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Abstract 
 

Based on a method derived from nonlinear control theory, we present 
a novel technical approach for synchronizing the dynamics of a rigid body 
exhibiting chaotic motion. In this framework, the active control technique is 
modified and employed to design control functions based on Lyapunov 
stability theory and Routh-Hurwitz criteria, so that a drive-response system of 
a rigid body achieves anti-synchronism in the chaotic state. Global asymptotic 
stability and convergence of the sum of the dynamical variables representing 
the Eulerian state space of the two rigid bodies was verified by numerical 
simulations. 

 
 
1.0 Introduction 

For over two centuries, the dynamics of rigid body motion has been a problem of interest to 
scientists and mathematicians in particular. The rigid body has many practical engineering applications 
such as gyroscopes, satellites, spacecraft and rockets. However, analytic solution to the general problem 
of a rigid body under the influence of arbitrary external torques is far from being complete. In fact, most 
existing analytic theories were applied to highly idealized cases, and as torque-free or symmetric bodies. 
Solutions have been obtained for these and several other special cases by Euler, Jacobi, Poinsot and other 
researchers; and have been reported by Leimanis (1965). Unfortunately, these solutions are hardly of 
practical importance to the complex problems encountered in spacecraft dynamics and control. In 1981, 
Liepnik and Newton (1981), found strange attractors in rigid body motion. Due to this discovery, studies 
on the chaotic dynamics in the rigid body motion have been a subject of intense focus by many 
researchers from different perspectives (Ge et al., 1996; Ge and Chen, 1996; Tong and Mrad, 2001; Chen, 
2002; Chen and Lee, 2004) 

Among these reports, the recent works of Chen and Lee (2004) on anti-control of chaos in rigid 
body motion is of significant interest in the present study. “Anti-control of chaos” or “chaotification” is a 
mechanism of making a non-chaotic dynamical system chaotic or retaining (or enhancing) the chaos of a 
chaotic system (Chen and Lai, 1998). Anti-control of chaos is important when chaotic behaviour and 
chaos synchronization are beneficial. For instance, chaos is important in secure communication, 
information processing, liquid mixing as well as biological systems and cognitive processes (Kapitaniak, 
1992; Kapitaniak, 1995; Stefanski and Kapitaniak, 2003). 

Since Pecora and Carroll (1990) first introduced the intriguing concept of the synchronization of 
chaotic systems in 1990, the phenomenon has been widely explored in a variety of fields. Advances in the 
study of the synchronization have led to the identification of  
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various types of synchronization phenomena. These includes complete synchronization (CS) (Pecora and 
Carroll, 1990; Vincent et al., 2005a; Vincent et al., 2005b), phase synchronization (PS) (Vincent et al., 
2004; Vincent et al., 2006a), anticipated synchronization (ACS) (Voss, 2000; Masoller, 2001; Kostur et 
al., 2005); measure synchronization (MS) (Hampton and Zanette, 1999; Wang et al., 2002; Wang and 
Zhang, 2003; Vincent, 2005a;Vincent et al., 2005c; Vincent et al., 2006b), generalized synchronization 
(GS) (Rulkov et al., 1995; Kocarev and Parlitz, 1996), lag synchronization (Rosenblum et al., 1997; 
Boccaletti et al., 2000) and anti-synchronization (AS) (Kim et al., 2003; Zhang and Sun, 2004, Li and 
Liao, 2006). Anti-synchronization (AS), which we consider in this paper for the rigid body motion is a 
situation in which the state variables of the synchronized systems have the same absolute values but 
opposite signs. AS is said to be achieved when the 0||||lim 21 →+∞→ xxt ; where x1 and x2 are the state 

variable of the two synchronizing systems. This synchronization phenomenon has been known for a long 
time. Indeed, the first observation of synchronization of two oscillators by Huygens in the seventeenth 
century was AS between two pendulum clocks (Kim et al, 2003). The emergency of the theoretical 
studies of AS phenomenon in chaotic oscillators has been motivated by the report of Liu et al. (2000) on 
AS of coupled map lattices. Some few studies have been carried out subsequently by Kim et al.,(2003), 
Zhang and Sun (2004), Emadzadeh and Haeri, (2005), Li and Liao (2006) and Idowu et al., (2007). It is 
worth noting that experimental observation of AS phenomenon has been reported earlier in the context of 
self-synchronization in salt-water oscillators (Nakata et al., 1998). 

On the other hand, different types of synchronization methods such as APD method of Pecora and 
Carroll (1990), adaptive control scheme, backstepping design, sliding-mode control, linear and nonlinear 
feedbacks, linear matrix inequality, invariant manifold method, impulsive control method and active 
control have been proposed and applied successfully to achieve different synchronization goals. Among 
these methods, the active control scheme, which was originally proposed by Bai and Lonngren (1997, 
2000) has received increasing interest in the recent times and have been widely employed by many other 
researchers. Some of the recent applications of the active control technique includes the following 
dynamical systems: chaotic ratchets (Vincent and Laoye, 2007), RCL-shunted Josephson junctions (Ucar 
et al., 2007), the unified chaotic system (Ucar et al., 2006), Chua’s circuit (Tang and Wang, 2006), 
Rikitake two-disc dynamo (Vincent, 2005b), nonlinear equations of acoustic gravity waves (Vincent, 
2006), Qi system (Vincent, 2006; Lei et al., 2007); Van-der Pol-Duffing oscillator (Njah and Vincent, 
2006), nuclear magnetic resonance (NMR) modeled by the nonlinear Bloch equations (Ucar et al., 2003), 
parametrically excited oscillators (Lei et al., 2006) and permanent magnet reluctance machine (Vincent 
and Ucar, 2007.  

In addition, Chen (2005a) also examined the synchronization of non-identical systems consisting 
of the rigid body dynamics and each of Lorenz, Chen and Lu&&  dynamical systems using the method of 
active control. In addition, a nonlinear control approach for synchronizing the rigid body motion was 
considered by Chen (2005b). To the best of our knowledge, the anti-synchronization dynamics of the 
rigid body has not been investigated. The goal of this paper is to modify the active control technique so as 
to achieve anti-synchronization for two identical rigid bodies evolving from different initial states and 
exhibiting chaos. In our design technique, we employ the Lyapunov stability theory and Routh-Hurwitz 
criteria to investigate the stability of the synchronized state.  The rest of the paper is organized as follows: 
In section 2, we describe the rigid body and discuss its dynamical properties; while in section 3, active 
control is formulated for anti-synchronization and numerical simulations are also presented. Section 4 
concludes the paper. 
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2.0 The Rigid body dynamics  
Here, we review the basic dynamical properties of the rigid body as presented by Chen and Lee 

(2004). Let us consider the Euler equations for the motion of a rigid body with principal axes at the center 
of mass: 
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where )3,2,1( =iiI are the principal moments of inertias, )3,2,1( =iiω are the angular velocities about the 
principal axes fixed at the center of mass and )3,2,1( =iiM are applied moments. If the applied moments 
are considered to be linear feedback, then: ωAM = , where  
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then the equations are represented as 
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Denoting x=1ω , y=2ω , z=3ω , aI
a =

1
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3
33 , we can re-write equation (2.3) 

in the form: 
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For system (2.4) to exhibit chaos, the equilibrium must be unstable. According to the results of Liu and 
Chen (2003), the system parameters a, b and c must satisfy the following necessary conditions: 
   a > 0, b < 0, c >0  and 0 < a < -(b + c)    (2.5) 
which is just one of the three possible cases. In addition, the parameters )3,2,1( =iI i  need to satisfy  
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For simplicity, assume that 02,021,033 IIIIII === ; )213( III >> , then the system (2.4) can be re-
written as  
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System (2.7) is invariant under the transformation ),,,(),,( zyxzyx −−→  ),,(),,( zyxzyx −−→ and 
),,(),,( zyxzyx −−→ ; implying that system (2.7) is symmetrical about the three coordinates zyx ,, , 

respectively. The symmetries persist for all values of the system parameters; a property that makes it 
robust to various small perturbation. It is also important to state that the system is dissipative and 
therefore all orbits ultimately are confined to a specific subset of zero volume, and the asymptotic motion 
settles onto an attractor 
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By making appropriate choices of the parameters a, b, c, the system (2.7) could exhibit strange 
chaotic attractors and limit cycles. For instance, for a = 5, b = -10 and c = -3.8, the motion is clearly 
chaotic and symmetrical about an axis as illustrated in Figure 1. 
 
3.0 Anti-synchronization via active control  

Chen (2005a) and Chen (2005b) presented two different schemes for synchronizing the rigid 
body chaotic motions. In this section, we present a modification to the work reported by Chen (2005a). 
The method is aimed at achieving global anti-synchronization. 

 
3.1 Design of Active Control 

Consider a drive-response system of a rigid body given by 
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for the drive system and  
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for the response system, where )3,2,1( =iiu  are active control functions that are to be determined. In the 
synchronization scheme, as presented in Chen (2005a) and Chen (2005b) for instance, the 
synchronization error is defined as the difference between two dynamical variables from the drive-
response system. In the anti-synchronization scheme, the anti-synchronization error is defined as the sum 
of the relevant dynamical variables. Thus, let the anti-synchronization error be defined as follows:  

12 xxxe +=  ; 12 yyye +=  ; 12 zzze += .   (3.3) 

By adding equations (3.1) and (3.2) and using the definition (3.3), we obtain the following error dynamics 
systems: 
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According to the active control method, the control functions should be re-defined so that the error 
dynamics system (3.4) is expressed in terms of the synchronization errors ),,( zyxiie =  only. Let  
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so that the error system (3.4) becomes  
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where )3,2,1( =iiV are new control functions that are to be determined. There are many possible choices 
for the control )3,2,1( =iiV  that could lead to synchronized dynamics. Let )3,2,1( =iiV  be defined as  

  TzyxiieATiiV )],,([)]3,2,1([ === ,   (3.7) 

where A is a 33× constant matrix and TzyxiieA )],,([ =  is the feedback matrix. In the usual approach of 
active control the matrix A is determined from the eigenvalues equation of the error system (3.6). In this 
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paper, we provide an alternative method for determining the matrix A that is base on Lyapunov stability 
theory and Routh-Hurwitz criteria. Suppose A is of the form 
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where the )3,2,1( =iik are the controller gains of the feedback matrix TzyxiieA )],,([ = , the value of which 
will modify the time at which synchronization will occur. With the matrix A defined in equation. (3.8), 
the error system (3.6) now becomes  
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According to Lyapunov stability theory and Routh-Hurwitz criteria, if  
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then the error system (3.6) must have all of the eigenvalues with negative real parts. This implies that the 
system (3.9) would be stable and the two rigid bodies would achieve anti-synchronization. Since the 
system parameters a, b, and c are bounded, it is convenient to choose the feedback gains )3,2,1( =iik  that 
satisfies the conditions (3.10). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

-25
-20
-15
-10
-5
0
5

10
15
20
25

-30 -20 -10 0 10 20 30

y

x

2

4

6

8

10

12

14

16

18

-30 -20 -10 0 10 20 30

z

x



Journal of the Nigerian Association of Mathematical Physics Volume 11 (November 2007), 5 – 14 
Chaotic dynamics  E. Vincent, R. K. Odunaike, J. A. Laoye and O. A. Abiola  J of NAMP 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Phase space 
illustrating the chaotic attractors of the rigid body for a = 5, b = -10 and c = -3.8. 

 

 

 

 
Figure 2:  Error dynamics when controls are de-activated. 
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Figure 3: Error dynamics when controllers have been activated at t = 50 
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3.2 Numerical Results. 
In the numerical simulations that follow, the Fourth-order Runge-Kutta algorithm has been 

employed with a fixed time-step of 0.001. To ensure chaotic behaviour in parameter space, the system 
parameters were set as in Figure1. That is a = 5, b = -10 and c = -3.8. However, the initial conditions for 
the drive-response system was set as follows:  

25.02,25.02,2.02,2.01,2.01,2.01 −=−===== zyxzyx . 

These corresponds to initial error states 05.0,05.0,0 −=−== zeyexe . For this choice of the system 

parameters, 102,61 =−= kk and 8.23=k  satisfies the condition (3.10). 
Figure 2 shows that in the absence of control, the error states grow chaotically with time. In 

Figure 3, the convergence of the error states when controls are activated at t = 50 is illustrated. The 
convergence is a clear indicator that anti-synchronization state has been reached. A confirmation of this 

result is shown by the plot of the average error, <e> defined by 222
zeyexee ++>=<  (Baker et al., 

1998; Baker et al., 1999). It should be noted that the controllers could be activated at any later time. In 
any case, anti-synchronization would be readily achieved as soon as the controls are activated 
 
4.0 Conclusions 

In conclusion, the anti-synchronization dynamics of a drive-response system of two rigid bodies 
derived from by the Euler’s equations of motion has been studied based on a modified method of active 
control technique that employs Lyapunov stability theory and Routh-Hurwitz criteria. The performance of 
the synchronization scheme for the rigid body model has been tested using standard numerical 
simulations. Asymptotic convergence of the error dynamics defined for the anti-synchronization states 
confirm that the drive-response rigid body achieves stable anti-synchronized state. The method could be 
readily extended to other chaotic systems. 
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