere has been a renewed
interest in studying magnetohydrodynamics (MHD) flow and heat gaaspects in various geometries
due to the effect of magnetic field on the flow control and on thforpeance of many system using
electrically conducting fluids such as liquid metals, watetechiwith little acid and others hence a lot of
work has been reported in the literature. Chamka. [3] has a goewreffsome of these works. Recently
Okedoye and Ayeni [3], presented a numerical solution of heat andtraasger in MHD flow in the
presence of chemical reaction of order 1 and Arrhenius heat generation okalgermembrane. In their
paper, they obtained the solutions numerically.

In this paper we extend the problem posed by Chamka [2] to quadratigdmeration and with
zero order exothermic reaction. We then use the approximatiomistmithe ones in Ayeni [1] to obtain
analytical solutions to the concentration, velocity and temperatuds.fiel

2.0 Mathematical formulations

Consider coupled heat and mass transfer by hydro — magnetioffancontinuously moving
vertical permeable surface in the presence of suction, hearagen/absorption effects, transverse
magnetic field effect and Arrhenius reactions. The flow is assumetistaeninar and two — dimensional
and the surface is maintained at a uniform temperature anadnbertration species, and is assumed to
be infinitely long. It is also assumed that the applied trensgvmagnetic Reynolds number is small so
that the induced magnetic field is neglected. In addition, thane epplied electric field and all of the
Hall effect, viscous dissipation and Joule heating are neglethermo-physical properties are assumed
constant except the density in the buoyancy terms of the momenuettice which is approximated
according to the Boussinesq approximation.

With these assumptions, the steady equations that describe the |ghitsatian are given as:

Z—; =0 2.1)
2 B2
v = 28 g8 (T-Teo) + 0fc (6-Coo) ~—2 (22)
oy 62y o
2
popv2 = 12T+ (o) {Q0IT ~Teo) + QT T} @3
oy dy
2
vo - p e [yo(T ~Teo )+ 11(T —TOO)Z] , (2.4)
oy 6y2

where y is the horizontal or transverse coordinate, it isxia elocity, v is the transverse velocity, is
the fluid temperaturec is the concentration, oI is the ambient temperatureocis the ambient
concentration, angb, g, Br, & v g, B, Q, D, y andn are the density, gravitational acceleration,
coefficient of thermal expansion, coefficient of concentration esipa, kinematics viscosity, fluid

electrical conductivity, magnetic induction, heat generation/cieffi and the chemical reaction
parameter and real number respectively.
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With the physical boundary conditions
u(0)= uyy, v(0)=- v, T(0)=Ty.,C(0)=C\
asy - oo,u -0, T - 00,C - oo,
where y, Vi >0, T, and ¢, are surface velocity, suction velocity, surface tempegadad concentration
respectively.

(2.5)

3.0 Method of solution
We use the non—dimensional variables

ylzva/U, =L g-= (T-Teo) E cl= C™C (3.1)
UW RTO% CW_COO

From equation (2.1)e %:o. We havev = constant, buv(O):—vW = constant>
y

v(y)=-v, (32)
Substituting equations (3.1) and (3.2) into equations (2.2) — (2.5) and dropping (‘veve ha
2
d ; + 6T 6+Grec-M 2u=0 (3.3)
dys dy
d%6  de 5
——*+Pr — +PPro+ego°=0 (3.4)
dy dy
dc  dc 5
> +sc——K18c(9+£«9 j:o (3.5)
dy dy
The dimensionless boundary conditions are
u@©=1,6(0)=1, c() =1 (3.6)
y-ou-06-0,c-0
2
BT vgRT, -
where GrT:TLZO,GrC:gMZCW), |3r :& , SC :V_W, MZZUBOV,
Uw EViy UwViv k D e
2 1
upc RT E .
VQ2 = UQ 5" kp =(0Pr, VQ2_0:5¢ Prvb:(CW_COO)n—Ze 8,
KCpvyy  PCpVw uepviy B RTo

We assume the approximation similar to the one in Ayeni et. al (2004), and &atiamef order
zero,n = 0. Then the system (3.3 — 3.5) becomes

2
d—;+ald—u+ Grt 8+ eGre.c(y)-M 2u=0 (3.7
dy dy
2
d 9+Prﬂ+ Prm(1+(e—2)6+62j:0 (38) (3
dy2 dy
d2c dc 2
—+Sc—+k08c(1+(e—2)6?+9 ):0 (3.9)
dy 2 dy
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which has a quadratic temperature field. Now expanding asymptoticallythsifiglowing asymptotic
variables

u:uo+£u1+£2u2 +-..-
0=06p+ec6+6p +---

(3.10)
c=cgte&gtéeco +---
¢125¢D+£2¢Q +...
and equate the powers &f we have
2
g. d uzo rag 0 _Mm2y0=0 (3.7.1)
dy dy
2
d ‘920 +prd% 4 pranep =0 (3.8.1)
dy dy
2
d7C0 , & 90 , yysecy + kyschy (3.9.1)
dy2 dy
ug (0) =g (0) =Cg(0) =1 } (3.6.1)
ug(y) - 0,80(y) - 0,Co(y) - Oasy - o
2
g AL 0 M2y 4 Grecy +Gridy =0 (3.7.2)
dy? Ty
y
d 91+Pr 61+Pr¢091+ Prenfp2 =0 (3.8.2)
dy? dy
2
9%, 599 | osecy + kls‘c(ﬂl " eozj (3.9.2)
dy? y
u(0)=61(0)=C1(0) =0 } (3.6.2)
u1(y) - 0,61(y) - 0,C1(y) - Oasy — o
g2 d? N QU2 M 2up +GreC 1 +Grt 6, =0 (3.7.3)
dy dy
2
d 02 +Pr—= db2 + Prgnbo + 2Prgpbpb1 =0 (3.8.3)
dy dy
d2C2 dC»
S-S S +koCp + k1Sc(6 +6081) (3.9.2)
dy
u2(0) =62(0)=C2(0) =0 } (3.6.3)
uz(y) - 0,82(y) - 0,C2(y) -~ Oasy — o

Now from equations (2.7.1) and (2.8.1), we have the solution

[ 2 2
a1 +./a, +4M
IR (3.11)

2
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[o2_
and o(y)=e™ = PP —4Prep (3.12)

2

respectively!

2
Using the solution foHO(y) in (3.9.1) we havec}|7co+8cdd—CO +koScCy = kySce ™Y
d y

n
letting Co(Y)c =a2e_n1y +age Y, and Coy)p=age "V => ag(m? -ms; +kose)e ™Y =

—-kysce 'Y from whichag = so thatCqly)=age” +age +
usce™™ from which ag hatCo(y)= age ™. + age2Y

—kise
m? - msc +KoSc
age” Y, and by imposing the boundary conditiaBg(0) = ay + a5 +ag =1, Cg(®)= agg =0, =>
a. =0. Hence, C(y)=ae™ +ae™ (3.13)
—ks

m2 - rrBC + kOSC

wherea, = ,ag =1-ag.

2
Now from (3.8.2)d ‘Zl + prddﬂ+ Propfy = - Prgpe” 2™ ,5’1(0): 0, 6’1(00)20, we let
y

dy
Oic =ase” Y +agt MY, g = a7 2™ = a7 =(4m-2mPr+ Pregp e 2" =-Prge®™ =
ay = > ~Prgg ,l.e gl(y) = HlC + le = a5e_my + a7e_2my + a8em2y
am~ -2mPr+ Prgy

The boundary conditions give® (0)=ag +a7 +ag =0, (=) =agp =0=ag=0, a5 =-a7y

hHence 1(y)=-aze”™ +aze 2 a7 = —Pra (3.14)
4m? - 2mPr+ Prep
Also from (3.9.2), using the solutions (3.13) and (3.14), we obtain

d 201
dy2

+ Sc% +koScCq = a7k18c(e_2my - e_myjl— kqSce™ 2™
y

=k1Sg (a7 —1)6_2my —a7kiSc e Y
n
Cic =age Yy ajce 1Y
Let Cip =age_zw+age_my:> ag(4m2 -2mc+ kosc)e_zmy ++ ag(m2 -mc+ kosc)e_my
=a7kis e 2y _ a7k Sc e MY
(-(L-a7)ksc) ag azkysc
4m2—2msc+kosc m2—msc+kosc
— Cp=ase WV +a0e"Y +age 2 +age” ™
C1(0)=0.Ciy) ~ 0 asy - 0 =8, =0, &, =—(a, +a,)
C(y)=ae™ +ae*™ +ae™ (3.15)

from where we have ag=
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Using the (3.12) and (3.13), equation (3.7.2) becomes

2
A" , 0'1ﬂ ~M2up =-Grte™™ - Grc(aze_ny + aee_myj
dy2 dy

which givesuy (y). = ajpe"Y +ajzelY, we Ietul(y)p =aj1e MW +a15 eV

= U (y) = aloe_ry + alle_my +a12 e Y (3.16)
- (Grt+ag Gre —-Grcap
whereajq = 2( ; y 2 = > 5 a0 =—(all+312)
m< —agm-m n“-—ain-m
2
By (3.8.3) we havé’ 922 +pr df2 , Prn 6o =-2pr@Lag (e'3my —em2MY )
dy dy

Letting 62p :a13e_3my +a14e_2my, and the complementary solution is given as

G2¢c =a15e_my + a16em'y . Combining the particular and complementary solutions and evaluate at

the boundary we have

O2(y)=a13e™3™ +ag0e”2™ +agge”™ (3.17)
-2 a -2 a
L CERLP)
am® -3mp; + prep 4Am® - 2mpr + prep
2
Now from (3.9.3) we have (;2 +Sc d;32 +koScCo = k1 Sc(62 + 6p41)

dy
= —klx((ewe_ amy _ a7e_myje_ my . a13e_3my +ajge” W +ayge” my)

= —k150((a13 +az)e 3 +(agq -a7)e” 2™ + a15e_my)

This gives the solution

Coly)=ag76 3™ +a3ge™2™ +ay0e”™ +ayge” Y (3.18)
~kiSc(ar3 +a7) ~kyselags - ~kySca 5

wherea7 = oo o —kise(a1a —a7) g9 = LTS 40— (aL+ aja+ago).
17 amEm-8) M8 ol w) 10T mmogg) 2207 @t Aetal)

And from (3.8.3)

2
d Uzz +a1 duz _ M 2u2 =-Grt& —GreCq
dy dy

= —a7Grt(e_2my - e_myj - Grc(a5e_ Y 4 age™2 + age_myj

= —(a7Grt + agGre)e 2™ + (azGrt - agGre)e™ ™Y - age™"V

which gives the solution un(y) = ap1e 2™ +agse™™ +agge”W +agse”"Y (3.19)

_~(azGrt+agGrg app=" (a7Grt - agGrc) -agGre

a] ) y A3 5 A4 = ‘(321’“322 +323)
4m2—2m—M2 m2—m—M2
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4.0 Discussion of results
In this analysis, the parameteyg), K, Ri ,Prand Sc are assigned values -0.1, -0.1, 0.3, 0.71, and

0.6 respectively except where stated. It should be notedKhat 0 indicate a destructive chemical
reaction, whileK < 0 correspond to a generative chemical reaction. Asa; 0 indicate heat generation

and ¢p> 0 imply heat absorption. AndK = 0 and ¢ =0 indicate no chemical reaction and no heat
generation/absorption effects respectively.
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Figure 1: Graph of concentratioBl against position y for various valueskof
whenGrt=1, Grc = 1=-0.1,¢ =-0.2, Pr=0.71, Sc = 0.6, M =0 .5,
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Figure 2: Velocity profile for various M, when Grt =1, Gecl, [ = 0.1,
¢ =-0.2,Pr=0.71,Sc=0.6,k=-0.1, M=0.5,

velocity

y
10

Figure 3: Velocity profile for various Thermal Grashof numpahen
Grt=1,Grc=1¢ =-0.1, Pr=0.71,Sc = 0.6, k=-0.1, M= 0.5,
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Figure 5: Velocity profile for various values af, when Grt =1, Grc =1,
¢ =0.1,Pr=0.71,Sc=0.6, M=0.5,k="-1,
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Figure 6: Graph of maximum velocity againfsivhenGrt = 1,Grc = 1,
K =-0.1, ¢ =-0.1, Pr=0.71, Sc=0.6, M=0.5,
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Figure 7: Velocity profile for various values af, when Grt=1,
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The three dimensional graphical presented in figures 8 — 16, shawyclbe relationship
between the fields and the control parameters along the y — &is display in figures 1 — 7, the
temperature profile, velocity profile and concentration prdiile various values of the parameters. In
figure 1 we display the second asymptotic solution to concemtriigld, it is shown that concentration
field increases as chemical reaction parameters (a gieremgaction) increases. The effect of magnetic
induction is shown in figure 2. It could be seen that increase in magmguction brings about reduction
in velocity field, this is explained by Lorentz force and coration theory. In addition, it could also be
seen that distinct peaks in velocity field is obtained whenmagnetic inductioM < 0.8. This indicates
that maximum velocity occurs in the body of the fluid. Also in fig8rencrease in thermal grashof
number increases the velocity field. Figure 4 shows thaae$dtip between the maximum velocity and
chemical reaction parametdr. It could be deduced that maximum velocity reduces as destructive
chemical reaction increases. In figure 5 and 7 the effeptiofary and secondary heat generation was
shown. In both cases, we can deduce that increases in heatiganeaiags about increase in velocity
while in figure 6, we display the maximum velocity as a functbheat generation. It could be seen that
as the rate of heat absorption increases the maximum velocity exreas

In figures 8 — 16, we display the 3- dimensional graphs of concentration, temperatueéoaity v

fields. Figure 8 shows that increase in chemical reaction paaencrease the concentration field and
reduces along y — direction. While in figures 9 and 10, the sylymmfatnk1 about k1 =0 with the
concentration and velocity fields having maximum for>0 and kj <O, reduces along the flow
channel. In figures 11, 12 and 13, we show the effeq obn concentration, temperature and velocity

fields, As ¢y — 0.1776 a kink is noticed in concentration and velocity fields. Thesielen jumps in the

values of both fields depend on the direction of approach. Vdhgeneral reduction in the profile is
obtain near zero in temperature in temperature field. The telfieid is analyzed in figures 14 — 16,
taking into consideration, the important parameiers Grc andGrt. We show the effecM on the
velocity field in figure 14. It could be seen that maximum wyooccurs atM =0 when there is no
opposing force and reduces either way. Also figure 15 and 16 sheveffect of buoyant forces which
increases as grashof number increases. We could see that max@hagity occur when there is heating
of the plate Grt >0)

On the other hand, figure 6 shows that the velocity layer iresessK increases. Figure (7) — (9)
show that the reaction order has significant effect on ta« ™ U o ' ~ 'ds. The
boundary layers of the three fields get thinner as the reac

.nl“\m\!\\}.\“\’g}\%\\

Figure 8: Concentration Figure 9: Concentration Figure 10 Velocity
profile for 0< kg <2 profile for 0< kg <2 profile for 0< kg <2
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Figure 11 Concentration Figure 12 Temperature profile Figure 13 Velocity profile
profilefor 0<s ¢ <2 for —-02<¢p <017 for 1< ¢n <0.175
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Figure 14: Velocity profile Figure 15: Velocity profile Figure 15: Velocity profile
for -5<M <5 for —10<Grc<10 for —10<Grt <10

5.0 Concluding remarks

Analytical solutions of an electrically conducting fluid onraformly moving vertical permeable
surface in the presence of a magnetic field were reporteskdBon the obtained graphical results, the
following conclusions were deduced:
) The fluid velocity decreases as the strength of the magineld was increased and decreased as
either of the thermal or concentration buoyancy effect were dedraasxpected.
2) The velocity increases as heat absorption into the system ircrease
3) Maximum velocity occurs when the magnetic induction is zero within the dfoithe fluid.
(4) Magnetic induction could be used to prevent the transition to turbulent flow.
(5) Maximum velocity decreases as heat generation incregges Q) and decreases as destructive

chemical reaction parameter increases.
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