Journal of the Nigerian Association of Mathematical Physics
Volume 11 (November 2007), 87 - 94
© J. of NAMP

The effects of permeability and radiation on the stbility of plane Couette-
Poiseuille flow in a porous medium

A. T. Ngiangia
Department of Physics,
Rivers State College of Education, Rumuolumeni
Port Harcourt, Nigeria

Abstract

A study on the effects of permeability and radiation on
Couette-Poiseuille flow stability was carried out. Solutions to the
governing hydrodynamic equations was developed using the
method of undetermined coefficients. On the basis of linear theory
using analysis of normal modes, it was observed that both
parameters, independently affect the stability of Couette-Poiseuille
flow but that of radiation is prominent at high wave numbers and
Reynolds number regime.

1.0 Introduction

Couette flow results when two plates moving relatioe each other cause a flow of
fluid between them whereas Poiseuille flow is obse as the steady laminar flow of an
incompressible fluid between two parallel platesb8ity of Couette flow problems is widely
accepted to have started with Rayleigh [11] and suece the trend has been that of steady
increase in different methods and configurations1, 15 ]. If we consider literatures of
poiseuille flow [5, 9, 10, 13], the story is noffdient perhaps due to the very similarity of the
two types of flows. A study of the combination béttwo flows also commenced. Corenflos et
al [4] carried out an experimental and numericatlgtof a plane couette- poiseuille flow as a
test case for turbulence modeling from experimetidizd available for both the developing and
developed flows. Spurk [12] also studied Couetis€uille flow by developing general

solution wherein he distinguished between them diting kp =0 for Couette flow, U=0k ,

# O for poiseuille flow and & O, k ;# O for Couette- Poiseuille flow.

Recently, an excellent investigation on the Anamgrdistortions coupled with plane
Couette —Poiseuille flows of nematic polymers iacaus solvents: Morphology in molecular
orientation, stress and flow was examined by Zhod Borest [16] to model and simulate
processing-induced heterogeneity in rigid, rod e-lilematic polymers in viscous solvents .In
the study so far highlighted, it is apparent thiaé tcombined effect of radiation and
permeability as often been neglected whereas ifgolitance in structural Engineering,
Geology, and Geophysics cannot be over-emphasHedce, in this paper, our goal is to
investigate the stability or otherwise of CouettasRuille flow in the presence of radiation and
permeability at varying Reynolds number regime.

2.0 Mathematical formulation
The study under consideration simplify the hydraaiyit equations of continuity,
Navier-Stokes and energy respectively as

Journal of the Nigerian Association of Mathematical Physics Volume 11(November 2007)87 - 94
Permeability and radiation in porous medium A. T.Ngiangia J of NAMP



p _

=-0. 2.1
o o 2.1)
p%—\t/:—mmmzv + pg 2.2)
C;—I =a202T (2.3)
where P is pressure of fluigy is fluid density, g is acceleration due to gravity is absolute
viscosity andt is temperature. Others ar@z[LJ thermal diffusivity andl] is a del
v

operator. Invoking the radiative [3] and perme&pili8] terms, transform (3.2) and (2.3)
respectively.

o - ops s pg Ly (2.4)
ot K
c;—-[:aZDZT +52(T -Tg) (2.5)
where v is kinematic viscosityK is permeability of the medium under consideratang J°

is defined asd? = 4f(aK* g—_?de*, B is Planck’s functiong . is absorption coefficient
0

andk* is frequency of radiation.

3.0 Perturbation
Denoting the disturbance in the velocity, tempawatand pressure field by

V'=V-V,T'=T-T,,and,P'=P - p, (3.1)
where subscript e denotes equilibrium positionw# put (3.1) in (2.1), (2.4) and (2.5) and
neglect all terms greater than unity while alsosidering the Z-axis as the direction of flow,
we obtain the following linearized equations

ov'

LAY, 3.2
3z’ (3:2)
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R R (33)
1 2 1
A _ 2971 | 52(1-1) (3.4)
dt 922

4.0 Non-dimensional analysis
Applying the following dimensionless quantities:

. ' 2,2
z2=2p= a2
o v
2 2
KO:U'Ud ,V:\L’ﬁ:a_,
0 U Teo
TT
g:gd1 = O,
v2 T-Tz
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vd t

to (3.2), (3.3) and (3.4) results in
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5.0  Analytical solution
If we assume a solution of the form
6 = AexpAZ (5.2)
then, we arrive at the feasible solution aftertibandary conditioﬂ(O = O) has been
imposed, as

a 05
6(z)= CSin(E) z (5.2)
whereC is a constant. Employing the boussinesg approxomat
Do ==p,E(T - T,) (5.3)

where, Ap is change in fluid densityp, is fluid density at some properly chosgp,Tq is

temperature at whictp = p, and E is coefficient of volume expansion. Dimengss form
of (5.3) results in
Ap =-p,EO (5.4)
where p is the perturbed fluid density. Substituting4}5in (5.2) and the overall in (4.2)
results in
P _ FRY,

05
-1 .| a
—=Re ~——=-9gpoC sm(—j Z-KgV (5.5)
0Z 0z 2 B

If we take pgEgC = H and assumégg =-Kp (constant), then (5.5) takes the form
2 05
9%V _ReKgV =ReH sin[gj Z-ReKyp (5.6)
922 B
The solution of (5.6) is

05
V(z)=Cq cosHReK )22z + Co sinh(ReK o) 927 + _ ReH sin(aj z+-P  (57)
a K
_E+ ReKO 0

Assuming that the fluid velocity at the wall of thkates is equal to the wall velocity,

then the boundary condition is satisfied by
V(0) =0,v(d) =V (5.8)
Applying the boundary conditions (5.8) gives th&igon as

K K
V(z)=-—P cosh(Rek )05z +|v - —ReH " P lgnh(Rek )52
Ko -9 +Reky KO
g (5.9)
05
K
+ 7aReH sin(a] Z+—KIO
-~ +ReKq 0
B
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For Couette flowK ;=0 in (5.9). For Poiseuille flowy = 0, K p#0 in (5.9). (5.9) can be
written in parts as

K K
V(z)=-—L cosi{ReK)%®nz +— forn=2, 4, 6,... (5.10)
Ko Ko
and
K 05 g
V(Z)=+V - aREH ——P lsinh{Rek g)%®nz + HR;H sin[ﬁj nZ+—P
-9 +Reky KO -9 4 ReKg Ko
B B
for,n=135-- (5.11)

6.0  Analysis into normal modes

Following Bestman [1] and Bestman and Opara [2],ewamine the stability of these
modes individually. The analysis can be made ims$eof two dimensional periodic wave
numbers. Thus we assign to all quantities desaithie perturbation oK, Y, andt in the form

expli(KxX +K yY)+ 1t] (6.1)

05
whereT is the time constant, ar(d( 2x + K%) is given ask ,the resultant wave number of

2
the disturbance. Employing the non-dimensionalaldesa = x d, g = zd_ we write
K
(v.6,P)=(v(2).6(z).P(z))expi(Kx X + KyY)+1t] ~
2
2.9~ _ .2
9z2
6.2
s 92 g2 > (6.2)
X2 oay2
d
D=—
dz J
If we put (6.2) in (2.4) and (2.5) following Hockifig] and eliminate pressure, we will obtain
[05—(02 ~a? —KOH(DZ —azjv - —Ra%6 6.3)
v
and
{J—(Dz—az—ﬂﬂﬁzv (6.4)
B
Coupling (6.3) and (6.4) following Opara [2]
{05 ~(p?-a?- KO)}(DZ —az{a—(Dz -a’ —%He = -Ra’d (6.5)
v

d2
wherea is the resultant dimensionless wave number anegﬁLE— is the Rayleigh number.
v

To find the critical value of R as a function of a veég =0 and (6.5) reduces to
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Following Hocking [7], the proper solution fét appropriate for the lowest mode is

6 =Asin7Z (6.7)
If we put (6.7) in (6.8) and after simplificatioresults in
{—(772 +a +K0)(n2 +a2)(ﬂ2 +a? +%H:—Ra2 (6.8)

7.0 Results
K,=2K;=,X=1-5V =1H =1
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Figure 1: The dependence of the velocity on boghdinectionX and the Reynolds’ number Re.
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Figure 2: The dependence of the Rayleigh numbé¢h@mvave number.
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Figure 3: The dependence of the Rayleigh numbéhemave number wit , kept constant andr
varying.
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Figure4: The dependence of the Rayleigh numbehemvave number wittK , varying anda kept

constant

Figure 1. Shows that at any fixed Reynolds’ numipeesence of permeability and radiation,
altered the mean curve of the theoretical desonptf Couette- Poiseuille flow. Figure 2
shows stability at small wave numbers regime<&5) with Kg = 0.2 anda = 04, however

the situation is reversed at high wave numbel@ with Kg = 0.2 and radiation increased to

20.5. Also at high wave number with=  G&hd permeability increased up to 10 as shown in
Figures 3 and 4 respectively, are in agreement thighwork of Hassard et al [6] and Takhar et
al [14]. Analysis of Figures 3 and 4 also showg tha effect of radiation is more prominent
than permeability at progressively high wave nundred corresponding low Rayleigh number.
It was also observed that at high Reynolds’numiie>B000) and wave numberx20),
instability sets in as the fluid flow progressesha presence of permeability and radiative heat.

8.0  Conclusion

To demonstrate stable Couette-Poiseuille flow, ubhotwo parallel plates in a porous
medium permeability and differential temperaturestrioe put into consideration. Much of the
interest in studying these flows has come fromdiserepancies that exist between the critical
Reynolds’ number computed for linear instabilitgr ffully non linear stability and those
observed experimentally. Effort is also being mamleonsider the hydrodynamic equations in
cylindrical coordinate system for the study whére geometry is cylindrical, which appears to
be most suitable owing to the boundaries of the field in such configuration.
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