Quasi-Partial sums of the generalized Bernard integral of certain analytic functions

K. O. Babalola Department of Mathematics, University of Ilorin, Ilorin, Nigeria e-mail: ummusalamah.kob@unilorin.edu.ng

Abstract

In this short note we extend a result of Jahangiri and Farahmand [5] concerning functions of bounded turning to a more general class of functions

1.0 Introduction

Let *C* be the complex plane. Denote by *A* the class of functions:

$$f(z) = z + a_2 z^2 + \cdots$$
 (1.1)

which are analytic in the unit disk $E = \{z : |z| < 1\}$

In [5]Jahangiri and Faramand studied the partial sums of the Libera integral of the class $B(\beta)$, which consist of functions in A satisfying Re $f'(z) > \beta$, $0 \le \beta < 1$. Functions in $B(\beta)$ are called functions of bounded turning. It is known that functions of bounded turning are generally univalent and close-to0convex in the nit disk. In particular they proved that the *mth* partials ums.

$$F_m(z) = z + \sum_{k=2}^m \frac{2}{k+1} a_k z^k$$
(1.2)

of the Libera intergral

$$F(z) = \int_0^z f(t)dt \tag{1.3}$$

is also of bounded turning. Their result was stated as:

Theorem A.

If
$$\frac{1}{4} \le \beta < 1$$
 and $f \in B(\beta)$, then $F_m \in B\left(\frac{4\beta - 1}{3}\right)$

Earlier and Owa [6] have proved that if $f \in A$ is univalent in *E*, then the partial sum $F_m(z)$ is starlike in the subdisk $|z| < \frac{3}{8}$, the number $\frac{3}{8}$ being the best possible.

The result of Jahangiri and Farahmand [5] naturally leads to inquisition about a more general class of functions (including $B(\beta)$ as a special case), which was introduced in [7] by Opoola, has been studied extensively in [2]. This is the class $T_n^a(\beta)$ consisting of functions $f \in A$ which satisfy the inequality;

$$\operatorname{Re}\frac{D^{n}f(z)^{a}}{\alpha^{n}z^{a}} > \beta$$
(1.4)

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 67 - 70 Generalized Bernard integral of certain analytic functions K. O. Babalola *J of NAMP* where $\alpha > 0$ is real, $0 \le \beta < 1$, $D^n (n \in N_0 = \{0, 1, 2, \dots\})$ is the Salagean derivative operator defined as

$$D^{n} f(z) = D[D^{n-1} f(z)] = z[D^{n-1} f(z)]'$$
(1.5)

with $D^0 f(z) = f(z)$ and powers in (1.4) meaning principal values only. Obverse that the geometric condition (1.4) slightly modifies the only given originally in [7] (see [2]). Onverse also that the class $B(\beta)$ corresponds to $n = \alpha = 1$.

In a recent work we considered the generalized Bernardi integral operator given by

$$F(z)^{a} = \frac{\alpha + c}{z^{c}} \int_{0}^{z} t^{c-1} f(t)^{a} dt, \qquad \alpha + c > 0$$
(1.6)

and sharpened and extended many earlier results concerning closure, under the integral, of several classes of functions. In the present paper we define a concept of quasi-partial sums and follow a method of Jahagiri an Farahmand [5] to extend their result (Theorem A) to the class $T_n^a(\beta)$.

As we noted in [1], the binomial expansion of (1,1) gives

$$f(z)^{a} = z^{a} + \sum_{k=2}^{\infty} a_{k}(\alpha) z^{\alpha+k-1}$$
(1.7)

where $a_k(\alpha)$ is a polynomial depending on the coefficients of f(z) and the index α . Hence

$$F(z)^{\alpha} = z^{\alpha} + \sum_{k+2} \frac{\alpha + c}{\alpha + c + k - 1} a_k(\alpha) z^{\alpha + k - 1}$$
(1.8)

and we define the mth quasi-partial sums of the integral (1.6) as follows

$$F_m(z)^{\alpha} = z^{\alpha} + \sum_{k=2}^m \frac{\alpha + c}{\alpha + c + k - 1} a_k(\alpha) z^{\alpha + k - 1}$$
(1.9)

In the next section we state the preliminary results.

2.0 Preliminary Results

We will require the following lemmas.

Lemma 2.1 [3]

Let 0 be a real number and 1 a positive integer. If $-1 < \gamma \le A$, then

$$\frac{1}{1+\gamma} + \sum_{k=1}^{1} \frac{Cosk\theta}{k+\gamma} \ge 0$$

The constant A = 4.5678018,... is the best possible.

Lemma 2.2

For
$$z \in E, -1 < \gamma \le A = 4.5678018..., \operatorname{Re} \left(\sum_{k=1}^{1} \frac{z^k}{k+\gamma} \right) \ge -\frac{1}{1+\gamma}$$

Proof

Let $z = re^{10}$ where $0 \le r < 1$, $0 < |0| \le \pi$. Then by De Moivre's law and the minimum principle

for harmonic functions $\operatorname{Re}\left(\sum_{k=1}^{1} \frac{z^k}{k+\gamma}\right) = \sum_{k=1}^{1} \frac{r^k \operatorname{Cosk}\theta}{k+\gamma} > \sum_{k=1}^{1} \frac{\operatorname{Cosk}\theta}{k+\gamma}$. Hence by Abel's Lemma [8, pg 6]

and Lemma 2.1 above the conclusion follows. Let P denote

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 67 - 70 Generalized Bernard integral of certain analytic functions K. O. Babalola *J of NAMP* the class of analytic functions of the form

$$p(z) = 1 + c_1 z + \dots \tag{2.1}$$

normalized by p(0) = 1 and satisfy $\operatorname{Re}_p(z) > 0$ in *E*. The next lemma concerns convolution of analytic functions with functions in *P*. The convolution (or Hadamard product) of two power series $f(z) = \sum_{k=0}^{\infty} a_k b_k z^k$ and $g(z) = \sum_{k=0}^{\infty} b_k z^k$ (written as f^*g) is defined as $(f * g)(z) = \sum_{k=0}^{\infty} a_k b_k z^k$.

Lemma 2.3 [4]

Let p(z) be analytic in E and satisfy p(0) = 1 and $\operatorname{Re} p(z) > \frac{1}{2}$ in E. For analytic function a(z) in E, the convolution p * q takes values in the convex hull of the image of E under a(z).

3.0 Main Results

Theorem 3.1

Let f(z) given by (1.1) be in the class $T_n^a(\beta)$. Then

$$\operatorname{Re} \frac{D^{n} F_{m}(z)^{\alpha}}{\alpha^{n} z^{\alpha}} > 1 - \frac{2(1 - \beta)(a + c)}{(a + c + 1)}, \ \alpha + c \le 4.5678018...$$
(3.1)

Furthermore if $\beta \ge \frac{1}{2} \frac{(\alpha + c - 1)}{(\alpha + c)}$, then $F_m(z)$ belongs to some subclasses of the class $T_n^a(\beta)$

Proof

From (1.7) and the condition (1.4) we have

$$\operatorname{Re}\left\{1 + \frac{1}{2(1-\beta)} \sum_{k=2}^{\infty} \left(\frac{\alpha+k-1}{\alpha}\right)'' a_k(\alpha) z^{k-1}\right\} > \frac{1}{2}$$
(3.2)

Also from (1.9) we have

$$\frac{D''F_m(z)^{\alpha}}{\alpha''z^{\alpha}} = 1 + \sum_{k=2} \left(\frac{\alpha + k - 1}{\alpha}'' \frac{\alpha + c}{\alpha + c + k - 1} a_k(\alpha) z^{k-1} \right) = p(z)^* q(z)$$
(3.3)

where

$$p(z) = 1 + \frac{1}{2(1-\beta)} \sum_{k=2}^{\infty} \left(\frac{\alpha + k - 1}{\alpha} \right)^{n} a_{k}(\alpha) z^{k-1}, \qquad (3.4)$$

$$q(z) = 1 + 2(1 - \beta) \sum_{k=2}^{m} \frac{\alpha + c}{\alpha + c + k - 1} z^{k-1}$$
(3.5)

Thus by Lemma 2.3 and the condition (3.1) the geometric quantities $D^n F_m(z) \frac{\alpha}{d^n} z^{\alpha}$ takes values in the convex hull of q(E). But

$$\operatorname{Re} q(z) = 1 + 2(1 - \beta)(\alpha + c) \operatorname{Re} \left(\sum_{k=1}^{m-1} \frac{z^k}{\alpha + c + k} \right)$$
(3.6)

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 67 - 70 Generalized Bernard integral of certain analytic functions K. O. Babalola *J of NAMP* We know from (1.6) that $\alpha + c > 0$. Now suppose $\alpha + c \le 4.5678018...$, then by taking l = m - 1 in Lemma 22, the real part of the series on right of (3.6) is greater than $-(\alpha + c + 1)^{-1}$ so that

$$\operatorname{Re}\frac{D''F_m(z)^{\alpha}}{\alpha''z^{\alpha}} = \operatorname{Re}q(z) > 1 - \frac{2(1-\beta)(\alpha+c)}{(\alpha+c+1)}$$
(3.7)

Now observe that the real number $1 - \frac{2(1-\beta)(\alpha+c)}{(\alpha+c+1)}$ is nonnegative only for $\beta \ge \frac{1}{2} \frac{(\alpha+c-1)}{(\alpha+c)}$.

Thus only in this case it is clear $F_m(z)$ belongs to some subclasses of the class $T_n^a(\beta)$. This completes the proof.

Remark

For $\alpha \alpha = 1$, c = 0, the partial sums

 $F_m(z) = z + \sum_{k=2}^{m} \frac{a_k}{k} z^k$ (3.8)

of the integral

$$F(z) = \int_0^z t^{-1} f(t) dt$$
 (3.9)

for each $f \in B_n(1)$, belongs to the class $B_n(1)$ in general. More particularly, the partial sum (3.8) of the integral (3.9) of a function of bounded turning in the unit disk is also a function of bounded turning in the unit disk.

4.0 Conclusion

In this paper we defined a new concept of quasi-partial sums of the generalized Bernard integral. We used the new concept to extend an earlier result of Jahangiri and Farahmand [5] concerning functions of bounded turning to a more general class of function.

References

- [1] K. O. Babalola, On the generalized Bernard integral of certain analaytic functions defined by the Salagean derivative. *Submitted*.
- [2] K. O. Babalola and T. O. Opoola, Iterated integral transforms of Caratheodory functions and their applications to analytic and univalent functions. *Tamkang J. Math* **37** (4) (Winter 2006), 355 366.
- [3] G. Gasper, Nonnegative sums of cosines, ultranspherical and Jacobi polynomials. J. Math. Anal. Appl 26 (1969), 60 68.
- [4] A. W. Goodman, *Univalent functions*. Vol. 1, Mariner Pub. Co., Tampa, FFL., 1983.
- [5] J. M. jahangiri and K. Farahmand, Partial sums of functions of bounded turning, *J. Ineq. Pure and Appl. Maths.* 4(4) Art. 79 (2003), 1-9.
- [6] J.L. Li and S. Owan, On partial sums of Libera integral operator, J. math. Anal. Appl. 213 (1997) 444 434.
- [7] T. O. Opoola, On a new subcasss of univalent function. *Mathematica (Cluj)* (36) 59 No. 2 (1994), 195 200.
- [8] E.C. Titchmarsh, *Theory of functions*. 2nd Edition, Oxford University Press, 1976.