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Abstract 
 

A study on the effects of permeability and radiation on 
Couette-Poiseuille flow stability was carried out. Solutions to the 
governing hydrodynamic equations was developed using the 
method of undetermined coefficients. On the basis of linear theory 
using analysis of normal modes, it was observed that both 
parameters, independently affect the stability of Couette-Poiseuille 
flow but that of radiation is prominent at high wave numbers and 
Reynolds number regime.  

 
 
1.0 Introduction 

Couette flow results when two plates moving relative to each other cause a flow of 
fluid between them whereas  Poiseuille flow is observed as the steady laminar flow of an 
incompressible fluid between two parallel plates. Stability of Couette flow problems is widely 
accepted to have started with Rayleigh [11] and ever since the trend has been that of steady 
increase in different methods and configurations [6, 14, 15 ].  If we  consider literatures of 
poiseuille flow [5, 9, 10, 13], the story is not different perhaps due to the very similarity of the 
two types of flows. A study of the combination of the two flows also commenced. Corenflos et 
al [4] carried out an experimental and numerical study of a plane couette- poiseuille flow as a 
test case for turbulence modeling from experimental data available for both the developing and 
developed flows. Spurk [12]  also studied Couette-Poiseuille flow by developing general 
solution wherein he distinguished between them by setting pk =0 for Couette flow, U=0, k p  

0≠  for poiseuille flow and U ,0≠  k 0≠p  for Couette- Poiseuille flow. 

Recently, an excellent investigation on the Anchoring distortions coupled with plane 
Couette –Poiseuille flows of nematic polymers in viscous solvents: Morphology in molecular 
orientation, stress and flow was examined by Zhou and Forest [16] to model and simulate 
processing-induced heterogeneity in rigid, rod –like nematic polymers in viscous solvents .In 
the study so far highlighted, it is apparent that the combined effect of radiation and 
permeability as often been neglected whereas its importance in structural Engineering, 
Geology, and Geophysics cannot be over-emphasized. Hence, in this paper, our goal is to 
investigate the stability or otherwise of Couette-Poiseuille flow in the presence of radiation and 
permeability at varying Reynolds number regime. 

 
2.0 Mathematical formulation 

The study under consideration simplify the hydrodynamic equations of continuity, 
Navier-Stokes and energy respectively as  
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where P is pressure of fluid, ρ  is fluid density, g is acceleration due to gravity, µ  is absolute 

viscosity and t is temperature. Others are ,2
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ρ
 thermal diffusivity and ∇  is a del 

operator. Invoking the radiative [3] and permeability [8] terms, transform (3.2) and (2.3) 
respectively. 
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where υ  is kinematic viscosity, K is permeability of the medium under consideration, and 2δ  

is defined as ∫
∞
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Kαδ  B is Planck’s function, *Kα  is absorption coefficient 

and k* is frequency of radiation. 
 
3.0 Perturbation 

Denoting the disturbance in the velocity, temperature and pressure field by  
 

eee pPPandTTTVVV −=−=−= ',,','    (3.1) 

where subscript e denotes equilibrium position. If we put (3.1) in (2.1), (2.4) and (2.5) and 
neglect all terms greater than unity while also considering the Z-axis as the direction of flow, 
we obtain the following linearized equations  
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4.0 Non-dimensional analysis 

Applying the following dimensionless quantities: 
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to (3.2), (3.3) and (3.4) results in  
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5.0 Analytical solution 

If we assume a solution of the form    
ZA λθ exp=      (5.1) 

then, we arrive at the feasible solution after the boundary condition ( )00 =θ   has been 
imposed, as      
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where C is a constant. Employing the boussinesg approximation 
( )00 TTE −−=∆ ρρ     (5.3) 

where, ρ∆  is change in fluid density, 0ρ  is fluid density at some properly chosen T 0,0 T  is 

temperature at which 0ρρ =  and E is coefficient of volume expansion.  Dimensionless form 

of (5.3) results in    
θρρ E0−=∆      (5.4) 

where  ρ   is the perturbed fluid density.  Substituting (5.4) in (5.2) and the overall in (4.2) 
results in 
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If we take HEgC =0ρ  and assume pK
Z
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∂
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(constant), then (5.5) takes the form 
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The solution of (5.6) is  
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Assuming that the fluid velocity at the wall of the plates is equal to the wall velocity,  
 
 

then the boundary condition is satisfied by   
V(0) = 0, V(d) = V     (5.8) 

Applying the boundary conditions (5.8) gives the solution as 
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For Couette flow, K 0=p  in (5.9).  For Poiseuille flow, V = 0, 0≠pK  in (5.9).  (5.9) can be 

written in parts as  
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6.0 Analysis into normal modes 

Following Bestman [1] and Bestman and Opara [2], we examine the stability of these 
modes individually. The analysis can be made in terms of two dimensional periodic wave 
numbers. Thus we assign to all quantities describing the perturbation on X, Y, and t in the form  
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where τ  is the time constant, and 
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If we put (6.2) in (2.4) and (2.5) following Hocking [7] and eliminate pressure, we will obtain  
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Coupling (6.3) and (6.4) following Opara [2] 
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where a is the resultant dimensionless wave number and R
υ

α
k

Edg 2
=   is the Rayleigh number.  

To find the critical value of R as a function of a  we set 0=σ  and (6.5) reduces to  
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Following Hocking [7], the proper solution for θ  appropriate for the lowest mode is  
 

ZA πθ sin=       (6.7) 
If we put (6.7) in (6.8) and after simplification, results in  
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7.0 Results 
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Figure 1: The dependence of the velocity on both the direction X and the Reynolds’ number Re. 
 
 

 

 
Figure 2: The dependence of the Rayleigh number on the wave number.  
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Figure 3: The dependence of the Rayleigh number on the wave number with K 0  kept constant and α  

varying. 

 
Figure4: The dependence of the Rayleigh number on the wave number with 0K  varying and α  kept 

constant. 
 

Figure 1. Shows that at any fixed Reynolds’ number, presence of permeability and radiation, 
altered the mean curve of the theoretical description of Couette- Poiseuille flow. Figure 2 
shows stability at small wave numbers regime (0.1≤a≤5) with 2.00 =K  and 4.0=α , however 

the situation is reversed at high wave number (a≥10) with 2.00 =K  and radiation increased to 
20.5. Also at high wave number with 4.0=α  and permeability increased up to 10 as shown in 
Figures 3 and 4 respectively, are in agreement with the work of Hassard et al [6] and Takhar et 
al [14]. Analysis of Figures 3 and 4 also shows that the effect of radiation is more prominent 
than permeability at progressively high wave number and corresponding low Rayleigh number. 
It was also observed that at high Reynolds’number (Re>3000) and wave number (a20≥ ), 
instability sets in as the fluid flow progresses in the presence of permeability and radiative heat. 
 
8.0 Conclusion 

To demonstrate stable Couette-Poiseuille flow, through two parallel plates in a porous 
medium permeability and differential temperature must be put into consideration. Much of the 
interest in studying these flows has come from the discrepancies that exist between the critical 
Reynolds’ number computed for linear instability, for fully non linear stability and those 
observed experimentally. Effort is also being made to consider the hydrodynamic equations in 
cylindrical coordinate system for the study where the geometry is cylindrical, which appears to 
be most suitable owing to the boundaries of the flow field in such configuration.   
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