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The time independent, non-degenerate standard perturbation theory is 

compared with the alternate treatment of perturbation theory called logarithmic 
perturbation theory (LPT). For determining the non-degenerate ground state the 
LPT is, in principle, easier to apply than standard perturbation theory. This is 
because, as opposed to the standard perturbation method which requires the 
knowledge of the complete set of eigenvalues and eigenfunctions of the unperturbed 
system, for the LPT one only needs to know the ground state wave function of the 
unperturbed system, the energy correction to the next lower order and some easily 
computable coupling constants.  However, in reality, the LPT is a simpler method to 
apply when the ground state wavefunction is exponential in nature. But as shown 
here for trigonometric unperturbed wave function the LPT leads to integrals which 
have no analytical solutions thereby making LPT more difficult and less accurate 
method than the standard perturbation approach. 

 
 
1.0 Introduction 
 

In quantum mechanics there are relatively few real physical systems that can be solved exactly. 
Approximation methods are therefore very important in all applications of the theory. One of the most important 
approximations is the perturbation theory. Others methods of approximation, at least found in elementary textbooks, 
are the variational principle and the WKBJ approximation. What we call standard perturbation theory is the one 
originally derived by Schrodinger himself to for harmonic oscillation and for hydrogen atom equations [Hameka, 
2004]. This approach is found in almost any elementary quantum textbook and is also known as Raleigh–
Schrodinger perturbation theory. The most common perturbation cases that are usually discussed are in: the particle 
in a box, particle moving through a potential barrier, the harmonic oscillator, the rigid rotor and the hydrogen atom. 
On the order hand, LPT which was developed by Aharonov and Au [1979] are not well known and are only found in 
research [see e.g Au and Aharonov, 1979; Imbo and Sukhtame, 1984]. The authors usually claim that it is an easier 
approach to use over the conventional method. In this article, we try to show that the claim is an over generalization 
by showing examples where LPT is more difficult to use than the standard perturbation theory. 

Someone may argue that the general availability of computers renders this effort as unnecessary, in fact, if 
only the numerical values of energy eigenvalues, for example, are needed, both techniques cannot compete in 
accuracy with the simplest programs. A counter to the above argument is that, getting the values is not always the 
end of the story, but sometimes, the insight one gets, even in the lowest level of approximation are beyond just 
numbers. 

We have limited this study to non-degenerate ground state. This was because even though the LPT can also 
be used to calculate energy corrections to higher energy states, the treatment is similar to the ground state except 
that, here, care needs to be taken in removing the zero’s of the wave functions before transforming to S(x) (Imbo and 
Sukhtame, 1984).  
 
2.0 The Standard Perturbation Theory 
 

We use this approximation method for cases in which the Hamiltonian H describing the system can be 
regarded as the sum of another Hamiltonian H0 of a closely related problem (which is exactly solvable with known 
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eigenvalues En and eigenfunctions φn) and energy H1. which can be viewed as a perturbation on the system 
described by H0. H can be written as:  

ψψ EH =     (2.1) 

where      10 HHH +=     (2.2) 

and     nnEH φϕ 0

00 =     (2.3) 

with     1| =>< nn φφ    (2.4) 

It is convenient to consider the Hamiltonian H as below 

  10,10 ≤≤+= λλHHH    (2.5) 

and    0||),( 111 >=<= nHnHE nn φφ    (2.6) 

Which is the expression for expectation value of H1 for the unperturbed state n (Gasiorowicz, 2003). Hence the 
energy corrected to the first order is 

1,10 =+≈ λλEEE     (2.7) 
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The second order corrections, 2ψ  and E2,  in terms nφ are (Schiff, 1968) 
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Third order perturbations are also calculated through expansions to give (Dalgarno and Lewis, 1955) 
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3.0 The logarithmic perturbation method 
 

We have just looked at the standard way of doing perturbation on bound states in non-relativistic quantum 
mechanics. While the calculation of the first order energy correction E1 is straight forward, the formulae for higher - 
order correction En involves summation over all possible eigenstates, which often cannot be explicitly formed even 
for simple perturbing potentials.  
An alternative method of doing perturbation theory, which yields new expressions for any - other correction En to an 
unperturbed bound state energy, which do not involve cumbersome sums over intermediate unperturbed states has 
been developed by Imbo and Sukhatme (1984). In one dimension, these corrections, En can be evaluated using a 
simple explicit form containing a small number of integrals. In more than one dimension the approach is systematic 
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but calculations require the solution of well - defined partial differential equations. For order n = 2 this equation is 
identical to that of the aforementioned Dalgarno and Lewis method  

This approach is called the Logarithmic Perturbation Theory (LPT) in which we first change the wave 
function in one - dimension to S(x) = lnψ(x), which converts the linear time independent Schrodinger wave equation 
into a non - linear Ricatti equation. As in the standard perturbation we will start with the time independent 
Schrodinger wave motion. 

)()( xExH ψψ =      (3.1) 

where,    
10 HHH λ+≈      (3.2)` 
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and H1 is the perturbing potential. 
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Letting ψ(x) = exp[S(x)], that is, 
)(ln)( xxS ψ=      (3.5) 

we see that 

dx

xd

x
xS

)(

)(

1
)(

ψ
ψ

=′     (3.6) 



















−=′′
2

2

2 )(

)(

1)(

)(

1
)(

dx

xd

xdx

xd

x
xS

ψ
ψ

ψ
ψ

   (3.7) 

After some substitutions and some little rearrangements we have 
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We now expand E and )(xS ′ in orders of λ: 
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Substituting the above equations in equation (3.4) and grouping terms in like orders of λ will give us:- 
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for λ1: 
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and so on. 
For λn: 
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Equations (3.14) - (3.15) are linear differential equations, which are solvable by using the method of integrating 
factors. Looking at equation (3.12) we can see that it is the equation for the unperturbed problem, the solution of 
which is the unperturbed wave function ψ0(x). 
Let us now calculate the orders of corrections. For the first order we obtain 
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which leads to the standard first order perturbation theory result for E1 namely, 
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Proceeding in the same manner, one can solve for Cn and En. The results obtained from solving equation (3.15) are 
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Equations (3.19) – (3.21) are valid for n ≥ 2. 
The total energy is then written as E = E0 + E1 + E2 + …and even though the method can be generalized to three 
dimensions, we would, for the purpose here, treat one dimensional problems only. 
 
3.0 Comparisons of standard and logarithmic perturbation methods 
 

To compare these two methods we will solve some typical problems in non-relativistic quantum mechanics 
using both methods. 
 
4.1 Harmonic Oscillators 
 

If we have a harmonic perturbation such as 22
1 bxH = , the ground state energy and wave function are 
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second order energy corrections as 
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E = , which are exactly the same results obtained 

using the standard perturbation technique. 
 
4.2 Quartic Oscillator 
 

The first and second order corrections in the ground state eigenvalue when a simple harmonic oscillator 
having the reduced mass µ and the force constant k is subjected to the quartic perturbation H = ax4 is derived using 
the two theories.  

Using the standard method, the eigenvalues and eigenfunctions of the unperturbed oscillator are known to 
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where n = 0, 1, 2, …; H0 is the Hermite polynomial and α = µω/ђ. The first order correction to the ground state 

eigenvalue resulting from H1 is 
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Because the Hermite polynomial is a recurring polynomial the eigenfunction of the harmonic oscillator is also 
recurring. Using the recurrence relations for the Hermite polynomials (Powell and Craseman 1962, Davydov, 1969) 
we find that 
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The standard perturbation method and the LPT give different answers for the second order ground state eigenvalues.  
To continue our comparison we will deviate from exponential eigenfunctions by applying both methods to the 
particle in a box problem  
 
4.3 Particle in a Box: Stark Effect 
 

Consider an electron in a potential box having a length a. When an electric field ε is turned on in the x – 
direction, the electron experiences a force equal to -qε and the potential function term +qεx added to it. The potential 
then has the form shown in figure 1.  

ined  

Figure 1. Infinite potential well with perturbed potential xqV ∈=1 . 

 
To calculate the approximation to the ground state energy of the electron (to the first and second orders) we 

may assume that qεa is much smaller than the ground state energy in the absence of the electric field.  
 
Following are obtained for first and second order energy corrections, 
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Using the Logarithmic Perturbation Theory (LPT):- As already shown the, the first order energy correction is 
exactly the same with the expression for the Standard Method. That is,  
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For the second order energy correction, we have 
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The third and the sixth terms in the integral above are intractable [Mangus and Oberhettinger, 1949] (at least 
they are insoluble using common integral tables). But reducing them using integration by parts will show that the 
limits will go to infinity for those terms. 

It is worth noting that the same problem of non analytic integrals would arise when considering other kinds 
of perturbation in an infinite one dimensional box which are usually relatively easy problems under the standard 
perturbation theory. 
 
4.0 Conclusions 
 

We have compared the standard perturbation theory of quantum mechanics with the so-called Logarithmic 
perturbation theory (LPT). For the examples treated, in time independent non-relativistic quantum mechanics, both 
the standard method and the LPT worked quite well for harmonic oscillators and gave exactly the same results. We 
noticed that systems with exponential ground state functions were quite straight forward to calculate with LPT, even 
though the answer obtained in the case of a quartic perturbation differ slightly from that given by the standard 
perturbation approach. 

The “particle-in-box” problems on the other hand are easier to solve using the standard method. Due to the 
fact that these systems possess trigonometric wavefunctions, LPT is incapable for energy corrections to the second 
and higher orders. This is because the coupling constants needed for these calculations are derived by the division of 
certain expressions by the square of the ground state wavefunctions.  
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