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Abstract 
 

This paper provides a proper identification of normal irreducible, 
regular algebraic monoids.  The result of [3,4] suggests that we should be able 
to find a classification of these monoids in terms of their unit groups, and 
related toroidal data.  That is what we accomplish in this paper. 
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1.0 Introduction  

Assume that M is a normal, regular, algebraic monoid with unit group G.  All our algebraic 
monoids are defined over an algebraically closed field of arbitrary characteristic.  Let Me ∈  be a 
minimal idempotent, and define 

{ }0| eeggeGgeG ==∈=      (1.1) 
Assume, for simplicity, that Ge is a Levi factor of G.  Thus 

( )GuReGG ∝≅  (semidirect product)    (1.2) 

where ( ) GGuRU <=  is the unipotent radical of G. 
 
Theorem 1.1 
(a) Let GT ⊆  be a maximal torus and let MT ⊆  be Zariski closure of T in M.  So TT ⊆  induces 

( ) ( ).TXTX ⊆   Let ( )TXU ⊆Φ  be the weights of the action →TAd : Aut(L 

 (U)) on the Lie algebra of U.  Then ( )TXU ⊆Φ ( )TX−U . 

(b) Conversely, suppose we are given an algebraic group ( )GuRGG ∝= 0  (where GG ⊆0  is a 

Levi factor) along with a normal torus embedding TT ⊆  of the maximal torus 0GT ⊆ .  Let M0 

be the normal, reductive monoid with 0 and unit group G0 and maximal D-monoid T [3].  
Consider the action ( )( )ULAutTAd →:  and assume that ( ) ( )TXTXU −⊆Φ U .  Then there 

exists a unique, normal, algebra monoid M with unit group G and maximal D-monoid MT ⊆ . 

(c) Any monoid M, as in (b), has the following structure: Let Mee ∈= 2  be the zero element of M0.  
Define { } { }ueeuUuUeeuUuU =∈==∈=+ |0,|  and U- = {u Є U|eu = e}.  Then 

−××+≅ UeMUM  and the monoid multiplication of M can be defined explicitly (see 
Proposition 2.6) with these coordinates. 
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 The above theorem is an organized summary of Corollary 2.3, Proposition 2.6 and Theorem 3.3. 
 We should note that Theorem 1.1 classifies only those normal regular monoids with unit group G 
of a particular type (that is, G is related to the monoid in a particular way).  The general case is explained 
in Section 4.  It is a relatively minor modification of the above theorem.  For convenience we describe it 
here. 
 So, let M be any normal, irreducible, regular, algebraic monoid with unit group G, and let 

( )MEe∈  be a minimal idempotent.  Let ( )GuReGN =  (Zariski closure), and set ( ).GuReGH =   The 
following theorem is an organized summary of Lemma 4.1 and Theorem 4.2. 
 
Theorem 1.2 

(a) N is a regular monoid of the type considered in Theorem 1.1.  Furthermore NgNg =−1  
for .Gg ∈  

(b) Define [ ]{ }GgNxgxGHN ∈∈=× ,|,:  where [ ] [ ]hygx ,, =  if there exists Hk ∈  such 

that 1−= xky  and .gkh &=   Then GHN ×  is a regular monoid with multiplication 

[ ][ ]




 −= ghxgyghygx ,1,, .  Furthermore, 

[ ]( ) xggx

MGHN

=
→×

,

:

ϕ
ϕ      (1.3) 

is an isomorphism of algebraic monoids. 
 
2.0 Taking it apart 

A monoid is regular for any Mx ∈  if Ma ∈∃  such that .xxax =   Let M be a normal, regular, 

irreducible, algebraic monoid with unit group G, and let }2|{)( eeMeMEx =∈=∈  be a minimal 

idempotent.  By [1], 0}|{ eeggeGgeG ==∈=  is a reductive subgroup of G. 
 

Assumption 2.1 
 GeG ⊆  is a Levi factor, so that ( ),GuReGG ∝=  where ( ) GGuR ∆  is the unipotent radical. 
 
 As pointed out in the introduction, the general case can easily be derived from this one.  We 
adhere strictly to Assumption 2.1 except in Section 4. 
 
Preposition 2.2 
 Let T be a maximal torus and define ( ) MGuTRN ⊆= .  Then N is regular. 
 
Proof 
 Since M is regular.  Ge. is reductive for any minimal idempotent e of M.  So ( ) { }.1=∩ GuReG   

Thus, ( )( ) ( ) { }.1)( =∩⊆∩ GuReGGuReGuTR   So ( )( )eGuTR  has no unipotent elements other than the 

identity.  So it must be a torus.  By [1], N is regular. 
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Corollary 2.3 
 Let ( )TXU ⊆Φ  be the weights of ( )( )ULAutTAd →:  on the Lie algebra ( )UL  of ( )GuRU = .  

Then ( ) ( )TXTXU −⊆Φ U . 
 
Proof 
 Since T  has a zero, this follows from [4, Corollary 2.4]. 
 
Preposition 2.4 
 Let ( )GuRU =  and let  

 { }eeuUuU =∈=+ | , 

 { }ueeuUuU =∈= |0  and 

{ }eeuUuU =∈=− |  

Then 
 (a) −××+≅−+= UUUUUUU 00  

 (b) ( ) ( ) ( )−∩∩+⊆ UGNUGCUGNeG 0 . 
 
Proof 
 (a) Follow from [4, Formula (3)].  For (b), notice first that ( )eGCeG ⊆ .  So, if +∈Uu  and 

eGg ∈ , then ( ) egeggeugegug =−=−=− 111 .  So, +∈− Ugug 1 .  Similarly, ( )−⊆ UGNeG . 

 Now, ( )0UGCeG ⊆ , by an argument similar to the above.  But we can prove a little more for 

0U .  Indeed, let ⊆T Ge be a maximal torus and let u 0U∈ .  Then for t∈T, etu =−1t eu =−1t ue =−1t  

euue= .  So ,11 euetut =−−  which implies that +∈−− Uutut 11 .  But 0
11 Uuetut ∈−−  since 

( )0UGNT ⊆ .  So { }10
11 =−∩∈−− UUutut , so that tuut = .  But then ( )0UGCT ⊆  for any maximal 

torus eGT ⊆ .  On the other hand, eGT
GT

⊆
⊆
U  is Zariski dense.  Thus ( )0UGCeG ⊆ . 

 
Proposition 2.5 
 Let MeGeM ⊆⊆ .  Then eM  is normal. 
 
Proof 
 Consider ( )GuRMMeM //: →→ϕ  where ( )GuRM //  is as in [2, Theorem 4.2].  Now, 

( )GuRM //  is normal and ( )( ) ( ) ( )GuRMQGuRMQ =// .  By [2. Theorem 4.2], ϕ  induces an 

isomorphism on T , so by [3, Corollary 4.5], ϕ  is an isomorphism. 
 
Proposition 2.6 

 ( ) UeC MUM −××+≅ 0 and ( ) UM eeC M 0
0 ×≅  

 
Proof 

 Define ( ) MUeC MU →−××+
0:ϕ by ( ) xyzzyx =,,ϕ .  We define a monoid structure  
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on ( ) UeC MU −××+
0 so that ϕ  is a morhphism, and ( ) UeC MU −××+

0  is regular.  From there it 

follows that ϕ  is surjective and birational.  But M is normal, so ϕ  is an isomorphism. 

 By Corollary 2.3 and the comments following Corollary 2.4 of [4], ( )TXU ⊆+Φ  and 

( )TXU −⊆−Φ .  So we obtain →T End( )U +  extending →T Aut ( ) agU ,+ int )(g ; and →T ( )U −  

extending →T Aut ( ) agU ,− int )1( −g .  So the sought after multiplication on ( ) UeC MU −××+
0  can 

be defined as in (4) on Page 296 of [4].  That is 

( )( ) ( ( ) ( ) ( ) )byavyvuxxavubyavxu ,,,0,,,,,, −+= ζζζ  

where 0, ζζ +  and −ζ  are defined by 

   ,
1

0: U
p

UUU
m

UU + →−+→+×−+ζ  

   ,0
2

0:0 U
p

UUU
m

UU  →−+→+×−ζ  

and   U
p

UUU
m

UU − →−+→+×−−
3

0:ζ . 

The action of Tx ∈ on Uu +∈  is denoted xu , and Ty ∈  on Uv −∈  by yv . 
 
3.0 Putting it together 

In this section we start with the pieces, and show how to construct a regular monoid. 
 

Definition 3.1 Setup 
 Let M 0  be a normal, reductive monoid with 0, and let U  be a connected, unipotent group with 

regular action →0:Gρ  Aut ( )U  such that ( ) ( )TXTXU −⊆Φ U .  
 In the situation of 3.1 we can write 
   UUUU −+= 0  

where 
   ( )

( )
( ) ,α

α
UL

TX
UL ⊕

∈
=+  

   ( ) ( )( )TULCUL =0        (3.1) 

and   ( )
( )

( ) .α
α

UL
TX

UL ⊕
−∈

=−  

 
Proposition 3.2 
 UU 0+  and U −  are stabilized by G0  under ρ . 

 
Proof 

 Let ( ) TGZ ⊆→∗
0:κλ  be a 1-psg such that 0)(0lim =→ tt λ .  Such a λ  exist because G0  is 

reductive.  Then ( )( ) ⊆∗ TXλ  Z = X 




 ∗k .  One checks that  

∗λ (X )(T \{0} +⊆ Z and ∗λ (-X( )(T \{0} Z⊆ .   
Thus, 
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=−
→

∈=+ 11)(
0

lim| t
t

UuU λ  

   








=−
→

∈=− 1)(1)(
0

lim| tut
t

UuU λλ     (3.2) 

and    












 ∗= kCuU λ0 . 

But Gk 0⊆




 ∗λ  is central.  Thus, U + , U 0  and U −  are stabilized by G0  under ρ . 

 
Theorem 3.3 
 Let M 0 , ρ  and U be as in 3.1.  Then UUMU −×××+ 00  has the unique structure of a regular, 

algebraic monoid extending the group law on U+× G0× U0× U- →
≅

G ∝ U, (u,g,v,w) a  (g,uvw). 

 
Proof 
 By Definition 3.1, →G:ρ Aut ( )U  stabilizes U + , U 0  and U − .  By definition, →TT :|ρ Aut

( )+U  extends over ).(:|1, −→− UAutTTT ρ  extends over T .  Thus, by [3; Corollary 4.5] there exist 

unique →+ 0: Mρ  End( )+U  extending )(0:1
+→− UAutG ρρ  and unique →− 0: Mρ End(U-) 

extending →−
0:1 Gρ Aut ( )−U . 

 Using formula (4) on p. 296 of [4] we can define the desired multiplication on 
UUMU −×××+ 00 , just as we did in Proposition 2.6 above. 

 
4.0 The general case 
 In this section we consider normal regular monoids, but without the restrictions of Assumption 
2.1.  So let M be normal and regular.  If )(MEe∈  is a minimal idempotent define 

     )(GuReGN =      (4.1) 
Lemma 4.1  

 (a) NgNg ⊆−1  for Gg ∈  
 (b) N is a regular monoid of the type considered in Assumption 2.1 
 
Proof 

 If Gg ∈  then 1
1

−=−
geg

GgegG .  But from [1; Theorem 6.30] it follows that geg 11 −=− heh  

for some )(GuReGh ∈ .  But then gGe
1−g  = hGe

1−h  and so gGeRu(G) 1−g  = gGe
1−g gRu(G) 1−g

1)(1)(1)(1 −−=−=−= hGuhRhehGGuRhehGGuRgegG 1)( −= hGuRehG  

)(GuReG=  since h ∈ GeRu(G)..  By continuity, NgNg ⊆−1 . 

 For (b), notice that eG , is reductive by [1: Theorem 7.4].  But eGeGuReG =))((  and so, again 

by [1: Theorem 7.4], N is regular.  Furthermore, GGuReG →× )(  is bijective.  But we need a little more 
in positive characteristic. 
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 So let )( eGZk ⊆∗  be such that ∗∈ ke  as in the proof of Proposition 3.2.  So Ge ⊆ CG 

eGUUeGk 00 ==




 ∗ .  But also −⊕⊕+= )()0()()( GLUeGLGLGL , because global and  

infinitestimal centralizers correspond for torus actions.  But, from the proof of Proposition 3.2. 

+⊆=+ )(),( GLUL  and −⊆− )()( GLUL .  Thus +=+ )()( GLUL  and −=− )()( GLUL , since dim 

)0dim()dim()dim( UeGUUG +−++= , while GUUeGU →−××+ 0  is bijective.  Hence, 

GUUeGU →
≅−××+ 0 .  But then 0)( UeGGuReG ∩=∩ .  But from 2.4(b), Ge ⊆ 

)0(UGC .  So 0UeG ∩  is a central, unipotent subgroup scheme of eG .  On the other hand, it is well 

known that )( eGZ  is a diagonalizable group (possibly nonreduced, in general).  In any case GeIU0 = Ge

I Ry(G) must be the trivial group scheme. Thus, GGuReG →× )(  is separable, and therefore an 
isomorphism. 

 Let )(GuReGH =  and define ( ){ } ~/,|, GgNxgxGHN ∈∈=× , where (x, g) ~ (xh-1, hg) if 

Hh ∈ .  Define MGHN →×ϕ  by  xggx =]),([ϕ    (4.2) 
 
Theorem 4.2 
  ϕ  is an isomorphism. 
 
Proof 

 From the poof of 4.1, H is a normal subgroup of −G .  Define a multiplication on GHN ×  by 

[ ] [ ]




 −= ghxgyghygx ,1,, .  One checks that this is well defined.  Furthermore, ϕ  is a morphism of 

algebra monoids. 

 Now ϕ  is birational since )()( MGGGHNG ==× .  But also, MGNG =)(ϕ , since by [1, 
Proposition 6.27], N intersects every  J-class of M.  So, ϕ  is surjective and birational, while M is normal.  
Thus ϕ  is an insomorphism. 
 
5.0 Conclusion 

Theorem 4.2 tells us how regular monoids, in general, are constructed from those that satisfy 
Assumption 2.1. 

Indeed, let N be a normal regular monoid with unit group H, and assume )(HuReHH = (as in 
2.1.).  Assume GH <  and HG /  is reductive.  Then we can define a regular monoid M with unit group G 

     GHNM ×=      (5.1) 

with multiplication  [ ][ ]




 −= ghxgyghygx ,1,, . 

Therefore by Theorem 4.2, all normal regular algebraic monoids are obtained this way. 
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