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Abstract 

 

This paper investigates the anti-synchronization of chaos between two 
new different chaotic systems by using active control.  Numerical simulations 
are used to show the robustness of the active control scheme in anti-
synchronizing the two different coupled systems. 
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1.0 Introduction 

Synchronization of chaotic attractors are of fundamental importance in the study of nonlinear 
dynamics; and have been extensively investigated both theoretically, numerically and experimentally in 
many chaotic systems [1,2].  The application of synchronization of chaotic systems in chemical reactors, 
secure communications, laser physics, ecological systems and so on have been explored [1]. This has 
made it one of the striking discoveries in the study of Chaos [2]. 

The most familiar synchronization phenomenon is that the difference of states of synchronized 
systems converges to zero, and is called complete synchronization (CS) as first reported by Pecora and 
Carroll [3].  Other synchronization phenomena reported for coupled chaotic oscillators are phase 
synchronization, lag synchronization, anti-synchronization, generalized synchronization, anticipated 
synchronization and measure synchronization. 

Anti-synchronization (AS) is a phenomena observed in periodic oscillators that has been known 
for quite a long time [4].  It is well known that the first observation of synchronization of two oscillators 
by Huygens in the seventeeth century was, infact, AS between two pendulum clocks.  Blekham [5] shows 
that either synchronization or AS can appear depending on the initial conditions of the coupled pendula.  
AS have been observed experimentally in the context of self-synchronization e.g. in salt water oscillators 
[6], and some biological systems where a nonchaotic signal is generated. 

Over the last decade, a large variety of approaches have been proposed for chaos synchronization 
such as the master-slave method[3], backstepping design method[7], active control[8,9], invariant 
manifold method[10], adaptive method[11], feedback approach[11], etc.  Most of the methods mentioned 
synchronize two identical chaotic systems.  However, the method of the synchronization of two different 
chaotic systems is far from being straightforward, notwithstanding, the applications of chaos 
synchronization in secure communications makes it much more important to synchronize two different 
chaotic systems[12].   
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The application of the active control technique to nonidentical systems have demonstrated its 

advantage over other schemes [13]. 
AS have been applied to identical systems mainly in the past.  In Zhang [14], the AS for chaotic 

systems (original Chua's circuit) was investigated and some simple but generic criteria for AS was 
derived, along with a simple configuration by the corresponding suitable separation.  They show that 
there is no need to calculate the Lyapunov exponents and eigenvalues of the Jacobian matrix A, hence it is 
simple and convenient.  Kim et al observed AS phenomena in coupled identical chaotic oscillators, which 
is different from complete synchronization phenomenon. They qualitatively analyse its base mechanism 
by using the dynamics of the difference and the sum of the relevant variables, since AS can be 
characterised by the vanishing of the sum of relevant variables.  Only recently did Emadzadeh [15] 
presents AS of chaos between two different chaotic systems, where Rossler system is controlled to be AS 
with Lu system. 

In practice, anti-synchronization is a phenomenon wherein the state vectors of synchronized 
systems have the same absolute values but opposite signs[15], it is an example of Phase Shifted 
Synchronization (PSS).  Thus anti-synchronization of two systems S1 and S2 is achieved if 
lim ( ) ( )t x t x t→ ∞ + =1 2 0 , where x1(t), x2(t) are the state vectors of the systems S1, S2. 

In this paper we study anti-synchronization between two chaotic systems recently introduced by 
Lu et. al. [16] and studied by Sun [17] using the active control technique. 
 
2.0 Model and Active Control 

Active control technique gives the flexibility to construct a control law so that it can be used 
widely to control various nonlinear systems including chaotic systems [18].  The pioneering work [19,20] 
was on identical systems (Lorenz system), however, the method has been generalized to nonidentical 
systems, thus, breaking the limit of synchronization of identical systems and demonstrating further the 
advantage of the active control technique over other schemes [18]. 

To clearly state the problem, consider a chaotic dynamical system, a master (or drive), together 
with another system (the slave) coupled together via active controllers.  The aim is to synchronize the 
response of the slave system to the master system by driving the slave system with the control signals 
derived from the master, that is, the designed controller with the state variable of the master will make the 
trajectories of the state variables of the slave system to follow the trajectories of the state variables of the 
driver system [21]. 

Lu&&  et. al. [16] introduced the follwoing chaotic system of 3-D quadratic autonomous ordinary 
differential equations, which can display two 1-scroll chaotic attractors simultaneously with only three 
equilibra and two 2-scroll chaotic attractors simultaneously with five equilibra: 

&

&

&

x kx yz c

y ay xz

z bz xy

= − − +
= +
= +

     (2.1) 

wherek ab
a b= + , a, b and c are real constants and  x, y and z are state variables.  The system is chaotic for 

the parameters a = -10, b = -4  and || c || < 19.2, it displays the chaotic attractor shown in Figure 1. 
The second system which can display two 2-scroll chaotic attractors and two 4-scroll chaotic 

attractors can be described as follows [22]: 
&

&

&

x px yz

y vy xz

z uz xy

= −
= − +
= − +

      (2.2) 

where p, v and u are positive control parameters.  This system exhibits a chaotic attractor at the  
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parameter values p = 0.4, v = 12 and u = 5, the chaotic attractor is shown in Fig. 2.  Recently, Sun [17] 
showed that systems (2.1) and (2.2) can be synchronized via active control.  Here we follow the method 
of active control and show that system (2.1) and system (2.2) can be anti-synchronised as well.  To 
achieve this, we make system (2.1) the drive, system (2.2) the response and then introduce three control 
signals into system (2.2) to obtain the following drive-response system: 

     (2.3) 

and 
& ( )

& ( )

& ( )

x px y z u t

y vy x z u t

z uz x y u t

2 2 2 2 1

2 2 2 2 2

2 2 2 2 3

= − +
= − + +
= − + +

     (2.4) 

Let 
s x x

s y y

s z z

1 1 2

2 1 2

3 1 2

= +
= +
= +

       (2.5) 

be the anti-synchronization errors of the state variables.  By adding (2.3) and (2.4) and using the above 
notations, we get 

& ( )

& ( )

& ( )

s kx y z c ps px y z u t

s ay x z vs vy x z u t

s bz x y us uz x y u t

1 1 1 1 1 1 2 2 1

2 1 1 1 2 1 2 2 2

3 1 1 1 3 1 2 2 3

= − + + + − − +
= + − + + +
= + − + + +

   (2.6) 

The active control inputs can be defined as follows: 
u t kx y z c px y z v t

u t ay x z vy x z v t

u t bz x y uz x y v t

1 1 1 1 1 2 2 1

2 1 1 1 1 2 2 2

3 1 1 1 1 2 2 3

( ) ( )

( ) ( )

( ) ( )

= + − + + +
= − − − − +
= − − − − +

    (2.7) 

where v1(t), v2(t), v3(t)$ are new control inputs with equation (2.7), equation (2.6) becomes 
& ( )

& ( )

& ( )

s ps v t

s vs v t

s us v t

1 1 1

2 2 2

3 3 3

= +
= − +
= − +

      (2.8) 

The AS error system in (2.8) is a linear system with control inputs v1(t), v2(t) and v3(t).  Design of an 
appropriate feedback control stabilizes the system so that s1, s2 and s3 converge to zero as time t tends to 
infinity.  This implies that the two new different systems are anti-synchronized with feedback control. 

Using the active control method, we choose a constant matrix A which will control the error 
dynamics (2.8) such that 
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λ

0 0

0 0

0 0

     (2.9) 

In (2.9), the three eigenvalues λ1 , λ2  and λ3  have been chosen as -1, -1, and -1 in order that a 

stable and anti-synchronized different systems are achieved. We can also make non-zero numbers less 
than -1.  If the eigenvalues get smaller, the convergence will become smaller. 
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Finally, the active control inputs becomes,
u t kx

u t ay

u t bz

1

2

3

( )

( )

( )

=
= −
= −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:
 

Figure 2: The two

Figure 3: Time series for the state variables 
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v t p s

v t v s

v t u s

1 1

2 2

2 3

1

1

1

( ) ( )

( ) ( )

( ) ( )

= − −
= −
= −     

Finally, the active control inputs becomes, 
kx y z y z x x px c

ay x z x z vy y y

bz x y uz x y z z

1 1 1 2 2 1 2 2

1 1 1 2 2 2 2 1

1 1 1 2 2 2 2 1

+ + − − − −
− + + − −
− + − − −

   

Figure 1: Chaotic attractor for the drive system. 

 
The two-scroll chaotic attractor for the slave system. 

 

 
Time series for the state variables x1, x2 of the slave and drive system, when the control is deactivated.

5 – 20 
J of NAMP 

(2.10) 

(2.11) 

of the slave and drive system, when the control is deactivated. 
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Figure 4: Time evolution of the error state, 

Figure 5: Time evolution of the error states when the controllers are activated

Figure 6:. Overlapping of the time series and the error state for the drive and slave system when the controllers are 

3.0 Simulation Results 
In this section, numerical simulations are given to verify the active control method.  In these 

simulations, the fourth-order Runge
time step 0.01.  The parameters are chosen as 

The initial values of the drive and response system is taken as (
(x2(0), y2(0),z2(0)) = (1,1,1).  In Figure 3, we display the time history for the state variables 
slave and drive system, when the control is deactivated.  This clearly shows the non
time series for the systems under consideration and Fig 4 displays the time evolution of the error states 
when the active control is also deactivated,
error dynamics when the active  
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Time evolution of the error state, e1, when the controllers are not activated.

 
Time evolution of the error states when the controllers are activated-depicting anti-synchronization.

 
. Overlapping of the time series and the error state for the drive and slave system when the controllers are 

activated. 
 

In this section, numerical simulations are given to verify the active control method.  In these 
order Runge-Kutta method is used to solve the two systems (2.3) and (2.4), with 

time step 0.01.  The parameters are chosen as a = -10, b = -4, c = 0, p = 4.5, v = 12, u = 5.
The initial values of the drive and response system is taken as (x1(0), y1(0), z1

(0)) = (1,1,1).  In Figure 3, we display the time history for the state variables 
ave and drive system, when the control is deactivated.  This clearly shows the non-periodic nature of the 

time series for the systems under consideration and Fig 4 displays the time evolution of the error states 
when the active control is also deactivated, indicating the chaotic form of the error states.  Fig 5 shows the 

10 20 30 40 50 60 70 80

Time, t

10 20 30 40 50 60 70 80

Time, t

5 – 20 
J of NAMP 

, when the controllers are not activated. 

synchronization. 

. Overlapping of the time series and the error state for the drive and slave system when the controllers are 

In this section, numerical simulations are given to verify the active control method.  In these 
Kutta method is used to solve the two systems (2.3) and (2.4), with 

= 5. 
1(0)) = (3,-4,2) and 

(0)) = (1,1,1).  In Figure 3, we display the time history for the state variables x1, x2 of the 
periodic nature of the 

time series for the systems under consideration and Fig 4 displays the time evolution of the error states 
indicating the chaotic form of the error states.  Fig 5 shows the 
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control is activated.  Obviously, anti-synchronization has been achieved as soon as the controllers are 
activated, and satisfies lim ( ) ( )t x t x t→ ∞ + =1 2 0 .  The convergence of the error states e1, e2, and e3 as 

the controllers are activated, indicates that anti-synchronization have been achieved by the proposed 
control technique.  That is the controllers when activated controls the systems in such a way that the slave 
system tracks the trajectories of the master, thus, there seems to be no difference between their states. 

In Figure 6, where the overlapping of the time series and the error series are displayed when the 
controllers are activated showed that the error line is the mean of the time series, when there is anti-
synchronization.  This visual display confirms the reliability of the designed active controller for the two 
systems.  Normally, since the error states are the addition of the state variables, then the error states may 
not necessarily converge, but the activated controller acts in such a way as to make the state variables to 
be in anti-phase, thus, their addition tends to zero, which is the anti-synchronized state. 
 
4.0 Conclusion 

Conclusively, we have demonstrated in this Letter, a specific application of the active control for 
the anti-synchronization of the two different systems -which can display two 1-scroll chaotic attractors 
simultaneously with only three equilibra and two 2-scroll chaotic attractors simultaneously with five 
equilibra.  The simulations confirm that AS of two systems operates satisfactorily in presence of the 
proposed control method,   that is, the anti-synchronization error would converge to zero finally and two 
different systems from different initial values are indeed achieving chaos anti-synchronization.  This 
technique can be extended to anti-synchronize higher dimensional systems. 
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