Diffeomorphism groups of connected sum of three products of spheres

Samuel Omoloye Ajala Department of Mathematics University of Lagos Akoka-Yaba e-mail: <u>unilagajala@yahoo.com</u>

Abstract

In this paper, we will prove that the order of the group $\tilde{\pi}_0(M_{3(p,q)}^+)$ is 3 times the order of the group $\pi pSO(q+1) \oplus \pi qSO(p+1) \oplus \theta^{p+q+1}$ where p < q and $M_{3(p,q)}^+ \approx Diff^+$ $(S^{p} \times S^{q} \# S^{p} \times S^{q} \# S^{p} \times S^{q})$. Diff⁺(M) is the diffeomorrphism of M onto itself which induces identity homomorphism on homology.

1.0. Introduction

Let *M* be an oriented smooth manifold and let Diff(M) denote the group of all orientation preserving diffeomorphisms of *M*. We say that two elements f_0 , $f_1 \in Diff(M)$ are pseudo-diffeotopic if there exists $F \in Diff(M \times I)$ such that $F(x,0) = (f_0(x),0)$ and $F(x,1) = (f_1(x),1)$, where $x \in M$.

The pseudo-diffeotopy classes of diffeomorphism on M form a group to be denoted by $\tilde{\pi}_0(Diff(M))$. Since pseudo-diffeotopic diffeomorphisms induce equal automorphism on homology then we have a well defined homomorphism, $\Phi: \tilde{\pi}_0(Diff(M)) \to Auto(H*(M))$ where Auto(H*(M)) denotes the group of dimension-preserving automorphisms of H*(M). We will denote by $Diff^+(M)$ the subgroup of Diff(M) consisting of all diffeomorphism $f \in Diff(M)$ which induce identity map on all

homology groups. It is easily seen that kernel of Φ denoted by $\ker(\Phi) = Diff^+(M)$.

For convenience, we will use the following notation.

$$\begin{split} &M_{3(p,q)} = Diff(S^{p} \times S^{q} \# S^{p} \times S^{q} \# S^{p} \times S^{q}) \\ &M_{2(p,q)} = Diff(S^{p} \times S^{p} \# S^{p} \times S^{q}) \\ &M_{(p,q)} = Diff(S^{p} \times S^{p}) \end{split}$$

We denote by $\tilde{\pi}_0(M_{3(p,q)}^+)$ the pseudo-diffeotopy class of diffeomorphism in $M_{3(p,q)}$ which induce identity automorphism on homology.

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 39 - 46Diffeomorphism groups of connected sumSamuel Omoloye AjalaJ of NAMP

In [5], Hajime Sato investigated $\tilde{\pi}_0(M^+_{(p,q)})$ and later applied it in the classification of certain classes of manifolds. In [1], this author investigated $M^+_{2(p,q)}$, thereby extending Hajime Sato's result to diffeomorphism of connected sum of two product of spheres.

In this paper, we will investigate the structure of the group $\tilde{\pi}_0(M_{3(p,q)}^+)$, p < q. This result will be

useful in the classification of some smooth manifolds. θ^n denotes the group of *h*-cobordism classes of homotopy *n*-sphere under the connected sum operation. # denotes connected sum along boundary as defined by J. Milnor and M. Kervaire [3].

2.0. Preliminaries

In this section, we will discuss some of known results and terminologies which will be needed to prove the theorems in the rest of the paper.

Let M^n be an *n*-smooth manifold. Suppose we have an embedding $f: S^p \times D^{q+1}$

 $\rightarrow M$, where p+q+1=n, and let $M_0 = M - \operatorname{int}(f(S^p \times D^{q+1}))$, i.e., we remove the interior of image $S^p \times D^{q+1}$ under the map f, we then replace it by $D^{p+1} \times S^q$ to have $M' = M_0 \bigcup D^{p+1} \times S^q$ by identifying $(x, y) \in S^p \times S^q \subset D^{p+1} \times S^q$ with $f(x, y) \in \partial f$ ($S^p \times f$)

 $D^{q+1}) \subset M$. We will say that we obtain M' from M by spherical modification of the form [p+1, q+1]. It is easily seen that by reversing the process, we can obtain M from M' by performing spherical modification of the form [q+1, p+1]. This procedure is due to J. Milnor [2].

Lemma 1.1

 S^{p+q+r} is diffeomorphic to $D^{p+q+1} \times S^{r-1} \bigcup S^{p+q} \times D^r$, where $2 \le p \le q \le r$ and id = identitymap: $S^{p+q} \times S^{r-1} \rightarrow S^{p+q} \times S^{r-1}$.

Proof

By [3] Milnor and Kervaire showed that a simply connected manifold is *h*-cobodant to a sphere if and only if it bounds a contractible manifold. Boundary of $(D^{p+q+1} \times D^r) = \delta(D^{p+q+1} \times D^r)$

 ${}^{q+1} \times D^r$) = $D^{p+q+1} \times S^{r-1} \cup S^{p+q} \times D^r$. However, these two copies of the boundary of $D^{p+q+1} \times D^r$ have $S^{p+q} \times S^{r-1}$ in common. Hence, $\partial (D^{p+q+1} \times D^r) = D^{p+q+1} \times S^{r-1} \bigcup_{id} S^{p+q}$

 $\times D^{r}$. It follows that $D^{p+q+1} \times S^{r-1} \bigcup S^{p+q} \times D^{r}$ is *h*-cobordant to S^{p+q+r} since it bounds the contractible manifold $D^{p+q+1} \times D^{r}$. Since $p+q+r \ge 6$ by [5], S^{p+q+r} is diffeomorphic to $D^{p+q+1} \times S^{r-1} \bigcup S^{p+q} \times D^{r}$.

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 39 - 46Diffeomorphism groups of connected sumSamuel Omoloye AjalaJ of NAMP

3.0 The Group $\pi_0(M_3^+(p,q))$

In [4], Hajime Sato showed that the order of the group $\pi_0(M_{(p,q)}^+)$ equals the order of the group $\pi_p SO(q+1) \oplus \pi_q SO(p+1) \oplus \theta^{p+q+1}$, where p < q. In [1], this author showed that the order of the group $\pi_0(M_{2(p,q)}^+)$ is twice the order of $\pi_p SO(q+1) \oplus \pi_q SO(p+1) \oplus \theta^{p+q+1}$. To investigate $M_{3(p,q)} = \pi_0 Diff^+(S^P \times S^q \# S^P \times S^q \# S^P \times S^q)$, we define a homomorphism $g: \pi_0(M_{3(p,q)}^+) \to \pi_p SO(q+1)$ defined as follows. Let $[f] \in \pi_0(M_{3(p,q)}^+)$, then $\Phi(f) =$ identity. $i(S^P \times \{x_0\})$ is the usual embedding of $S^P \times \{x_0\}$ into $= S^P \times S^q \# S^P \times S^q$ $S^P \times S^q$, where x_0 is a fixed point in S^q which is far removed from the connected sum. It follows that $i(S^P \times \{x_0\})$ represents a generator of the homology $= \pi_0 Diff^+(S^P \times S^q \# S^P \times S^q \otimes S^q \oplus S^q \times S^q) = Z \oplus Z \oplus Z$. Since $[f] \in \pi_0(M_{3(p,q)}^+)$, then $\Phi(f)$ is identity automorphism on $H*(S^P \times S^q \# S^P \times S^q)$. It follows that $f(S^P \times \{x_0\})$ is homologous to $i(S^P \times \{x_0\})$. Since p < q and by Hurewicz theorem, f and i are homotopic and in fact are diffeotopic. By the tubular neighbourhood theorem, f is diffeotopic to a map f'' such that $f''(S^P \times D^q) = S^P \times D^q$, where $f''(x, y) = (x, \alpha(f')(x) \cdot y)$ and $\alpha(f'') \colon S^P \to SO(q)$. If $i: SO(q) \to SO(q+1)$ is the inclusion map and $i*: \pi_p SO(q) \to \pi_p SO(q+1)$ is the induced homomorphism on the homotopy groups. We define $g[f] = i*\alpha(f'')$.

Lemma 2.1

g is well-defined.

Proof

Let $h \in [f] \in \pi_0(M_{3(p,q)}^+)$, then f and h are pseudo-diffeotopic in $M_{3(p,q)}^+$ and so $f^{-1}h \in M_{3(p,q)}^+$ is pseudo-diffeotopic to the identity. Let $g(f) = i*\alpha(f')$ and $g(h) = i*\alpha(h')$, then we have $f(x,y) = (x,\alpha(f')x \cdot y)$ and $h(x,y) = (x,\alpha(h')x \cdot y)$, where in each $(x,y) \in S^P \times D^q$ $\subset (S^P \times S^q)$ and h(x,y) = (x,y) and f(x,y) = (x,y) on $(S^P \times S^q)_2$ and $(S^P \times S^q)_3$. Thus, for $(x,y) \in S^P \times D^q$, $f^{-1}h(x,y) = (x,\alpha(f')^{-1}\alpha(h')x \cdot y)$. We define $f^{-1}h(x,y) = \begin{cases} (x,i*\alpha(f')^{-1} \cdot i*(h')(x) \cdot y) \text{ if } (x,y) \in (S^P \times S^q)_1 \\ (x,y) \text{ if } (x,y) \in (S^P \times S^q)_3 \end{cases}$ where the subscripts 1, 2 and 3 denote the first, second and third summands of $S^P \times S^q \# S^P \times S^q \# S^P \times S^q$

Since $f^{-1}h$ is pseudo-diffeotopic to the identity, it follows that $i*\alpha(f')^{-1} \cdot i*(h')$ is identity. Hence, $i*\alpha(f') = i*\alpha(h')$. Thus, g is well-defined.

Lemma 2.2

g is an homomorphism.

Proof

Let [f], $[h] \in \tilde{\pi}_0(M_{3(p,q)}^+)$, then $g[f] = i * \alpha(f')$ and $g[h] = i * \alpha(h')$. Since i * is a homomorphism, then

$$g([f] \cdot [h]) = g(f \cdot h) = i\alpha(f' \cdot h') = i*\alpha(f') \cdot i*\alpha(h') = g[f] \cdot g[h'].$$

Therefore, g is an homorphism.

Lemma 2.3

g is surjective.

Proof

To show that g is surjective is to show that $g(\pi_0(M_{3(p,q)}^+)) = i*(\pi_p SO(q))$. From the definition of g, it is clear that $g(\tilde{\pi}_0(M_{3(p,q)}^+)) \subset i*\pi_p SO(q)$, we only need to show that $i*(\pi_p SO(q)) \subset g(\tilde{\pi}_0(M_{3(p,q)}^+))$. Let $\alpha \in i*\pi_p SO(q)$, where $[a] = \alpha$ and $a: S^p \to SO(q+1)$, we define $f(x, y) = \begin{cases} (x, a(x) \cdot y \text{ if } (x, y) \in (S^p \times S^q)_1 \\ (x, y) \text{ if } (x, y) \in (S^p \times S^q)_2 \end{cases}$

$$\left[(x, y) \text{ if } (x, y) \in (S^p \times S^q)_3 \right]$$

Since $a \in i*(\pi_p SO(q))$, then f induces identity on homology and so $f \in \pi_0(M^+_{3(p,q)})$.

Thus, $i*(\pi_p SO(q)) \subset \pi_0(M_{3(p,q)}^+)$ and so $g(\pi_0(M_{3(p,q)}^+)) = i*(\pi_p SO(q))$. In fact, from the dimension restriction, i.e., p < q, it follows that $\pi_p(S^q) = 0$. We consider the exact sequence $\dots \to \pi_{p+1}(S^q) \to \pi_p SO(q) \to \pi_p SO(q+1) \to \pi_p(S^q) \to \dots$ Since $\pi_p(S^q) = 0$, it follows that i_* is an epimorphism. Hence, $i*(\pi_p SO(q)) = \pi_p SO(q+1)$. In fact, if p < q-1, then $\pi_{p+1}(S^q) = 0$ and in this case, i_* is an isomorphism and so g is surjective.

Lemma 2.4

If $u \in \ker(g)$, then there exists $f \in M^+_{3(p,q)}$ such that $f \in [u]$ and f is identity on $S^p \times D^q$.

Proof

From Lemma 2.3, if p < q-1, then $\pi_{p+1}(S^q) = \pi_p(S^q) = 0$. Hence, i_* is an isomorphism. Since $f \in \ker(g)$, it then follows that $g(u) = i * \alpha(f') = 0$. Since i * is an isomorphism then, $\alpha(f') = 0$, where $\alpha(f') \in \pi_p SO(q)$. Hence, f is identity on $S^p \times D^q$.

We need to compute ker(g). To do this, we define a homomorphism

$$U: \ker(g) \to \pi_0(M^+_{2(p,q)}) = \pi_0(Diff^+(S^p \times S^q \# S^p \times S^q))$$

Let $f \in \ker(g)$. Then, by Lemma 3.4, f is identity on $S^{p} \times D^{q}$. We therefore have a map $f:(S^{p} \times S^{q})_{1} # (S^{p} \times S^{q})_{2} # (S^{p} \times S^{q})_{3} \rightarrow (S^{p} \times S^{q})_{4} # (S^{p} \times S^{q})_{5} # (S^{p} \times S^{q})_{6}$ f is identity on $S^{p} \times D^{q} \subset (S^{p} \times S^{q})_{1}$ using spherical modification technique introduced by Milnor in [2] and [3] on the domain $(S^{p} \times S^{q})_{1} # (S^{p} \times S^{q})_{2} # (S^{p} \times S^{q})_{3}$ which removes the interior of $S^{p} \times D^{q} \subset (S^{p} \times S^{q})_{1}$ and replaces it with $D^{p+1} \times S^{q-1}$. By Lemma 1.1, $S^{p} \times D^{q} \cup D^{p+1} \times S^{q-1}$ is diffeomorphic to id

 S^{p+q} . Thus, the domain of f becomes S^{p+q} #

$$(S^p \times S^q)_2 \# (S^p \times S^q)_3 = (S^p \times S^q)_2 \# (S^p \times S^q)_3.$$

For the image, since f is the identity on $S^p \times D^q$, we can assume that $f(S^p \times D^q) =$

 $S^{p} \times D^{q} \subset (S^{p} \times S^{q})_{4}$. We similarly perform spherical modification on the range $(S^{p} \times S^{q})_{4}$

 $#(S^{p} \times S^{q})_{5} # (S^{p} \times S^{q})_{6}$ by removing the interior of $S^{p} \times D^{q}$ from $(S^{p} \times S^{q})_{4}$ and replace it with $D^{p+1} \times S^{q-1}$ to have $S^{p} \times D^{q} \bigcup D^{p+1} \times S^{q-1}$, which by Lemma 1.1 equals S^{p+q} . Thus, the range id

becomes

$$S^{p+q} # (S^{p} \times S^{q})_{5} # (S^{p} \times S^{q})_{6} = (S^{p} \times S^{q})_{5} # (S^{p} \times S^{q})_{6}.$$

It therefore follows that after the spherical modification we are left with a diffeomorphism $f': S^p \times S^q \# S^p \times S^q \to S^p \times S^q \# S^p \times S^q$. Clearly, $f' \in M^+_{2(p,q)}$ and so we define l[f] = [f'].

Lemma 2.5

l is surjective.

Proof

Let $h \in M^+_{2(p,q)}$. Then, we will find $h \in M^+_{3(p,q)}$ such that i(h) = h'. We define

$$h(x, y) = \begin{cases} (x, y) \text{ if } (x, y) \in (S^{p} \times S^{q})_{1} \\ h'(x, y) \text{ if } (x, y) \in (S^{p} \times S^{q})_{2} \# (S^{p} \times S^{q})_{3} \end{cases}$$

Since *h* is identity on $(S^p \times S^q)_1$, then *h* is identity on $S^p \times D^q \subset (S^p \times S^q)_1$. Since $h \in M^+_{2(p,q)}$, then $h \in M^+_{3(p,q)}$ and so $h \in \ker(g)$ and clearly, i(h) = h'. Thus, *l* is surjective.

Recall from [1] the homomorphism $N : \ker(g) \to \pi_0 Diff^+(S^p \times S^q)$ and in [4], Sato defined an homomorphism $B: \pi_0 Diff^+(S^p \times S^q) \to \pi_p SO(q+1)$. In [1], we showed that ker N is in one-to-one correspondence with ker B and Sato gave a computation of ker B. Here we will show the following.

Lemma 2.6

ker(l) is in one-to-one correspondence with ker(N).

Proof

Let $f \in \ker(L)$. Then, L(f) = f' is identity in $M_{2(p,q)}^+$. Since $f \in \ker(g)$, it follows by Lemma 2.4 that f is identity on $S^p \times D^q$ $f: (S^p \times S^q)_1 \# (S^p \times S^q)_2 \# (S^p \times S^q)_3 \rightarrow (S^p \times S^q)_4 \# (S^p \times S^q)_5 \# (S^p \times S^q)_6$ since $f(S^p \times D^q) = S^p \times D^q$. We then perform spherical modification on $(S^p \times S^q)_1$ to remove the interior of $S^p \times D^q$ from $(S^p \times S^q)_1$ and attach $D^{p+1} \times S^{q-1}$ to have $S^p \times D^q \bigcup D^{p+1} \times S^{q-1} = S^{p+q}$ by Lemma 1.1. We similarly perform spherical modification on

 $(S^{p} \times S^{q})_{4}$ by removing the interior of $S^{p} \times D^{q}$ from $(S^{p} \times S^{q})_{4}$ and attaching $D^{p+1} \times S^{q-1}$ on their common boundary to have $S^{p} \times D^{q} \cup D^{p+1}$

 $\times S^{q-1} = S^{p+q}$. We now have a map

$$f'': (S^p \times S^q)_2 # (S^p \times S^q)_3 \to (S^p \times S^q)_5 # (S^p \times S^q)_6$$

which is identity on each summand. Hence, $f' \in \ker N$. Conversely, let $f \in \ker(N)$. Then $f \in M^+_{2(p,q)}$.

Then f induces identity on $S^{p} \times S^{q}$. We define a diffeomorphism

$$f'(x, y) = \begin{cases} (x, y) \text{ if } (x, y) \in (S^{p} \times S^{q}) \\ f(x, y) \text{ if } (x, y) \in (S^{p} \times S^{q})_{2} \# (S^{p} \times S^{q})_{3} \end{cases}$$

Clearly, $f' \in \ker(g)$ and since it induces identity on $M^+_{2(p,q)}$, then $f' \in \ker l$.

Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 39 - 46Diffeomorphism groups of connected sumSamuel Omoloye AjalaJ of NAMP

By Lemma 2.4, since l is surjective, we have

Theorem 2.7

The order of the group ker(g) is the order of the direct sum group ker(l) $\oplus \pi_0$ $(M_{2(p,q)}^+)$. Also, since g is surjective by Lemma 2.3, then we have the following:

Theorem 2.8

The order of the group $\pi_0(M_{3(p,q)}^+)$ is equal to three times the order of the group $\pi_p SO(q+1) \oplus \pi_q SO(p+1) \oplus \theta^{p+q+1}$.

Proof

Since g is surjective, then $\pi_0(M_{3(p,q)}^+) = \ker(g) \oplus \pi_p SO(q+1)$. But by Lemma 3.6, the order of $\ker(l)$ is equal to the order of $\ker(N)$ and in [1] we showed that order of $\ker(N) = \text{order of } \ker(B)$. In [4], Sato showed that order of $\ker(B) = \text{order of } \pi_q SO(p+1) \oplus \theta^{p+q}$.

$$\pi_0(M_{3(p,q)}^+) \approx \ker(l) \oplus \pi_0 M_{2(p,q)}^+ \oplus \pi_p SO(q+1)$$

But $\ker(l) = \ker(N) = \ker(B) = \pi_q SO(p+1) \oplus \theta^{p+q}$. Thus,

$$\pi_0(M^+_{\mathfrak{Z}(p,q)}) \approx \ker(B) \oplus \pi_0(M^+_{\mathfrak{Z}(p,q)}) \oplus \pi_p SO(q+1).$$

$$= \pi_q SO(p+1) \oplus \theta^{p+q+1} \oplus \pi_0(M_{2(p,q)}^+) \oplus \pi_p SO(q+1)$$

In [1], we proved that the order of $\pi_0(M_{2(p,q)}^+)$ is two times the order of $\pi_q SO(q+1)$ $\oplus \pi_p SO(p+1) \oplus \theta^{p+q+1}$. Substituting for $\pi_0(M_{2(p,q)}^+)$, we have the result order of $\pi_0(M_{3(p,q)}^+) =$ three times the order of the group $\pi_p SO(q+1) \oplus \pi_q SO(p+1) \oplus \theta^{p+q+1}$.

4.0 Conclusion

This result therefore extends the result of Sato [4] for $Diff(S^p \times S^q)$ and our result [1] for $Diff(S^p \times S^q \# S^p \times S^q)$ to the computation of $Diff(S^p \times S^q \# S^p \times S^q \# S^p \times S^q)$.

References

- [1] Samuel Omoloye Ajala. Diffeomorphism groups of connected sum of product of spheres and classification of manifolds. *Int. J. of Maths and Math. Science*, USA, Vol. 10, No. 1 (1987), 17-33.
- [2] John Milnor. A procedure for killing the homotopy group of differentiable manifolds. Symposia Pure Math A. M. S. Vol. 3 (1961), 39-55.
- [3] John Milnor and M. Kervaire. Groups of Homotopy spheres. Ann. of Math. Vol. 2, No. 77 (1963), 504-537.
- [4] H. Sato. Diffeomorphism group and classification of manifolds. *J. Math. Soc. Japan* 21, No. 1 (1969), 1-26.
- [5] Stephen Smale. On structure of manifolds. *Amer. Math. J.* 84 (1962), 387-399.