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Abstract 
 

We present a magnetohydrodynamic flow of a uniformly stretched vertical permeable 
surface undergoing Arrhenius heat reaction. It is shown that the temperature, concentration 
and the velocity fields depend on the chemical reaction parameter. The values of temperature 
field increase as the order of the reaction increases, while that of velocity field decreases as the 
order reaction increases. Moreover, the reactant field decreases faster as we move away form 
the wall as we increase the reaction parameter. This paper also shows that the temperature field 
and reacting layers get thinner as the heat deposit Q per unit mass increases while the velocity 
field and the boundary layer get thinner as thermal Grashof number increases. We also show 
that magnetic induction and cooling of the plate (thermal Grashof number Grt>0) lowers the 
velocity field. 
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1.0 Introduction 

Magneto - hydrodynamic (MHD) flow of electrically conducting fluids in the presence of 
magnetic field is encountered in many problems in geophysics and astrophysics, Ayeni R. O. Okedoye A. 
M. Balogun F. O. and Ayodele T. O. (2004) [1], Chamkha (2003) [2] and the literature cited therein. Also 
many industrial processes involve fluid flow, heat and mass transfer in the boundary layers induced by a 
surface moving with a uniform velocity.  

Nomenclatures 
  
 
 
 
 
 
 
 
  

 

*Corresponding author 
 

c: concentration  
cp: specific heat 
C: fluid concentration 
Cw: wall concentration 
αD: mass diffusion-coefficient 
D: chemical reaction parameter 

0Q : heat generation coefficient 

Nu : Nuselt number  

wT : wall temperature 

v : fluid transverse velocity 

wv : suction velocity 

x : axial or vertical coordinate 
y : transverse coordinate 

Greek Symbols 
γ : chemical reaction parameter 

ρ : fluid density 

Pr : Prandtl number 
Sc : Shmidt number 
E: activation energy 
g : gravitational pull 

0B : magnetic induction 

T : fluid temperature 
n: reaction order 
R: universal gas constant 
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Chamkha (2003) [2] examined the boundary layer of an MHD flow when the heat generation is 
linear in temperature. Ayeni et al (2004) [1] extended the problem posed in Chamkha (2003) [2] to heat 
generation that is quadratic in temperature. Sakiads, (1996) studied the boundary – adjacent to a 
continuous moving surface. He obtained solutions by approximate and exact methods of momentum 
boundary – layer equations, with no heat transfer on flat and cylindrical surfaces.  The corresponding heat 
transfer problems were considered experimentally by Griffin and Throne (1967). Vajravelu and 
Hadjinicolaou (1990) [5], reported on convective heat transfer in an electrically conducting fluid at a 
stretching surface with uniform free stream. Other examples of studies dealing with hydro – magnetic 
flows can be found in the papers by Gray (1980). Michiyoshi et al. (1976) and Funmizawa (1979) [4]. 
 Okedoye and Ayeni (2007) [6] examined the problem of MHD and, mass and heat transfer when 
the chemical reaction is of order zero. Since most chemical reaction in conducting fluid is of order > 0, 
the present work is more appropriate. In this paper we extend the problem posed by Chamkha to 
Arrhenius heat generation and chemical reaction of order n, so that previous cases of heat generation 
become special cases of the present paper. 
 
2.0 Mathematical formulation  

Consider coupled heat and mass transfer by hydro – magnetic flow of a continuously moving 
vertical permeable surface in the presence of suction, heat generation/absorption effects, transverse 
magnetic field effect and Arrhenius reactions. The flow is assumed steady, laminar and two – dimensional 
and the surface is maintained at a uniform temperature and the concentration species, and is assumed to 
be infinitely long. It is also assumed that the applied transverse magnetic Reynolds number is small so 
that the induced magnetic field is neglected. In addition, there is no applied electric field and all of the 
Hall effect, viscous dissipation and Joule heating are neglected, thermo - physical properties are assumed 
constant except the density in the buoyancy terms of the momentum equation which is approximated 
according to the Boussinesq approximation. 
 With these assumptions, the steady equations that describe the physical situation are given as 
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where y is the horizontal or transverse coordinate, it is the axial velocity, v is the transverse velocity, T is 
the fluid temperature, c is the concentration, T∞ is the ambient temperature c∞ is  
 
 

wT : wall temperature 

v : fluid transverse velocity 

wv : suction velocity 

x : axial or vertical coordinate 
y : transverse coordinate 

Greek Symbols 
γ : chemical reaction parameter 

ρ : fluid density 

θ : dimensionless temperature 

iR : Richardson number 

σ : electric conductivity 

τβ : coefficient of thermal expansion 

cβ : coefficient of mass expansion 

Subscripts 
w : condition on the wall 
∞ : ambient condition 
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the ambient concentration, and ρ, g, BT, βc v σ, Bc, Q, D, γ  and n are the density, gravitational 
acceleration, coefficient of thermal expansion, coefficient of concentration expansion, kinematics 
viscosity, fluid electrical conductivity, magnetic induction, heat generation/coefficient and the chemical 
reaction parameter and  real number respectively. 
With the physical boundary conditions 
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where uw, vw >0, Tw and cw are surface velocity, suction velocity, surface temperature and 
concentration respectively. 
 
3.0 Method of solution 

We use the non – dimensional variables 
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From equation (2.1) i.e 0=
dy

dv
 on integrating we have v  = constant 

but ( ) wvv −=0  = constant, ⇒ ( ) wvyv −=       (3.2) 
Substituting equations (3.1) and (3.2) and dropping (‘), we have 
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The dimensionless boundary conditions becomes 
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We now re – write the system of equations (3.3) – (3.5) as a system of 1st – order equations. 
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And in vector form we have 
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, where 3,..1, =iia  are guess values. 

The essence of the above system is to transform the second order boundary value problem to a 
system of 1st order initial value problem. We continue to adjust the values of 3,..1, =ia i until 

,0,0,0 →→→ cu θ as ∞→y  is satisfied. We then use Runge–Kutta of order four to solved 

the problem and the result for various choice of parameters were displayed graphically in figures 1 – 9. 
 

 
Figure 1: Concentration profile for various values of k 
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Figure 2: Velocity profile for various values of k 

 
Figure 3: Temperature profile for various values of k 

 
Figure 4: Velocity profile for various values of M 
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Figure 5: Velocity profile for various values of Grt 

 
Figure 6: Temperature profile for various values of φ  

 
Figure 7: Concentration profile for various values of n 
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Figure 8: Temperature profile for various values of n 

 

 
Figure 9: Velocity profile for various values of n 

 
4.0 Discussion of results 
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Grc=1, Pr=0.71, Sc=0.6, φ = -0.2, and M=0.5 except where stated. It should be noted that K  > 0 indicate 

a destructive chemical reaction, while K < 0 correspond to a generative chemical reaction. Also, 0φ  < 0 

indicate heat generation and 0φ >0 imply heat absorption. And K =0 and 0φ =0 indicate no chemical 

reaction and no heat generation/absorption effects respectively. Also 0>Grt  indicate cooling of the plate 
while 0<Grt indicate heating of the plate. 
 We display in figures 1 – 9, the temperature profile, velocity profile and concentration profile for 
various values of the parameters. Figure 1 show that the concentration layer gets thinner as the rate of 
reactant consumption increases. On the other hand, in figures 2 and 3, the velocity and temperature layer 
increases as the rate of reactant consumption per unit mass increases. Figures 4 and 5 show the effect of 
magnetic induction and thermal Grashof number the velocity field. In figure 4, we show that velocity 
layer decreases as magnetic induction M  increases, this is due to the opposing force put up in the flow by 
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Lorenz force which always oppose the fluid velocity. On the other hand, figure 5 shows that the velocity 
layer decreases as thermal Grashof number Grt  increases as a result of cooling of the channel plate. 
Figure 6 show that the temperature layer gets thinner as the heat deposit increases. Chemical reaction is 
being consumed more as the other of reaction increases. This is shown in figure 7, as we discovered that 
the concentration profile reduces as n increases. This effect of n on concentration field also affect the 
other fields – temperature and velocity fields. Figures 8 and 9 shows the effect of reaction order on 
velocity and temperature fields. We could see that increase in reaction order result in increase in 
temperature field, as more reaction is consumed the temperature of the system increases and vice – versa, 
while from figure 9, consumption of the chemical species reduces the strength of flow and thus increase 
in reaction order lowers the velocity field. The boundary layers of the three fields gets thinner as the 
reaction order increases. 
 
5.0 Concluding remarks 
 Numerical solutions for mass and heat transfer by steady laminar flow of an electrically 
conducting and heat generating/absorbing fluid on a uniformly moving vertical permeable surface with 
buoyancy in the presence of Arrhenius heat generation/absorption and a first order chemical reaction were 
reported. Based on the obtained results, the following conclusions were deducted: 
(1) Maximum velocity reduces in value as both Grt  and K increases. 
(2) A maximum concentration occurs during a generative chemical reaction. 
(3) Increases in destructive chemical reaction produces lower species concentration and vice – versa. 
(4) The fluid body temperature increases with increase in heat generation ( )00 <φ , and a decreases a 

with a decrease in ( )00 >φ . 
(5) Velocity and temperature fields increase with increase in generative chemical reaction. 
(6) Velocity field decreases with increase in both Hartmann number M and cooling of the plate (Grt 

> 0). 
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