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Abstract 

 
In this short note we extend a result of Jahangiri and Farahmand [5] 

concerning functions of bounded turning to a more general class of functions 
 
 
1.0 Introduction 

Let C be the complex plane. Denote by A the class of functions: 

     L++= 2
2)( zazzf     (1.1) 

which are analytic in the unit disk }1||:{ <= zzE  

 In [5]Jahangiri and Faramand studied the partial sums of the Libera integral of the class B(β), 
which consist of functions in A satisfying 10,)(Re <≤>′ ββzf .  Functions in B(β) are called functions 
of bounded turning.  It is known that functions of bounded turning are generally univalent and close-
to0convex in the nit disk.  In particular they proved that the mth partials ums. 

    ∑
= +

+=
m

k

kzka
k

zzmF
2 1

2
)(     (1.2) 

of the Libera intergral 

     ∫= z dttfzF 0 )()(     (1.3) 

is also of bounded turning.  Their result was stated as: 
 
Theorem A. 

If 
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 Earlier and Owa [6] have proved that if f ∈ A is univalent in E, then the partial sum Fm(z) is 

starlike in the subdisk 
8
3|| <z , the number 

8
3  being the best possible. 

 The result of Jahangiri and Farahmand [5] naturally leads to inquisition about a more general 
class of functions (including B(β) as a special case), which was introduced in [7] by Opoola, has been 

studied extensively in [2]. This is the class )(βa
nT  consisting of functions f ∈ A which satisfy the 

inequality;  
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where α > 0 is real, 0 }),2,1,0{0(,10 L=∈<≤ NnnDβ  is the Salagean derivative operator defined as 

   ])(1[)](1[)( ′−=−= zfnDzzfnDDzfnD    (1.5) 

with )()(0 zfzfD =  and powers in (1.4) meaning principal values only.  Obverse that the geometric 

condition (1.4) slightly modifies the only given originally in [7] (see [2]).  Onverse also that the class B(β) 
corresponds to n = α = 1.   
 In a recent work we considered the generalized Bernardi integral operator given by 

   0,0 )(1)( >+∫
−+= cdtz atfct

cz

cazF αα
   (1.6) 

and sharpened and extended many earlier results concerning closure, under the integral, of several classes 
of functions.  In the present paper we define a concept of quasi-partial sums and follow a method of 

Jahagiri an Farahmand [5] to extend their result (Theorem A) to the class )(βa
nT . 

 As we noted in [1], the binomial expansion of (1,1) gives 
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where ak(α) is a polynomial depending on the coefficients of f(z) and the index α.  Hence 
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and we define the mth quasi-partial sums of the integral (1.6) as follows  
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 In the next section we state the preliminary results. 
 
2.0 Preliminary Results 

We will require the following lemmas. 
Lemma 2.1 [3] 
 Let 0 be a  real number and 1 a positive integer.  If A≤<− γ1 , then 
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The constant A = 4.5678018,… is the best possible. 
 
Lemma 2.2 

 For ,5678018.41, K=≤<−∈ AEz γ  
γγ +

−≥













∑
= + 1

11

1
Re

k k

kz
 

Proof 
Let 10rez =  where π≤<<≤ |0|0,10 r .  Then by De Moivre’s law and the minimum principle 

for harmonic functions ∑
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.  Hence by Abel’s Lemma [8, pg 6] 

and Lemma 2.1 above the conclusion follows.  Let P denote  
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the class of analytic functions of the form 
     K++= zczp 11)(     (2.1) 
normalized by p(0) = 1 and satisfy Rep(z) > 0 in E.  The next lemma concerns convolution of analytic 
functions with functions in P.  The convolution (or Hadamard product) of two power series 
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Lemma 2.3 [4] 
 Let p(z) be analytic in E and satisfy p(0) = 1 and 2

1)(Re >zp  in E.  For analytic function a(z) in 

E, the convolution p * q takes values in the convex hull of the image of E under a(z). 
 
3.0 Main Results 
Theorem 3.1 

 Let f(z) given by (1.1) be in the class )(βa
nT .  Then 
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Proof 

From (1.7) and the condition (1.4) we have 
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Also from (1.9) we have 
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where 
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Thus by Lemma 2.3 and the condition (3.1) the geometric quantities αα znd
zmFnD )(  takes values in 

the convex hull of q(E).  But 
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We know from (1.6) that α + c > 0.  Now suppose α + c ≤ 4.5678018…, then by taking l = m – 1 in 

Lemma 22, the real part of the series on right of (3.6) is greater than 1)1( −++− cα  so that 
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 Now observe that the real number 
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Thus only in this case it is clear Fm(z) belongs to some subclasses of the class )(βa
nT .  This completes the 

proof. 
 
Remark 
 For αα = 1, c= 0, the partial sums 
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of the integral 

    ∫
−= z dttftzF 0 )(1)(      (3.9) 

for each f ∈ Bn(1), belongs to the class Bn(1) in general.  More particularly, the partial sum (3.8) of the 
integral (3.9) of a function of bounded turning in the unit disk is also a function of bounded turning in the 
unit disk. 
 
4.0 Conclusion 
 In this paper we defined a new concept of quasi-partial sums of the generalized Bernard integral.  
We used the new concept to extend an earlier result of Jahangiri and Farahmand [5] concerning functions 
of bounded turning to a more general class of function. 
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