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Abstract

We analyze a mathematical model that describes HiWection of
CD4' T cells. We are interested in the effect of a $haaidition of infection
on an equilibrium state. Using Rene Descartes’ theof solutions, we show
that if the so called basic reproduction numbery R 1, the infection will
eventually die out, but if R> 1, then the infection will lead to full blown
AIDS. In either case Ris important in the eventual growth of the disease

1.0 Introduction

The Human Immunodeficiency Virus (HIV) mainly targets a o§&D4T cells. Chronic HIV
infection causes gradual depletion of the CD4ell pool, and thus progressively compromises the host's
immune response to opportunistic infections, leading to a Acquireduta Deficiency Syndrome
(AIDS). For this reason, the count of CDR cells is a primary indicator used to measure progresgion
HIV infection. In a normal person, the level of CD4cells in peripheral blood is regulated at a level
between 800 and 1200rimSeveral mathematicians have proposed models to describe theoin
dynamics of T cell and HIV interaction see [1, 4, 5, 6, 7, and 3].iicpkar Wang and Li [7] proposed
the following model

d—Tzs—aT+rT{1—T+T J—kVT (1.1)
I _wr-pr (1.2)
dt

v R
P NBT - W (1.3)

where

s. the constant production rate at which the body produces” @Deklls from precursor in the bone
marrow and thymus,

o: natural turn over rate of uninfected T cells,

r: rate at which T cells multiply through mitosis,

T: concentration of the susceptible CD4cells,

Tree Maximum level of CD4T cell concentration in the body,
T*: the concentration of infected CDZ cells by the HIV viruses,
V: free HIV virus particles in the blood,

[ natural turn over rates infected T cells,

¥, natural turn over rates of virus particles,
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Kvt: describes the incidence of the HIV infection of health CD4ells wherek >0 is the infection rate,
N: virus particles produced by infected Cb4cell during its life time. Perelson and Nelsoh [&placed equation
dr T
(1.1) by —=s-aT + rT(l——j -kVvT (1.4)
dt max
and retained (1.2) and (1.3). This is due to tloe aat the global dynamics of (1.1)-(1.3) and {1(1.2) and (1.4)

have not been fully established in literature. B® itesearch goes on. It is on this basis that wepaposing the
following model:

2.0 Mathematical formulation

*

T

A model of HIV infection similar to (1.1) but usireylogistic growthrT(l—T—] for infection CD4 T cells is
max

proposed in this paper. Thus the model is

0
d—T:s—aT+rT(1—TT—j—kVT A

dt max

dTt 0 >

e =KkKT - 48T (2.1)
dv

— =N@T"-yV

at BT -y J

3.0 Method of solution
3.1 Equilibria points

S
LetX=———T, then (2.1) becomes

a-—r
g g
d—Xz—(a—r)X+ rst _IXT—, _Kvs _KVX
dt (@-Tmax Tmax (@-r)
O
daT S 0
=KV - kvX - 31
dt (a-r) AT 1)
av O
—=N A%
il L
In matrix notation (3.1) becomes
dX rs ks O
usl _ — XT
dt_ T @ T @1 x|k
max
dT_ = 0 — lB L TD + — kvX (32)
dt (a-r)
av. 0 NB -y VY 0
dt
_ - _ _ daT” av _ _ _
We now find the equilibrium points by settlngd—t :E:EZO and solving the three simultaneous equations.

The system of equations yield two equilibria points
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A= (0,0, 0) andall= ( ksN-yar +yr  (ksN-ya + p)Tmax  (ksN-yar + V)TmaxN,Bj |
kN(a -r) W +KTmaxNB (i +KTmaxNB)y

Aois infection free, while Ais the infection equilibrium. The basic reproduction paramesés &fined

3.2 Nature of the equilibrium points

We shall need the following theorems in the analysis of theaafuithe equilibriums points. The
two theorems are already in the literature but we sla# sind prove new theorems that could be derived
from the theorems.
Theorem (Perron [1])

Let x = Ax + f(x,t) where the matrix A has all eigenvalues with negativereal parts. Let f bereal

and continuous for small ||x|and t=0and f(xt)=0|x| as|x| -~ O uniformlyint, t> 0.Then the zero

solution of x = Ax + f(x,t) is uniformly asymptatically stable.
Theorem(Descartes’ rule of sign [2])
The number of positive zeros of polynomial with real coefficients is either equal to the number of
variationsin sign of the polynomial or less than this by an even number.
We are now in a position to propose the following theorems:
Theorem3.1

The zero solution of the infected-free equilibrium is asymptotically stable if Ry <1 andifr < o
.Otherwise the zero solution is unstable.

Theorem3.2
The zero solution of the infected-free equilibriumis unstableif Ry > 1
Theorem3.3
If BaT . +s =[BT __, thentheequilibriumpoint A" is uniformly asymptotically stable.
Theorem3.4
Letr, = B+ ry rye ksN
KNT, .. y

r2=kSN(,B+ ry +yJ+('B+ ry JV_V(ﬂTmax(a‘r)”S)

y KN Tmax KNTmax)  Tmax(r +kBNTmax)
r3= st(,8+ 14 J— ABTmaxa —r)+ rs)( A kN,Bj

KNTmax M +KkBNTmax  \ Tmax

Leta =r.IfBaT, .+ > BT . andifr;>0,r,> 0, r3> 0, then the equilibrium point A* is
uniformly asymptotically stable.
Theorem 3.5 )
Let ry > 0,rs>0 andrg> 0, then the infection equilibrium A" is asymptotically stable.
r k
where 1, =[G+ 4 +y+ SN
KNT, y

o= ksN (,8+ ry +yJ+('B+ ry Jy_ ¥ (BTmax(@ = 1) +rs)
y kN Tmax KNTmax)  Tmax(# +kBNTmax)
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r6=kNS[,3+ 24 j_y(ﬁTmax(a—r)Hs)( z +kN[3J
KNTmax M +KkBNTmax  \ Tmax
Theorem3.6

If R, >1 anc(yr + ,BkNTmaX)Z > rkN (,BTmax(a’ - r)+ sr) then A* islocally asymp-

ptotically stable.
We now prove the theorems.
Proof of Theorem3.1
By (2.1), the Jacobian matrix Ag,

iy rs ks

(@=r) (@-T max (a-r)

IAo)=| O A
0 NS -y

So the eigenvalues are given by(a - r)—/l)()l2 +(B+y+ ﬁy—wj =0,ie

(@)
(~la=r)=Af 22 +a(8+ 1)~ R0 1) =0

A =—(a-r) and A2+ A(B+y)- BY{Rg-1)=0
Now >0, y>0 ,r>0.SoifR, <1, the number of variations in sign is zerofiHence all

eigenvalues are negative. Therefoggsfuniformly asymptotically.
Proof of Theorem3.2

If Ro >1, the from the proof of theorem()ﬁ +/1(,8 + y)— ,GV(RO —1)) >0, >0, y>0,>0
implies that the number of variations in sign is 1. Sop) l&s a positive root. Hence & unstable.

Proof of Theorem3.3 . [ |
The Jacobian of the matrix of (2.1) atthanslated to the origin is
ks ry Y
14 kKNT max N
J(AD): kﬂTmaX(_s'(N"'W_}'f) _ﬁ 1
(I = KBNTmax )y N
0 NS -y
—-r)+
So if kN(’BTmaX(a r) sr) =0. Then the eigenvalues afg = —kﬂ, A== - 4 ,
(yr + kﬂ\leax) y kNTmay
A3 =-y. The results follow since all the eigenvaluesragative. |

Proof of Theorem3.4:

If a=r.r>0,=1,2,3andiB3aT, . +s > AT then JA) translate to the origin is

ax

— kSN s e
V4 kNT max N
ksNr -B- Ty 0
yf+k,5NT max KNT max
0 NS -y
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The eigenvalue is obtained by satisﬁw /]Zrl +Arp+r3=0. The number of variations in sign is zero.

Clearly A=0 is not a solution if we repladeby - A the number of variation in sign is 3. Hence a#l th
eigenvalues have negative real parts. Hence Anifeumly asymptotically stable.
H

Proof of Theorem3.5:

The eigenvalues of A() translated to the origin satisf)jl?' + /]2r4 +Ar5+r16=0. Ifry>0,rs> 0 andrg>

0, then as in theorem 3.4 all the eigenvalues egative and theA’ is asymptotically stable.
Proof of Theorem3.6

IfR,> 1 an<{yf + ,3|(N-|_,mjlx)2 > rkN (,BTmaX(a - r)+ Sf) . The eigenvalues are given by

» +)I2r4 +Ar5+1g = 0. Clearlyr, >0.
ksN ry ry yr(,BT (a—r)+rs)
Now r, = - max .
r5 y (ﬁ ' kN Tmax * y] * (ﬁ * kN Tmax]y Tmax(yr + k[;NTmax)
so 1500 YBNT,, +ryf —kNp (BT, (a~r)+rs)>0,
But  (BNT _ +ry) >kNpr (BT, (a—r)+rs) >0. Hencers>0.

Also . = kNS(ﬁJr k|\]r'|}'/ j_ V(ﬁ;mi_x(&";_lr_)*' rs)(Tyr + kN’gj = sGkN —ﬂy(a - I’). Now R,> 1 implies

SkN > y(a - r). Thereforer; > 0. Hence Alis locally asymptotically stable.

4.0 Numerical solution
4.1 Numerical solution of infection free equilibrium

30

o a 8 12 16 20

Figure 1: Graph ofX (uninfected T cells), T (infected T cells) andMY virus) against time at =0.05, o = 0.02,3 = 0.3 andy = 2.4

4.2 Numerical solution of infection equilibrium
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Wurinfected T calls)z (irfected T cells) andw(HVvins)
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y(uninfected T cells),z (infected T cells) and w (HIV virus)

0

Figure 2: Graph ofy (uninfected T cells)z (infected T
cells) and w (HIV virus) against time at= 0.05, o = 0.02,
f=03and =24
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Figure 4: Graph ofy (uninfected T cells),

z(infected T cells) and w (HIV virus) against tinte a

r =3,a=0.02p=03and =2.4
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Figure 6: Graph ofy (uninfected T cells),
z (infected T cells) and w (HIV virus) against tinte a

r

=0.05,a=0.1p=1.1and = 3.2
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Figure 3: Graph ofy (uninfected T cells)z (infected T
cells) andw (HIV virus) against time at = 0.08, a = 0.02,
f=03and =24
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Figure 5: Graph ofy (uninfected T cells),
z (infected T cells) and w (HIV virus) against tinte a
r =10,0=0.028=03andy =24

Figure 7: Graph ofy (uninfected T cells),

z(infected T cells) and w (HIV virus) against
time atr =0.8,a=0.1,p=1.1and =3.2
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Figure 8: Graph ofy (uninfected T cells),
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Figure 9: Graph ofy (uninfected T cells),

z(infected T cells) and w (HIV virus) agains z(infected T cells) and w (HIV virus) against

time atr =3, 0 =0.1,p = 1.1 andy = 3.2

Graph of y(uninfected T cells),z (infected T cells) and w(HIV vinus)
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Figure 10: Graph ofy (uninfected T cells),
z(infected T cells) and w (HIV virus) against tinte a

ﬂaTmax TS = ﬁrTmax r =0.05,¢=0.023=0.3
andy =2.4

time atr =10, o = 0.1, = 1.1 andy = 3.2

Numerical solution for infection equilibrium at faT, . +s = BT,
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Figure 11: Graph ofy (uninfected T cells),
z (infected T cells) and w (HIV virus) against tinte a

ﬂaTmax TS = ﬁrTmax r =08,0=002=03
andy =2.4
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Figure 12: Graph ofy (uninfected T cells),
Z (infected T cells) and w (HIV virus) against

timeatfaT, , +S =T =3, a=

max ax

0.02,8 = 0.3 andy =2.4

Figure 13: Graph ofy (uninfected T cells),
Z (infected T cells) and w (HIV virus) against

timeatBaT  +S =0T, r =10,0=
0.02,8 = 0.3 andy =2.4

5.0  Discussion of result

The infection-free equilibrium of (2.1) is stablé Ry <1 andr < a.The infection free
equilibrium of (2.1) is unstable By >1.The infection equilibrium (2.1) is asymptoticaltable if
BaTmayx + S = B Tmax- Also ifa =r, the zero solution of the infection equilibrium.XP is
asymptotically stable BaTmax +S>BTmax, . > 0, r, > 0, r3 > 0. If R, > 1,

() + BNTmay)? > TkN(BTmax(@ = 1)+ sr) then the infection equilibrium (2.1) is locally dan
asymptotically stable.

Figure 1 shows the stability of the infection fiesuilibrium, in figures 2, 3, and 4, at(turn over
rate of uninfected T cells) =0.0R(turn over rate of infected T cells) = 0.3 anfturn over rate of virus
particles) =2.4, as r which is the rate at whictells multiply through mitosis increases the rdtevaich
the virus infects the uninfected T cells increamed the infection T cells increases. The figuresisthe
unstable nature of the infection equilibrium, iguie 5, at a particular time the infected T cetlsgnd
virus (w) keep on escalating at a constant ratdigires 6, 7, 8 and 9 as Pandy are increased, we
observed that the infection rate is likewise insegh The graphs also show the unstable nature of
infection equilibrium. While figures 10, 11, 12 ad8 show the asymptotic behavior of the infection
equilibrium asBaT, ., +s = BT, ... In these figures 10-13, as r increases, theeedhe infection T

cells (z) and HIV virusw) got eradicated and the uninfected T cells in@eas
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6.0  Conclusion

In this paper, we modified an existing HIV/AIDS d&. We investigated the characteristic
equation and discussed the stability of equilibrjpmints that were not previously considered.

We formulated stability theorems and lemmas base@descartes rules of signs. These lemma
and theorems allowed us to discuss the natureabflisy of the equilibrium points when no numerical
values are given to the associated parameters.

We solved existing characteristics equations nusallyi using realistic values for the parameters aad
interpreted the graphs that resulted from the nioalesolution.

The stability criteria showed that if drugs coblel procured to satisfy the criteria, we may be in a
position to stem the spread of AIDS.
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