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Abstract 
 

 The ground–state wave function and energy are calculated for two electrons 
subject to a one-band Hubbard Hamiltonian on a one dimensional lattice containing N 
electronic sites, N = 2,3,4,5,6, and a 3 x 3 cluster of the square lattice, using 
perturbation and variational methods.  The results from these two approximation 
methods are then compared with the result from exact calculational method. 

 
 
1.0 Introduction 
 
 The study of strongly- correlated electrons has become in the last decade one of the most active fields of 
condensed matter Physics.  The electronic properties of an increasing body of materials cannot be described 
adequately by Landau’s theory of weakly-interacting Oquasiparticles (Fermi liquid theory).  The best known cases 
are the high Tc superconductors and organic conductors.  In both cases, a strong anisotropy and a narrow conduction 
band contribute to make the effects of interactions between electrons (mainly Columbic repulsion) dramatic [ ]. 
 In 1963, Hubbard provided an important physical simplification of the band model of solids [  ] .  He 
pointed out that it is the short-ranged part of the coulomb interaction which is dominant in leading to the 
instabilities.  The long-range part of the coulomb interaction, i.e. the interaction between electrons on different sites, 
and the interaction between electrons and the ion core of the crystal can be considered to be screened out, and hence, 
are neglected in the Hubbard model.  In a Wannier–state basis, these assumptions lead to a many-body Hamiltonian, 
of the form 
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where σσ ii cc ,,

+  are  the creation and annihilation operator  for an electron of spin σ  in the Wannier state.  The 

operators satisfy the fermions anticommutation relations. { } σσσσ δδ ′
+ = ijji cc 1,         (1.2a) 

{ } { } 0, ,' == +
′

+
′ cc jiji cc σσσσ         (1.2b) 

ji,  means summation is only over nearest neighour sites and the spin index ↓=↑,σ  while σσσ iii cn c
+= is a 

number operator.  t is the electronic hopping parameter between nearest neighour sites i and j, h .c means hermitian 
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conjugation, while U is the on-site interaction energy.  For negative U we have an attractive model, while in the 
positive case a repulsive one. 
 
 

In this work we have been able to use perturbation theory [1] to determine the ground state energy and 
wave function for two electrons interacting in a one-dimensional lattice containing two sites.  We then proceed to 
obtain a general formula for the ground state energy and wavefunction for 2 electrons on N-sites (N > 2). The   work 
was then extended to a two-dimensional 3 x 3 square lattice.   Comparison was made with the result obtained from 
the correlated variational approach and exact calculations. 

 
2.0 Perturbation calculation of two interacting electrons in the ground state of the Hubbard 

Hamiltonian  

From equation (1.1) 
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where the unperturbed Hamiltonian H0 is  

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and the perturbation H1 is   ∑ ↓↑=
i

ii
nnUH1     (2.1b) 

The perturbation calculation begins by constructing the one-electron Bloch wave functions that diagonalize Ho, and 
which are  
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where Rj runs over all the cluster sites, and the allowed wave vectors  k have the form, 
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For two electrons on two sites, 
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These states satisfy periodic boundary conditions and diagonalize Ho with eigenergies 
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In the Hartree-Fock Approximation the wave function for the ground state of the system can be written as  
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which contain creation operators  referring to all filled levels below the Fermi level Ef.  Using (2.5) one can 
construct many-body wave functions of the Hatree Fock type; 

0
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where N is the total number of electrons in the lattice. 

[ ] 0
2211

φφ σσσψ ++=
kkk  

Choosing ,, 21 =↓=↑ σσ  we have [ ]↑↓−↓↑+↓↑+↓↑= 21212211
2

11ψ σk
 (2.7) 

Also choosing  ,, 21 =↑=↓ σσ  [ ]↑↓−↓↑+↓↑+↓↑−= 21212211
2

12ψ ςk
 (2.8) 

while choosing  ,, 21 =↑=↑ σσ  we get 0
3 =ψ σk

     (2.9) 

and choosing  ,, 21 =↓=↓ σσ  we get 0
4 =ψ σk

     (2.10) 
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In this way we classify many-body wave functions according to both wave vector k  and spin σ .  The ground state 
energy matrix to second order in the perturbation U is given by [1.1] 
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where To is  the eigervalue of the uperturbed Hamiltonian Ho.   
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Since N = 2, 
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Thus only two wave functions  ψψ σσ

21

kk
and  provides the smallest uperturbed kinetic energy T0 = - 2t for the two 

electrons.  We now set up the Hamiltonian matrix, using these wave functions, ψψ β
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Equation (2.14) is the first order matrix energy correction to the ground state energy.  The second order matrix 

energy correction is given by ∑ −δ
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Since tTTT 22
0

1
00 −=== , the second order matrix energy correction to the ground state energy vanishes.  This also 

follows from the fact that all the terms in the summation over δ  contain the terms ., δβδα ==  
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The ground state energy is given by  Eg = -2t + U    (2.17) 

The ground state wavefunction is given by ψψ δ
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where zero-order coefficient αC  are obtained from the diagonalization of the second-order Hamiltonian matrix 

(Equation 2.18)] whereas first-order coefficients δD  are given by 
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from equation (2.18), ψψψψ σσσσ
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since tTTT ooo 221 −=== ,  the first order coefficient D1 and D2 vanishes.  Zero-order coefficient obtained from the 

diagonalization of equation (2.16) are;  
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where sg .Ψ  is normalized. 

 
2.0 Variational calculation of two-interacting electrons in  

the ground state of the Hubbard Hamiltonian. 
 
We write the correlated ground-state wave function in the form. 
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Here, ↓↑ ji ,  means that one electron is on lattice site i with spin up and the other electron on lattice site j with 

spin down.  The X(i,j) are variational parameters.  Let us consider the case of two electrons on two sites.  Equation 
(3.1) can be written as  
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Variational ground state energy is of the form 
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Minimization of the expression (3.5) with respect to all the variational parameters, leads immediately to the 
variational ground state energy 
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The corresponding ground state wavefunction is given by 
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3.0 Two electrons in a one dimensional lattice containing N sites (N > 2) 
4.1 Perturbation calculation. 
 

Using the perturbation procedure of section 2.0, we obtain the following energies and wavefunction for N = 
3, 4, 5. 
For N = 3, 
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If N = 4, 
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If N = 5, 
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In general, for 2 electrons on N sites (N > 2 where N is an integer). 

N

U
tEg

2
4 +−=         (4.7)  

In general, the ground state wave function is given by 
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5.0 Two electrons in a one dimensional lattice containing N sites (N > 2) 
5.1 Variational calculation 
 

Using the variation method as demonstrated in section 3.0 we obtain the following energies and 
wavefuction for N = 3,5 (odd lattice sites) and N =4 ,6 (even lattice sites). 
If N = 3, 
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If N = 5, the ground state energy in matrix form is 
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If N = 4, the ground state energy matrix take the form 
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If N = 6, the ground state energy matrix is given by 
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6.0 Two Electrons in a (3 x 3) cluster of the square lattice perturbation calculation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2D 3 

Using the perturbation procedure of section 2.0, we construct the one
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3) cluster of the square lattice perturbation calculation.

 x 3 square lattice with periodic boundary conditions. 
 

Using the perturbation procedure of section 2.0, we construct the one-electron Bloch wave functions that diagonalize 
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is the unperturbed Hamiltonian (2.1a) of the Hubbard Hamiltonian equation (1.1) 
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Solving the non trivial solution of the equation. 
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The ground state wavefuncfion is given by equation (2.19) of section 2.0 
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7.0 Two electrons in a (3 x 3) 
7.1 Variational calculation. 
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8.0 Numerical results and discussion
 

We have obtained total energies an
approach for 2 electrons on  N sites, N
are shown in the tables below. 
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is given by the wavevector space [k10,k20] 
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3) clusters of the square lattice 

x 3 Square lattice with periodic boundary conditions. 

We make use of the correlated ground state wavefunction given by eqn. (3.1) to obtain. 
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Minimization of the expression (7.3) with respect to all the variational parameters, lead immediately to the 
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iscussion 

We have obtained total energies and wave functions, using Poturbation method and correlated variational 
approach for 2 electrons on  N sites, N = 2,3,4,5,6 and the (3 x 3) cluster of the square lattice.  The results obtained 
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Table 1: Ground State Energy Eg/t as a Function of U/4t for 2 Electrons on 2 Sites. 
 

U/4t Perturbation Variational Exact 
-50 -202.00 -200.02 -200.02 
-30 -122.00 -120.03 -20.03 
-20 -82.00 -80.05 -80.05 
-3.0 -14.00 -12.32 -12.32 
-2.0 -10.00 -8.47 -8.47 
-1.0 -6.00 -4.83 -4.83 
-0.05 -2.20 -2.10 -2.10 
-0.02 -2.08 -2.04 -2.04 
-0.01 -2.04 -2.02 -2.02 
0 -2.00 -2.00 -2.00 
0.02 -1.96 -1.96 -1.96 
0.01 -1.60 -1.81 -1.81 
0.50 0.00 -1.23 -1.23 
1.00 2.00 -0.83 -0.83 
1.50 4.00 -0.61 -0.61 
2.0 6.00 -0.47 -0.47 

 
Table 2: Ground State Energy Eg/t as a Function of (U/4t) for 2 Electrons on  3 Sites. 

 
U/4t Perturbation Variation Exact 

-50 -137.333 -200.0404 -200.0404 
-30 -84.000 -120.0678 -120.0678 
-20 -57.333 -80.1024 -80.1024 
-3.0 -12.000 -12.7446 -12.7446 
-2.0 -9.333 -9.1231 -9.1231 
-1.0 -6.6667 -6.0000 -6.0000 
-0.05 4.1333 -4.0682 -4.0682 
-0.02 -4.0530 -4.0269 -4.0269 
-0.01 -4.0267 -4.0134 -4.0134 
0 -4.0000 -4.0000 -4.0000 
0.02 -3.9467 -39736 -3.9736 
0.1 -3.7333 -3.8725 -3.8725 
0.5 -2.6667 -3.4641 -3.4641 
1.0 -1.3333 -3.1231 -3.1231 
1.5 0.0000 -2.8990 -2.8990 
2.0 1.3333 -2.7446 -2.7446 

Table 3: Ground State Energy Eg/t as a Function of  (U/4t) for 2 Electrons on  4 Sites. 
 

U/4t Perturbation Variational Exact 
-50 -104.0000 -200.0400 -200.0400 
-30 -64.0000 -120.0667 -120.0667 
-20 -44.0000 -80.1000 -80.1000 
-3.0 -10.0000 -12.6648 -12.6648 
-1.0 -6.0000 -5.8064 -5.8064 
-0.05 -4.1000 -4.0516 -4.0516 
-0.02 -4.0100 -4.0203 -4.0203 
-0.01 -4.0200 -4.0101 -4.0101 
0 -4.0000 -4.0000 -4.0000 
0.02 -3.9600 -3.9802 -3.9802 
0.1 -3.8000 -3.9060 -3.9060 
0.5 -3.0000 -3.6272 -3.6272 
1.0 -2.0000 -3.4186 -3.4186 
1.5 -1.0000 -3.2915 -3.2915 
2.0 0.0000 -3.2078 -3.2078 

 
Table 4: Ground State Energy Eg/t as a Function of U/4t for 2 Electrons on 5 Sites. 
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U/4t Perturbation Variational Exact 
-50 -84.0000 -200.0404 -200.0404 
-30 -52.0000 -120.0678 -120.0678 
-20 -36.0000 -80.1024 -80.1024 
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U/4t Perturbation Variational Exact 
-3.0 -8.80000 -12.7446 -12.7446 
-2.0 7.2000 -9.1231 -9.1231 
-1.0 -5.6000 -6.0000 -6.0000 
-0.05 -4.0800 -4.0682 -4.0682 
-0.02 -4.0320 -4.0269 -4.0269 
-0.01 -4.0160 -4.0134 -4.0134 
0 -4.0000 -4.0000 -4.0000 
0.02 -3.968 -3.9736 -3.9736 
0.1 -3.8400 -3.8725 -3.8725 
0.5 -3.2000 -3.4641 -3.64641 
1.0 -2.4000 -3.7016 -3.7016 
1.5 -1.6000 -2.8990 -2.8990 
2.0 -0.8000 -2.7446 -2.7446 

 
Table 5: Ground State Energy Eg/t as a Function of U/4t for 2 Electrons on 6 Sites. 

 
U/4t Perturbation Variational Exact 

-50 -70.6650 -200.040 -200.040 
-30 43.9990 -120.0666 -120.0666 
-20 30.6660 -80.0999 -80.09999 
-3.0 -7.9999 -12.6495 -12.6495 
-2.0 6.6666 -8.9467 -8.9467 
-1.0 -5.3333 -5.6845 -5.6845 
-0.05 -4.0667 -4.0350 -4.0350 
-0.02 -4.0267 -4.0136 -4.0136 
-0.01 -4.0133 -4.0067 -4.0067 
0 -4.0000 -4.0000 -4.0000 
0.02 -3.9733 -3.9869 -3.9868 
0.1 -3.8667 -3.9394 -3.9394 
0.5 -3.3333 -3.7824 -3.7824 
1.0 -2.6667 -3.6845 -3.6845 
1.5 -2.0000 -3.6313 -3.6313 
2.0 -1.3333 -3.5984 -3.5984 

 
Table 6: Ground State Energy Eg/t as a Function of U/4t for 2 Electrons on a (3x3) cluster of the Square Lattice. 

 
U/4t Perturbation Variational Exact 
-50 -1040.195 -1200.0808 -200.0808 
-30 390.257 -120.1356 -120.1356 
-20 -183.818 -80.2051 -80.2051 
-3.0 -14.2226 -13.6090 -13.6090 
-2.0 -11.3582 -10.5941 -10.5941 
-1.0 -9.284 -8.7446 -8.7446 
-0.05 -8.0454 -8.0227 -8.0227 
-0.02 -8.01793 -8.0090 -8.0090 
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U/4t Perturbation Variational Exact 
-0.01 -8.0089 -8.0045 -8.0045 
0 -8.0000 -8.0000 -8.0000 
0.02 -7.9822 -7.9912 -7.9912 
0.1 -7.9121 -7.9579 -7.9579 
0.5 -7.5802 -7.8190 -7.8190 
1.5 -6.8889 -7.6090 -7.6090 
2.0 -6.6173 -7.5440 -7.5440 

 
From the results show in the tables, perturbation method gives correct results of the ground state energies 

Eg/t for negative values of u/4t in the range .0
4

1 ≤≤−
t

u
 

For large values of U/4t, say -50, perturbation methods breaks down.  In general, the result obtained using 
the variational method is closer to that obtained from the method of exact diagonalization than perturbation 
calculation. 

Second order perturbation calculation, leads to diagonalization of a second order Hamiltonian matrix for 
any number of lattice sites, one and two dimensions.  For variational calculation, dimension of Hamiltonian matrix 
increase as lattice sites increases.  As U/4t  increases to zero, ground state energy (Eg/t) tend to a common value of -
2.0000 for 2 electrons on 2 sites, -4.0000 for 2 electrons on N sites N=3, 4, 5, 6 and -8.0000 for 2 electrons on a 3 x 
3 cluster.  These results reflect the usual trend. 

 
9.0 Conclusion 
 

We have studied in this paper the use of two approximate methods to calculate the energies and 
wavefunctions of systems described by the single-band Hubbard  Hamiltonian.  In the infinite U/4t limit, the results 
obtained from the perturbation calculation seems not to be appealing.  This is not surprising, since as U becomes 
large, perturbation theory is expected to break down. 
 The variational method is therefore a better approximation for all values of U. 
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