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Abstract 

We analyze a mathematical model that describes HIV infection of 
CD4+ T cells.  We are interested in the effect of a small addition of infection 
on an equilibrium state. Using Rene Descartes’ theory of solutions, we show 
that if the so called basic reproduction number R0 < 1, the infection will 
eventually die out, but if Ro > 1, then the infection will lead to full blown 
AIDS. In either case Ro is important in the eventual growth of the disease. 

 
 
1.0 Introduction 
 The Human Immunodeficiency Virus (HIV) mainly targets a host’s CD4+T cells. Chronic HIV 
infection causes gradual depletion of the CD4+ T cell pool, and thus progressively compromises the host’s 
immune response to opportunistic infections, leading to a Acquired Immune Deficiency Syndrome 
(AIDS). For this reason, the count of CD4+ T cells is a primary indicator used to measure progression of 
HIV infection. In a normal person, the level of CD4+T cells in peripheral blood is regulated at a level 
between 800 and 1200mm-3. Several mathematicians have proposed models to describe the in vivo 
dynamics of T cell and HIV interaction see [1, 4, 5, 6, 7, and 3]. In particular Wang and Li [7] proposed 
the following model  
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  VTN
dt

dV γβ −= *  (1.3) 

where 
s: the constant production rate at which the body produces CD4+ T cells from precursor in the bone 
marrow and thymus, 
α:  natural turn over rate of uninfected T cells, 
r: rate at which T cells multiply through mitosis, 
T: concentration of the susceptible CD4+ T cells, 
Tmax: maximum level of CD4+ T cell concentration in the body, 
T*: the concentration of infected CD4+ T cells by the HIV viruses, 
V: free HIV virus particles in the blood, 
β: natural turn over rates infected T cells, 
γ:  natural turn over rates of virus particles, 
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Kvt: describes the incidence of the HIV infection of health CD4+ T cells where k >0 is the infection rate, 
N: virus particles produced by infected CD4+T cell during its life time. Perelson and Nelson [5] replaced equation 

(1.1) by  kVT
T

T
rTTs

dt

dT −

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and retained (1.2) and (1.3). This is due to the fact that the global dynamics of (1.1)-(1.3) and (1.1), (1.2) and (1.4) 
have not been fully established in literature. So the research goes on. It is on this basis that we are proposing the 
following model: 
 
2.0 Mathematical formulation 

A model of HIV infection similar to (1.1) but using a logistic growth 



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proposed in this paper.  Thus the model is 
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3.0 Method of solution 
3.1 Equilibria points 

Let X = T
r

s −
−α

, then (2.1) becomes 
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In matrix notation (3.1) becomes 
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We now find the equilibrium points by setting   
dt

Xd
=

dt

Td ∗

=
dt

Vd
=0 and solving the three simultaneous equations. 

The system of equations yield two equilibria points   

VTN
dt

dV γβ −= ∗
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A0 is infection free, while A* is the infection equilibrium. The basic reproduction parameter R0 is defined 

by ( )r

Nks
R

−
=

αγ0 . 

3.2 Nature of the equilibrium points 
We shall need the following theorems in the analysis of the nature of the equilibriums points. The 

two theorems are already in the literature but we shall state and prove new theorems that could be derived 
from the theorems. 
Theorem  (Perron [1]) 

Let x = Ax + f(x,t) where the matrix A has all eigenvalues with negative real parts. Let f  be real 

and continuous for small ( ) 00,0 →=≥ xasxtxfandtandx  uniformly in t, t> 0.Then the zero 

solution of x = Ax + f(x,t) is uniformly asymptotically stable. 
Theorem (Descartes’ rule of sign [2]) 

The number of positive zeros of polynomial with real coefficients is either equal to the number of 
variations in sign of the polynomial or less than this by an even number. 

We are now in a position to propose the following theorems: 
Theorem 3.1 

The zero solution of the infected-free equilibrium is asymptotically stable if 10 <R  and if r < α 

.Otherwise the zero solution is unstable. 
Theorem 3.2 

The zero solution of the infected-free equilibrium is unstable if 10 fR  

Theorem 3.3 
If maxmax rTsrT ββα =+ , then the equilibrium point A* is uniformly asymptotically stable. 
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 Let r=α .If maxmax rTsrT ββα >+  and if r1 > 0, r2 > 0, r3 > 0, then the equilibrium point A* is 

uniformly asymptotically stable. 
Theorem 3.5 

Let r4  > 0, r5>0 and r6 > 0, then the infection equilibrium A* is asymptotically stable. 
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Theorem 3.6 

If Ro >1 and( ) ( )( )srrTrkNkNTr +−>+ αββγ max
2

max  then A* is locally asymp- 

 
 
 
ptotically stable. 
We now prove the theorems. 
Proof of Theorem 3.1 

By (2.1), the Jacobian matrix at A0 , 
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Now  ,r >0. So if 10 <R , the number of variations in sign is zero. Hence all 

eigenvalues are negative. Therefore A0 is uniformly asymptotically. 
Proof of Theorem 3.2 

If R0 >1, the from the proof of theorem 1, ( ) ( )( ) 010
2 >−−++ Rβγγβλλ , ,r >0 

implies that the number of variations in sign is 1. So J (A0) has a positive root. Hence A0 is unstable. 
Proof of Theorem 3.3 

The Jacobian of the matrix of (2.1) at A* translated to the origin is 
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Proof of Theorem 3.4: 

If r=α . ri >0,i=1,2,3 and if maxmax rTsrT ββα >+  then J(A*) translate to the origin is 
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The eigenvalue is obtained by satisfy .0321
23 =+++ rrr λλλ   The number of variations in sign is zero. 

Clearly λ=0 is not a solution if we replace λ by - λ the number of variation in sign is 3. Hence all the 
eigenvalues have negative real parts. Hence A* is uniformly asymptotically stable. 
 
 
 
Proof of Theorem 3.5: 

The eigenvalues of J(A*) translated to the origin satisfy .0654
23 =+++ rrr λλλ   If r4 > 0, r5 > 0 and r6 > 

0, then as in theorem 3.4 all the eigenvalues are negative and then A* is asymptotically stable. 
Proof of Theorem 3.6 
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( )rskN −> αγ .  Therefore 03 >r .  Hence A* is locally asymptotically stable.  

 
4.0 Numerical solution 
4.1 Numerical solution of infection free equilibrium 

 
Figure 1: Graph of X (uninfected T cells), T (infected T cells) and V (HIV virus) against time at r =0.05,  α = 0.02, β = 0.3 and γ = 2.4 

 
4.2 Numerical solution of infection equilibrium 
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Figure 5: Graph of y (uninfected T cells),  
z (infected T cells) and w (HIV virus) against time at 

r  = 10,  α = 0.02, β = 0.3 and γ = 2.4 
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Figure 2: Graph of y (uninfected T cells), z (infected T 
cells) and w (HIV virus) against time at r  = 0.05,  α = 0.02, 

β = 0.3 and γ = 2.4 

Figure 3: Graph of y (uninfected T cells), z (infected T 
cells) and w (HIV virus) against time at r  = 0.08,  α = 0.02, 

β = 0.3 and γ = 2.4 

Figure 4: Graph of y (uninfected T cells),  
z (infected T cells) and w (HIV virus) against time at 

r  = 3,  α = 0.02, β = 0.3 and γ = 2.4 
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Figure 6: Graph of y (uninfected T cells),  

z (infected T cells) and w (HIV virus) against time at 
r  = 0.05,  α = 0.1, β = 1.1 and γ = 3.2 

Figure 7: Graph of y (uninfected T cells),  
z (infected T cells) and w (HIV virus) against 
time at r  = 0.8,  α = 0.1, β = 1.1 and γ = 3.2 
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4.3 Numerical solution for infection equilibrium at maxmax rTsrT ββα =+  
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Figure 8: Graph of y (uninfected T cells),  
z (infected T cells) and w (HIV virus) against 

time at r  =3,  α = 0.1, β = 1.1 and γ = 3.2 

Figure 9: Graph of y (uninfected T cells),  
z (infected T cells) and w (HIV virus) against 

time at r  =10,  α = 0.1, β = 1.1 and γ = 3.2 

Figure 10: Graph of y (uninfected T cells),  
z (infected T cells) and w (HIV virus) against time at 

maxmax rTsrT ββα =+  r  =0.05,  α = 0.02, β = 0.3 

and γ =2.4 

Figure 11: Graph of y (uninfected T cells),  
z (infected T cells) and w (HIV virus) against time at 

maxmax rTsrT ββα =+  r  = 0.8,  α = 0.02, β = 0.3 

and γ =2.4 
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5.0 Discussion of result 

The infection-free equilibrium of (2.1) is stable if 10 <R  and r < α.The infection free 

equilibrium of (2.1) is unstable if 10 >R .The infection equilibrium (2.1) is asymptotically stable if

maxmax rTsrT ββα =+ . Also if r=α , the zero solution of the infection equilibrium (2.1) is 

asymptotically stable if maxmax rTsrT ββα >+ , r1 > 0, r2 > 0, r3 > 0. If Ro > 1, 

( ) ( )( )srrTrkNkNTr +−>+ αββγ max
2

max  then the infection equilibrium (2.1) is locally and 
asymptotically stable.  
 
 
 

Figure 1 shows the stability of the infection free equilibrium, in figures 2, 3, and 4, at α (turn over 
rate of uninfected T cells) =0.02, β(turn over rate of infected T cells) = 0.3 and γ (turn over rate of virus 
particles) =2.4, as r which is the rate at which T cells multiply through mitosis increases the rate at which 
the virus infects the uninfected T cells increases and the infection T cells increases. The figures show the 
unstable nature of the infection equilibrium, in figure 5, at a particular time the infected T cells (z) and 
virus (w) keep on escalating at a constant rate. In figures 6, 7, 8 and 9 as α, βand γ are increased, we 
observed that the infection rate is likewise increased. The graphs also show the unstable nature of 
infection equilibrium. While figures 10, 11, 12 and 13 show the asymptotic behavior of the infection 
equilibrium as maxmax rTsrT ββα =+ . In these figures 10-13, as r increases, the earlier the infection T 

cells (z) and HIV virus (w) got eradicated and the uninfected T cells increases. 
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Figure 12: Graph of y (uninfected T cells),  
z (infected T cells) and w (HIV virus) against 

time at maxmax rTsrT ββα =+  r  = 3,  α = 

0.02,  β = 0.3 and γ =2.4 

Figure 13: Graph of y (uninfected T cells),  
z (infected T cells) and w (HIV virus) against 

time at maxmax rTsrT ββα =+  r  = 10,  α = 

0.02, β = 0.3 and γ =2.4 
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6.0 Conclusion 
 In this paper, we modified an existing HIV/AIDS model. We investigated the characteristic 
equation and discussed the stability of equilibrium points that were not previously considered. 
 We formulated stability theorems and lemmas based on Descartes rules of signs. These lemma 
and theorems allowed us to discuss the nature of stability of the equilibrium points when no numerical 
values are given to the associated parameters. 
We solved existing characteristics equations numerically using realistic values for the parameters and we 
interpreted the graphs that resulted from the numerical solution. 
 The stability criteria showed that if drugs could be procured to satisfy the criteria, we may be in a 
position to stem the spread of AIDS. 
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