On regular algebraic monoids

Adewale Ọladipọ Oduwale
Department of Mathematics
University of Benin, Benin City, Nigeria.
e-mail address: adewaleoduwale@yahoo.com

Abstract

This paper provides a proper identification of normal irreducible, regular algebraic monoids. The result of $[3,4]$ suggests that we should be able to find a classification of these monoids in terms of their unit groups, and related toroidal data. That is what we accomplish in this paper.

Keywords: regular, normal, minimal idempotent, irreducible, maximal torus, global and infinitesimal centralizers, birational

1.0 Introduction

Assume that M is a normal, regular, algebraic monoid with unit group G. All our algebraic monoids are defined over an algebraically closed field of arbitrary characteristic. Let $e \in M$ be a minimal idempotent, and define

$$
\begin{equation*}
G_{e}=\{g \in G \mid g e=e g=e\}^{0} \tag{1.1}
\end{equation*}
$$

Assume, for simplicity, that G_{e} is a Levi factor of G. Thus

$$
\begin{equation*}
G \cong G_{e} \propto R_{u}(G) \text { (semidirect product) } \tag{1.2}
\end{equation*}
$$

where $U=R_{u}(G) \triangleleft G$ is the unipotent radical of G.

Theorem 1.1

(a) Let $T \subseteq G$ be a maximal torus and let $\bar{T} \subseteq M$ be Zariski closure of T in M. So $T \subseteq \bar{T}$ induces $X(\bar{T}) \subseteq X(T)$. Let $\Phi_{U} \subseteq X(T)$ be the weights of the action $A d: T \rightarrow \operatorname{Aut}(L$ (U)) on the Lie algebra of U. Then $\Phi_{U} \subseteq X(\bar{T}) \cup-X(\bar{T})$.
(b) Conversely, suppose we are given an algebraic group $G=G_{0} \propto R_{u}(G)$ (where $G_{0} \subseteq G$ is a Levi factor) along with a normal torus embedding $T \subseteq \bar{T}$ of the maximal torus $T \subseteq G_{0}$. Let M_{0} be the normal, reductive monoid with 0 and unit group G_{0} and maximal D-monoid \bar{T} [3]. Consider the action $A d: T \rightarrow \operatorname{Aut}(L(U))$ and assume that $\Phi_{U} \subseteq X(\bar{T}) \cup-X(\bar{T})$. Then there exists a unique, normal, algebra monoid M with unit group G and maximal D-monoid $\bar{T} \subseteq M$.
(c) Any monoid M, as in (b), has the following structure: Let $e=e^{2} \in M$ be the zero element of M_{0}. Define $U_{+}=\{u \in U \mid e u=e\}, U_{0}=\{u \in U \mid e u=u e\}$ and $U_{-}=\left\{\begin{array}{lll}u & \in U \mid e u=e\end{array}\right\}$. Then $M \cong U_{+} \times M_{e} \times U_{-}$and the monoid multiplication of M can be defined explicitly (see Proposition 2.6) with these coordinates.

The above theorem is an organized summary of Corollary 2.3, Proposition 2.6 and Theorem 3.3.
We should note that Theorem 1.1 classifies only those normal regular monoids with unit group G of a particular type (that is, G is related to the monoid in a particular way). The general case is explained in Section 4. It is a relatively minor modification of the above theorem. For convenience we describe it here.

So, let M be any normal, irreducible, regular, algebraic monoid with unit group G, and let $e \in E(M)$ be a minimal idempotent. Let $N=\overline{G_{e} R_{u}(G)}$ (Zariski closure), and set $H=G_{e} R_{u}(G)$. The following theorem is an organized summary of Lemma 4.1 and Theorem 4.2.

Theorem 1.2

(a) $\quad N$ is a regular monoid of the type considered in Theorem 1.1. Furthermore $g N g^{-1}=N$ for $g \in G$.
(b) Define $N \times{ }^{H} G=:\{[x, g] \mid x \in N, g \in G\}$ where $[x, g]=[y, h]$ if there exists $k \in H$ such that $y=x k^{-1}$ and $h=k \dot{g}$. Then $N \times{ }^{H} G$ is a regular monoid with multiplication $[x, g][y, h]=\left[x g y g^{-1}, g h\right]$. Furthermore,

$$
\begin{align*}
\varphi: N \times^{H} G & \rightarrow M \tag{1.3}\\
\varphi([x, g]) & =x g
\end{align*}
$$

is an isomorphism of algebraic monoids.

2.0 Taking it apart

A monoid is regular for any $x \in M$ if $\exists a \in M$ such that $x a x=x$. Let M be a normal, regular, irreducible, algebraic monoid with unit group G, and let $x \in E(M)=\left\{e \in M \mid e=e^{2}\right\}$ be a minimal idempotent. By [1], $G_{e}=\{g \in G \mid g e=e g=e\}^{0}$ is a reductive subgroup of G.

Assumption 2.1

$G_{e} \subseteq G$ is a Levi factor, so that $G=G_{e} \propto R_{u}(G)$, where $R_{u}(G) \Delta G$ is the unipotent radical.

As pointed out in the introduction, the general case can easily be derived from this one. We adhere strictly to Assumption 2.1 except in Section 4.

Preposition 2.2

Let T be a maximal torus and define $N=\overline{T R_{u}(G)} \subseteq M$. Then N is regular.

Proof

Since M is regular. G_{e}. is reductive for any minimal idempotent e of M. So $G_{e} \cap R_{u}(G)=\{1\}$. Thus, $\left(T R_{u}(G)\right)_{e} \cap R_{u}(G) \subseteq G_{e} \cap R_{u}(G)=\{1\}$. So $\left(T R_{u}(G)\right)_{e}$ has no unipotent elements other than the identity. So it must be a torus. By [1], N is regular.

Corollary 2.3

Let $\Phi_{U} \subseteq X(T)$ be the weights of $A d: T \rightarrow A u t(L(U))$ on the Lie algebra $L(U)$ of $U=R_{u}(G)$. Then $\Phi_{U} \subseteq X(\bar{T}) \cup-X(\bar{T})$.

Proof

Since \bar{T} has a zero, this follows from [4, Corollary 2.4].

Preposition 2.4

Let $U=R_{u}(G)$ and let
$U_{+}=\{u \in U \mid e u=e\}$,
$U_{0}=\{u \in U \mid e u=u e\}$ and
$U_{-}=\{u \in U \mid e u=e\}$
Then
(a) $U=U_{+} U_{0} U_{-} \cong U_{+} \times U_{0} \times U_{-}$
(b) $G_{e} \subseteq N_{G}\left(U_{+}\right) \cap C_{G}\left(U_{0}\right) \cap N_{G}\left(U_{-}\right)$.

Proof

(a) Follow from [4, Formula (3)]. For (b), notice first that $G_{e} \subseteq C_{G}(e)$. So, if $u \in U_{+}$and $g \in G_{e}$, then $e g u g^{-1}=g(e u) g^{-1}=g e g^{-1}=e$. So, $g u g^{-1} \in U_{+}$. Similarly, $G_{e} \subseteq N_{G}\left(U_{-}\right)$.

Now, $G_{e} \subseteq C_{G}\left(U_{0}\right)$, by an argument similar to the above. But we can prove a little more for U_{0}. Indeed, let $T \subseteq G_{e}$ be a maximal torus and let $u \in U_{0}$. Then for $t \in T$, etut $t^{-1}=e u t^{-1}=u e t^{-1}=$ $u e=e u$. So etut ${ }^{-1} u^{-1}=e$, which implies that tut $^{-1} u^{-1} \in U_{+}$. But etut ${ }^{-1} u^{-1} \in U_{0}$ since $T \subseteq N_{G}\left(U_{0}\right)$. So tut ${ }^{-1} u^{-1} \in U_{0} \cap U_{-}=\{1\}$, so that $u t=t u$. But then $T \subseteq C_{G}\left(U_{0}\right)$ for any maximal torus $T \subseteq G_{e}$. On the other hand, $\cup T \subseteq G_{e}$ is Zariski dense. Thus $G_{e} \subseteq C_{G}\left(U_{0}\right)$.

$$
T \subseteq G
$$

Proposition 2.5

Let $M_{e} \subseteq \bar{G}_{e} \subseteq M$. Then M_{e} is normal.

Proof

Consider $\varphi: M_{e} \rightarrow M \rightarrow M / / R_{u}(G)$ where $M / / R_{u}(G)$ is as in [2, Theorem 4.2]. Now, $M / / R_{u}(G)$ is normal and $Q\left(M / / R_{u}(G)\right)=Q(M)^{R_{u}}(G)$. By [2. Theorem 4.2], φ induces an isomorphism on \bar{T}, so by [3, Corollary 4.5], φ is an isomorphism.

Proposition 2.6

$M \cong U_{+} \times C_{M}(e)^{0} \times U_{-}$and $C_{M}(e)^{0} \cong M_{e} \times U_{0}$
Proof
Define $\varphi: U_{+} \times C_{M}(e)^{0} \times U_{-} \rightarrow M$ by $\varphi(x, y, z)=x y z$. We define a monoid structure
on $U_{+} \times C_{M}(e)^{0} \times U_{-}$so that φ is a morhphism, and $U_{+} \times C_{M}(e)^{0} \times U_{-}$is regular. From there it follows that φ is surjective and birational. But M is normal, so φ is an isomorphism.

By Corollary 2.3 and the comments following Corollary 2.4 of [4], $\Phi_{U_{+}} \subseteq X(\bar{T})$ and $\Phi_{U_{-}} \subseteq-X(\bar{T})$. So we obtain $\bar{T} \rightarrow \operatorname{End}\left(U_{+}\right)$extending $T \rightarrow \operatorname{Aut}\left(U_{+}\right), g \mapsto \operatorname{int}(g) ;$ and $\bar{T} \rightarrow\left(U_{-}\right)$ extending $T \rightarrow \operatorname{Aut}\left(U_{-}\right), g \mapsto \operatorname{int}\left(g^{-1}\right)$. So the sought after multiplication on $U_{+} \times C_{M}(e)^{0} \times U_{-}$can be defined as in (4) on Page 296 of [4]. That is

$$
(u, x, v)(a, y, b)=\left(u \zeta_{+}(v, a)^{x}, x \zeta_{0}(u, v) y, \zeta_{-}(v, a)^{\bar{y}_{y}} b\right)
$$

where ζ_{+}, ζ_{0} and ζ_{-}are defined by
and

$$
\begin{aligned}
& \zeta_{+}: U_{-} \times U_{+} \xrightarrow[m]{\longrightarrow} U_{+} U_{0} U_{-} \xrightarrow[p_{1}]{\longrightarrow} U_{+}, \\
& \zeta_{0}: U_{-} \times U_{+} \xrightarrow[p_{2}]{ } U_{0},
\end{aligned}
$$

The action of $x \in \bar{T}$ on $u \in U_{+}$is denoted u^{x}, and $y \in \bar{T}$ on $v \in U_{-}$by $v^{\bar{y}}$.

3.0 Putting it together

In this section we start with the pieces, and show how to construct a regular monoid.

Definition 3.1 Setup

Let M_{0} be a normal, reductive monoid with 0 , and let U be a connected, unipotent group with regular action $\rho: G_{0} \rightarrow \operatorname{Aut}(U)$ such that $\Phi_{U} \subseteq X(\bar{T}) \cup_{-} X(\bar{T})$.

In the situation of 3.1 we can write

$$
U=U_{+} U_{0} U_{-}
$$

where
and

$$
\begin{align*}
& L\left(U_{+}\right)=\underset{\alpha \in X(\bar{T})}{\oplus} L(U) \alpha, \\
& L\left(U_{0}\right)=C_{L(U)}^{(T)} \tag{3.1}\\
& L\left(U_{-}\right)=\underset{\alpha \in-X(\bar{T})}{\oplus} L(U) \alpha .
\end{align*}
$$

Proposition 3.2

$U_{+} U_{0}$ and U_{-}are stabilized by G_{0} under ρ.

Proof

Let $\lambda: \kappa^{*} \rightarrow Z\left(G_{0}\right) \subseteq T$ be a 1-psg such that $\lim _{t \rightarrow 0} \lambda(t)=0$. Such a λ exist because G_{0} is reductive. Then $\lambda^{*}(X(T)) \subseteq Z=X\left(k^{*}\right)$. One checks that

$$
\lambda^{*}\left(X(\bar{T}) \backslash\{0\} \subseteq Z^{+} \text {and } \lambda^{*}(-X((\bar{T}) \backslash\{0\} \subseteq Z .\right.
$$

Thus,

$$
\begin{align*}
& U_{+}=\left\{u \in U \mid \lim _{t \rightarrow 0} \lambda(t)^{-1}=1\right\} \\
& U_{-}=\left\{u \in U \mid \lim _{t \rightarrow 0} \lambda(t)^{-1} u \lambda(t)=1\right\} \tag{3.2}\\
& U_{0}=C_{u}\left(\lambda\left(k^{*}\right)\right)
\end{align*}
$$

and
But $\lambda\left(k^{*}\right) \subseteq G_{0}$ is central. Thus, U_{+}, U_{0} and U_{-}are stabilized by G_{0} under ρ.

Theorem 3.3

Let M_{0}, ρ and U be as in 3.1. Then $U_{+} \times M_{0} \times U_{0} \times U_{-}$has the unique structure of a regular, algebraic monoid extending the group law on $U_{+} \times \mathrm{G}_{0} \times \mathrm{U}_{0} \times \mathrm{U}_{-} \xrightarrow[\cong]{\cong} G \propto U,(u, g, v, w) \mapsto(g, u v w)$.

Proof

By Definition 3.1, $\rho: G \rightarrow \operatorname{Aut}(U)$ stabilizes U_{+}, U_{0} and U_{-}. By definition, $\rho \mid T: \bar{T} \rightarrow$ Aut $\left(U_{+}\right)$extends over $\bar{T}, \rho^{-1} \mid T: T \rightarrow A u t .\left(U_{-}\right)$extends over \bar{T}. Thus, by [3; Corollary 4.5] there exist unique $\rho_{+}: M_{0} \rightarrow \operatorname{End}\left(U_{+}\right)$extending $\rho^{-1}: G_{0} \rightarrow \rho A u t\left(U_{+}\right)$and unique $\rho_{-}: M_{0} \rightarrow \operatorname{End}\left(U_{-}\right)$ extending $\rho^{-1}: G_{0} \rightarrow \operatorname{Aut}\left(U_{-}\right)$.

Using formula (4) on p. 296 of [4] we can define the desired multiplication on $U_{+} \times M_{0} \times U_{0} \times U_{-}$, just as we did in Proposition 2.6 above.

4.0 The general case

In this section we consider normal regular monoids, but without the restrictions of Assumption 2.1. So let M be normal and regular. If $e \in E(M)$ is a minimal idempotent define

$$
\begin{equation*}
N=\overline{G_{e} R_{u}(G)} \tag{4.1}
\end{equation*}
$$

Lemma 4.1

(a) $g N g^{-1} \subseteq N$ for $g \in G$
(b) $\quad N$ is a regular monoid of the type considered in Assumption 2.1

Proof

If $g \in G$ then $g G_{e} g^{-1}=G_{g e g^{-1}} \cdot$ But from [1; Theorem 6.30] it follows that $g e g^{-1}=h e h^{-1}$ for some $h \in G_{e} R_{u}(G)$. But then $g G_{e} g^{-1}=h G_{e} h^{-1}$ and so $g G_{e} R_{u}(G) g^{-1}=g G_{e} g^{-1} g R_{u}(G) g^{-1}$ $=g G_{e} g^{-1} R_{u}(G)=h G_{e} h^{-1} R_{u}(G)=h G_{e} h^{-1} h R_{u}(G) h^{-1}=h G_{e} R_{u}(G) h^{-1}$ $=G_{e} R_{u}(G)$ since $h \in G_{e} R_{u}(G)$. . By continuity, $g N g^{-1} \subseteq N$.

For (b), notice that G_{e}, is reductive by [1: Theorem 7.4]. But $\left(G_{e} R_{u}(G)\right)_{e}=G_{e}$ and so, again by [1: Theorem 7.4], N is regular. Furthermore, $G_{e} \times R_{u}(G) \rightarrow G$ is bijective. But we need a little more in positive characteristic.

So let $k^{*} \subseteq Z\left(G_{e}\right)$ be such that $e \in \bar{k}^{*}$ as in the proof of Proposition 3.2. So $G_{e} \subseteq C_{G}$
$\left(k^{*}\right)=G_{e} U_{0}=U_{0} G_{e} . \quad$ But \quad also $L(G)=L(G)_{+} \oplus L\left(G_{e} U_{0}\right) \oplus L(G)_{-}, \quad$ because global and infinitestimal centralizers correspond for torus actions. But, from the proof of Proposition 3.2. $L\left(U_{+}\right), \subseteq=L(G)_{+}$and $L\left(U_{-}\right) \subseteq L(G)_{-}$. Thus $L\left(U_{+}\right)=L(G)_{+}$and $L\left(U_{-}\right)=L(G)_{-}$, since dim $G=\operatorname{dim}\left(U_{+}\right)+\operatorname{dim}\left(U_{-}\right)+\operatorname{dim}\left(G_{e} U_{0}\right)$, while $U_{+} \times G_{e} U_{0} \times U_{-} \rightarrow G \quad$ is bijective. Hence, $U_{+} \times G_{e} U_{0} \times U_{-} \cong G$. But then $G_{e} \cap R_{u}(G)=G_{e} \cap U_{0}$. But from 2.4(b), $G_{e} \subseteq$
$C_{G}\left(U_{0}\right)$. So $G_{e} \cap U_{0}$ is a central, unipotent subgroup scheme of G_{e}. On the other hand, it is well known that $Z\left(G_{e}\right)$ is a diagonalizable group (possibly nonreduced, in general). In any case $G_{e} \cap U_{0}=G_{e}$ $\cap R_{y}(G)$ must be the trivial group scheme. Thus, $G_{e} \times R_{u}(G) \rightarrow G$ is separable, and therefore an isomorphism.

Let $H=G_{e} R_{u}(G)$ and define $N \times{ }^{H} G=\{(x, g) \mid x \in N, g \in G\} / \sim$, where $(x, g) \sim\left(x h^{-1}, h g\right)$ if $h \in H$. Define $\varphi N \times_{H} G \rightarrow M$ by

$$
\begin{equation*}
\varphi([x, g])=x g \tag{4.2}
\end{equation*}
$$

Theorem 4.2

φ is an isomorphism.

Proof

From the poof of 4.1, H is a normal subgroup of G_{-}. Define a multiplication on $N \times{ }^{H} G$ by $[x, g][y, h]=\left[x g y g^{-1}, g h\right]$. One checks that this is well defined. Furthermore, φ is a morphism of algebra monoids.

Now φ is birational since $G\left(N \times{ }^{H} G\right)=G=G(M)$. But also, $G \varphi(N) G=M$, since by [1, Proposition 6.27], N intersects every J-class of M. So, φ is surjective and birational, while M is normal. Thus φ is an insomorphism.

5.0 Conclusion

Theorem 4.2 tells us how regular monoids, in general, are constructed from those that satisfy Assumption 2.1.

Indeed, let N be a normal regular monoid with unit group H, and assume $H=H_{e} R_{u}(H)$ (as in 2.1.). Assume $H \triangleleft G$ and G / H is reductive. Then we can define a regular monoid M with unit group G
with multiplication

$$
\begin{gather*}
M=N \times^{H} G \tag{5.1}\\
{[x, g][y, h]=\left[x g y g^{-1}, g h\right] .}
\end{gather*}
$$

Therefore by Theorem 4.2, all normal regular algebraic monoids are obtained this way.

References

[1] Putcha, M.S. "Linear Algebraic Monoids", Cambridge University Press, Cambridge, UK, (1989).
[2] Renner, L. E. Reductive monoids are von Neumann regular, Journal of Algebra, 93 (1995), 237 - 45
[3] Renner, L. E., Classification of semisimple algebraic monoids, Trans. Amer. Math Soc., 292 (1999), 193 - 223.
[4] Renner, L. E., Completely regular algebraic monoids, J Pure and Applied Algebra, 59 (2000), 291 - 298.

