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Abstract

This paper performs the first order normalization that will be employed in
the study of the nonlinear stability of triangular points of the perturbed restricted
three — body problem with variable mass. The proble is perturbed in the sense
that small perturbations are given in the coriolisand centrifugal forces. It is with
variable mass as the mass of the third body variesith time. It is found that these
perturbations and varying mass are capable to bringa change in the Lagrangian
function, and consequently in the basic frequenciesThey become successful in
affecting the angle coordinates but remain unsuccsful in changing the action
momenta coordinates. The transformation utilized fo reduction of the second order
part of the Hamiltonian to the normal form is alsodependent on the perturbed basic
frequencies.
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1.0 Introduction

The main problem in modern dynamics is the longetprediction of the state of mechanical systeras th
have been modeled by differential or functional aguns. The emphasis is no longer on the compualiof
individual solutions but on characterization ofsdas such as stable or unstable manifolds of eokitiFor
Hamiltonian systems, it is not enough to look a tmearized system alone. The higher order tenmghé
normalized systems can affect the stability.

In order to investigate the stability of an eduilim point for all time and all the orders of tteems in the
expansion of the Hamiltonian one has to apply KAMdrem [the work of Kolmogrov [1] extended by Amth¢R]
and moser [3]]. For this, Hamiltonian H is to beduweed to the normalized Hamiltonian form,

H :cqll—aglz+}/2(Alf+ZBLI2+CI§)+-~ with @&}, @, as basic frequencies, Il, as the action momenta

coordinates: and A, B, C as second order coeffisiém the frequencies. Here; ¢ aw,l, —aw,l,. If H, is of

positive definite form, the equilibrium position $¢able by virtue of Liapunov’s [4] theorem for allders and all
time. On the other hand if Hs not a function of definite sign, then the invgation of stability needs KAM
theorem. To apply KAM theorem one must need nomatibn of the Hamiltonian.

Hence, the aim of this paper is to perform the firsler normalization that will be utilized in tlséudy of
the nonlinear stability of triangular points of theesent problem.

Deprit and Deprit [5] investigated the nonlineatsility of triangular points of the classical résted three-
body problem. Bhatnagar and Hallan [6] studied @ffect of perturbations in the coriolis and centyil forces
respectively on the nonlinear stability of equilibm points of the above problem. Further, the medr stability in
the restricted three-body problem under differespests was also discussed by Niedzielska [7], Sabband
Sharma [8] and Gozdziewski [9].

This paper is organized as follows. In section 2de&ermine the Lagrangian of the problem. Thes it i
expanded in power series ¢f and 77, where (&, ) are the coordinates of the third body referrethitriangular

point L, as the origin. Arranging the terms in ascendingqrs of (£,77 ) the homogeneous poly-nomiaj af order
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2 is found. Section 3 establishes the relation betwthe perturbed and the unperturbed basic freqperiVith L,
Lagrange’s equations of motion are written and tinecher linear stability condition characteristiot®are obtained.
The normal form of the second order part of the Haman is presented in section 4, where we salget of linear
equations obtained from,Hunder the normality conditions, we apply the sfarmation defined by Whittaker [10]
for reducing H to the normal form. In section 5 we are with cois@n.

2.0  Expansion of Lagrangian

The equations of motion of the restricted threeybprbblem, under the assumption that the masseof th
third body varies with time, as found by Singh dslwar [11], can be written 5-2@7'=Q, , n"+2¢'=Q,

with
2 12
Q =[ﬂ—+1j‘”3(52+r72)+y%(1'r—”+ﬁ], o= (fﬂ/yz] +n%

4 r,

1 2
r} ={€—(1—,u)y2} +n?, B=am?, y:%, a =constant, 0.4 A <4.4.

The mass m of the third body varies with the timetis its mass at = 0. Primes indicate differentiation
with respect tolT where dt =y'k dl". The parametex is the ratio of the mass of the smaller primaryie total
mass of the primaries such thaty < % Perturbation in the coriolis and the centrifugatces have been
considered with the aid gfandy such that the unperturbed value of each is uritynsequently they may be taken
as p=1+¢, |g<<1 and g =1+¢', |¢|<<1, wheres and &' represent the perturbations in the coriolis arel th

centrifugal forces respectively. The coordinatésriangular equilibrium point }. as found in Singh and Ishwar
[11], are

[L,ﬁj , wherey, = (1-2u)y?, - y{{ﬁ:ﬂj 5[1_%£,] . ° The perturbed Lagrangian function of the

2 2

restricted problem with variable mass can be writis
(E’Z +,7’2)+¢({[7 []{) 2[1+ﬁ J({Z +n ) (1__#+ﬁJn

r fa

We shift the origin to the triangular poinj.LlFor that we change
. &+ 5 . p+Ye . Thenthe Lagrangian function L becomes
2 2

"=ty [[e (e e[ 4] o)
( J(1+g)+y [ —ru+£], 2.1)

1 r2
N2 ,17%
where = {g + yf} + (/7 + }/22] = (&) (say).

-1 P A 2 2
P —{[{_VZJ +(/7+%]

In order to expand L in power series §aind /7 we first of all expandf (&,7) and g(&,7) by Taylor’s theorem.
Then we put the values of* andr,™ in (1) and arrange the terms in ascending powe,df. Since we need
here only L, so we have

Llet o) e - emdue o)+ (3+5g)(ﬂ ]gz

=gy )
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34 1}{[’2 +1 TGz +12e)- o+ ssv)}nz e e B s

3.0 Relation between perturbed and unperturbed basic frequencse

We wish to establish relation between perturbed and unpertbasécifrequencies. For this to the first
order, we write Lagrange’s equations of motion

-2@0+e)y' = —(T+ 1]5(3 +5g') &+ \}%{4['842+ 1}7 §(3— 2e')- 3}1517
and

5

n"+2Q@+ g){':%(ﬁ; +1]g \%(3+55){4(ﬁ42 +1]7 (3—25')-3} sE +

2

+ [ﬁ; +1] 5(12 +12¢')- (3+5&")\n

The characteristic equation of these equations is given by

/1“+[(1+8£—3£’)—%ﬁ’2(1+£')}A2 61

+—(1 s )[524_1]3 [/32+1]3(3+85')—(3+10£’) =0.

Let 77, denote the critical value of the mass parameter which dependshgearying mass of the third body and

small perturbations in the coriolis and centrifugal forces.
We have seen that fdd < u < 1, 0, the roots of (3.1) are distinct and pure imaginarythadriangular

point Ly is stable in the linear sense [12]. Let these rootsilte], #i &), , where,, &, , represent the perturbed
basic frequencies. Whes = &' = 0, the values of€, &' represent unperturbed basic frequencies. We can write

of =wl+pe+pe)anda =w,(l+ge+qe) (3.2)
where & @, represent unperturbed basic frequencies suchdfiat w? =1- %,32 ,

10

0 _2 1
2.2 - 9 .Y B2 3 B2 3 O<w, < —<w, <1
SR TRS T AT -11 <

4 367
226«)12 -49- Wl + /3
andp:—q—kz, =2af -1+> ,B =1-2uf — ,B fSKZ
22w} - 49 - —,Bzwzz 367 ,B
q' = - 9 (33)
18k?

The relations between the perturbed and unperturbed basic frezgiareigiven by (3.2) whereas p;, g, q' and
k are determined by (3.4).
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4.0 Normal form of second order part of Hamitonian

As the normalization procedure depends strongly on the dbita terms, thus it is important to simplify it
as much as possible. For this purpose, the Hamiltdthiearresponding to the Lagrangian function L giver(hyt)
can be written as H=-L+P<S+Pny' 4.1)

where PP, are the momenta coordinates given byz 9L and P = 9L Applying the translation
a¢&' an'

—

Y, i
F N g+%, NN+ pe ~ P _¢V72' P, P, +¢% on (4.1), one can obtain a new form of H.

Expanding the new form of H in power seriesdoéind 77, the second order part of the Hamiltonian can be
expressed as

H. = 2 (b2 + p;)+ L+ £)op, +fpﬂ)+{

1+8¢-5¢'  3(3¢' +1)B° P
8 32

1
2

-5+8:-7¢ (16'+24)8%) , =) ' 1) laoae
{ +8g £ _(£ ":3’2 )/3 },7 _4\S/§[,BT+1] (3+5£) {A{[z+lj (3—26)—3} én

We solve a set of equations obtain from

oH, oH aH oH
—AR, =—%, A& =—2, Ap =%
0¢ Gy R TS

- AP, =

Substituting the four values of, namelyA =i A=, A3=-iq.

O4=- ia)zl"we obtained four values of eadh/7, Ps, P, and if they are denoted by
$o1: (R (p,) (1= 1, 2,3, 4), we get
§=K(-d+2a) p =K @+ -a7), (B) =K (as® - Ad-2ab+a?),
() =K, (1° +a%A, +2bA - ad)

where a =1+¢, b:M_i(35r+l)ﬁz, c=-5+8c-7¢' (7e'+24)B°
8 32 8 32 ’

d=-

5 - Y
[,b: . 1JA(3 . 55.){4[/):+ 1] 4(3 ~2)- 3} andK; (i = 1, 2, 3, 4) are constant of proportionality

S
44/3
satisfying the normality conditions:

&) -&(R)+nR)-nR)=1, &R)-&R) +np)-n)=1 @2

Now, we apply the canonical transformation from piase space (7, ps p,) into the phase space product of the
angle coordinate®(, 6,) and the action momenth,(l,) as in Whittaker [10],

‘( Ql

e (4.3)
P! h Pl '

P, P,

where A = (a{J )]Si o Q = (ﬂ}zsm 6+ P = (20! )% cos 6, (i = 1,2), the different elements of the dydi&
BES w‘, i i i i i

1

ared =g (l+a,e+ae),i,j= 1234 wherea;;=0,a,=0, a, =

2kay |
a, = - Q= dw 4w __3V3s _3Wes o me MW,
4 ! 21 ! 22 ! ay, = ! a, = 13 T ! 32
2kw, kl, 2kl 2kl e, 2kl w, 2k, 2kl,
a :3\/§S’a :_3\/55 ' a :—3J§5wl'a __3\/§sa)2’a __n
® o 2klew Y 2kLw, % 2kl, “7 2k, 2K,
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[88@2 . [3@4 _1223 , 2813 jﬁz}

= - nz , a,. = a, = 0 (] = 1,2 3 = - 12 i 16 3
Ay 2k|2w2 1 1 (J ' ) ag, k4|12
[— 176 w; - 364 w,' +1332 w? - 135 + %/ﬁwf + 153;,80 Blw! - 24349 Bw? + 51750 /32}
i = 18Kk
16w, + 20w, + 24w} - 63 + [&l_ Zgiwf - Ea)l“j,b’z}
g =1 48 12 2 ,
21 k4|12
-176 w; - 76 w,' — 324 w} + 621 - (1000 w! - &wl“ - 4769 w! + @jﬂz}
g =L 9 12 8 ,
= 18k*I}?
8{(8501"  707)- ( 203 . _ 528 ., 3519 )/32}
72 288 16
0'23 = - ) ’
k*l;
[— 176 w;} + 532 w,! + 740 w] - 63 + [ﬂwf _ 28077 w! - 16939 w} - 204997 jﬁz}
. 3 36 16 192 ,
23 18k*I2
{44601“ +w! =27 + (323401“ + %wf —11},82}
a = 1
= k“12m,
[7040)5 +864cf — 59244 +16564f +1755+ [913@ + 752 + 28373@4 —%520)5 + 228),82
a:’%l = 18k4| 2m -
1
a33:1+a23’ a;3:a;3' a41:a23+2p’ aﬁ'll:a;3+2p,’
- [64&)18 - 64w’ + 492w, +540w? -81+ (ZSwf + 740 - %w{‘ - %a}f + 210),82
a, = -
“ 18k ‘I n,
4 6 4 8113 2
7040t - 2432f + 4644 +6480f —1215+| 65844 +1735%f —1188) +wa -937|8
L 181,
1

77
Iiz :4alf+9_3182' m, = A"C‘)i2 +1- :8 21 n, = _4wi2 +9- Bz’ (I =1’2)
The values ofa'ij and ai] forj = 2,4 can be obtained from those fet,3 respectively by replacingy by

w, |, by l,, m; by my, n; by n, wherever they occur, keeping k unchanged.
The transformation (4.3) changes the second omigop the Hamiltonian into the normal form

Hz = a‘{ll _Cdzl 2"
The general solution of the corresponding equatidmaotion arel, = const .(i = 1,2),
6, =« +const.f,=-a,+ const .

5.0 Conclusion

We infer that small perturbation&and &' given in the coriolis and centrifugal forces regpwaty, and the
variation of mass of the third body affect the laggian basic frequencies and angle coordinatesthgytdo not
influence the action momenta coordinates. The toamation utilized for reducing the second ordert jpé the
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