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Abstract

The purpose of this study is to provide necessarynd sufficient conditions
for exponential asymptotic stability in the large ad uniform asymptotic stability of
perturbations of linear systems with unbounded delgs. A strong relationship is
established between the two types of asymptotic &iéity. It is found that if the
exponential estimate of the solution of a systemrtds to zero as = the system is
said to be uniformly asymptotically stable. But if the solution of a system
approaches the origin faster than any exponentialuinction, then the system is said
to be exponentially asymptotically stable. Utilizig the exponential estimate of the
solution, stability criteria for the linear part of our system of interest is derived.
With enough smoothness conditions on the perturbatin function, and appeal made
to Lyapunov’s stability results and some Gronwall-ype inequalities the required

stability results are established for the linear Eaurbation.

Keywords:Exponentially asymptotic stability, linear pertutiba, stability
in the large, exponential estimate.

1.0 Introduction.

Stability theory begins with the problem of shogvithat solutions, which start near the trivial $ioin, stay
near it for all future times. Efforts at tacklingis problem are vast in the literature. Varioud#ity results for the
time varying ordinary homogeneous system given by

x(t) = A()x(t) (1.2)
whereA(t) is n x n matrix function, are conveyed in [8] [9]. In [JB] computable criteria for the stability of the
autonomous system.

X(t) = Ax 1.2)
are presented including solved examples and apiplitsaof stability in science and technology. Ofi¢ghese results
is the criterion for asymptotic stability of systefh.2), which is the requirement that all the roofsthe
characteristic equation of (1.2) have negative peats. Kartsatos in [12] has spelt out a set ofditons for
stability, uniform stability, uniform asymptoticadtility of system (1.1). These conditions are basedhe integral
boundedness of the fundamental matrix solutionhef given system(1.1) and the measure of measusaiiie
However, the computation of the fundamental magnlution of most systems is laborious and diffidoltobtain.
The characteristic equations and fundamental matiutions of functional differential equations @amemost cases
exponential formulations that are difficult to silifyy and hence serve very little practical purpgsee [17]). To
overcome this difficulty, the use of Lyapunov fupnas are introduced in proving conditions for thabdity of
ordinary and functional differential systems: Thee wof these positive definite functions followea thioneering
work of Alexsandr Mikhailovich Lyapunov in a monagh published in Russia in 1892. The methods oplugav
revolve around the notion that in a stable systhe tbtal energy in the system would be a minimumhat
equilibrium point [17]. It is this total energy,ahis described as
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the Lyapunov function. Burton in [3] stated thdtttie derivative of the Lyapunov function is negatithe non-
trivial solution would have a precise bound. Ttestlie condition that guarantees the asymptoticligyabf the
ordinary systems, (see [14]). Besides, the ordidé#fifgrential equations we have equations thatrporate delays.
These equations are called functional differemglations. Hale [10] identifies two main types:el&y differential
equations and Neutral differential equations.

Delay differential equations are those equationssghderivative of the state is expressed in teritibeo
present as well as the past states. They are rof for

X() =f(t, %), X0 = @

Neutral systems are equations whereby the dervativthe functional difference operatb(t, x,) is
expressed in terms of the past and present stdieg.are of the form
%D((t,&))= ) x =9
Functional differential equations are natural medel most real life problems. They have been fouseful in the
study of global economic growth in [5] with resuit&mergence of universal economic laws. In theesawork, it is
reported that neutral systems are of immense irapoet to systems planners in the control of fluabnat of
currents in loss less transmission lines. Thereappdications of functional differential systemsBiology, Physics
Engineering (see Burton [3]).

The growing importance of functional differentiajuations has attracted the attention of researaiieos
have provided conditions for the existence and usmgss of solutions of the equations. These resuls
summarized by Caratheodory’s conditions for thestexice and uniqueness of solutions of functionfédrdintial
equations.

Research has recently extended to the investigafitime stability of functional differential equaitis (see
[5] and [10] ). Computable criteria for the stalyilof delay systems exist in the literature, sde [7

Lyapunov’s methods have been extended to inveiiigabn stability of functional differential systsrhy
scholars among whom are Cheban [4], Chukuw [5] H&a®}, Cruz and Hale [7]. In [13], Kolomanovskii én
Myshkis presented Lyapunov’s direct and energy odhwith appreciable instructional dexterity anccéo Hale
[10] and Cruz and Hale [7] provided illuminatingaemples that concretize and illustrate these methalsks in [1]
obtained variation of constant formulae for theuiohs of functional differential equations Koloneaskii and
Myshkis [13] and quite recently, Zhang [18] develdpa new formulae for constructing Lyapunov funtdiand
functionals for delay equations. Perturbation teew for the stability of linear differential equats are presented
in [11, 16].

Chukwu [5] has improved on the results in [7] add][to provide conditions for uniform stability,
asymptotic stability and exponential asymptotichsity in the large; making distinction between thgo. The
present effort is to provide analogous results bfikdvu for perturbations of delay systems with iiténand
unbounded delays.

2.0 Notation and Preliminaries

Consider the linear system with unbounded delays
X(t) = L(t, %) (2.1)
and its perturbation X(t) = L(t, x) +f(t, %) (2.2)
Lt x) =X Ax(t-w)+ [* Al 9)x(t + 6)3
k=0

We reduce systems (2.1, 2.2) to the systems waitindbed delays by the following analysis. We start b
rewriting part of (2.1) in the form.

L(t,x )= Igmzp:Ax(t —wk)+um [° At+I)x(t+6)s, M =0
e e
We assume that the limits exist giving the follogvipartial sums:lgmzp:Ax(t —Wk) exists and is finite
~% k=0

p
Hence the sum of the infinite terms exists andken as) Ax(t - W, ) p<oo,
k=0
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In like manner, we assumian jOM A(t +19)X(t + 9) dJ exists and is also finite, thereby establishing thitefiress of

the indefinite integral

[ At I)x(t+6) dd
Hence system (2.2) becomes
X(t)=L(t,x )+ f(t.x)) 2.2)

% =@ @& C([-h, 0], E)
where

L(t,x)= g AX(t-w,)+ [ Alt,I)x(t+86), h~0

0

L(t,x) =" don(t, 9)x(t +6) (2.3)
is satisfied almost everywhere. The integral ithenLebesgue Stieltijes sense with respeét tdt, ¢, is
continuous irt, linear in@. A, A(t, 8) aren x n matricesn(t, 8) is a matrix of bounded variation, with

varpngn (t, 8) < M(t) where ME) € La(to, ta], E)
L, is the space of integrable functions. Eebe the real line ¢,0) andJ = [t,, t1]; t; >t, is a subset oE. For an
integern, E" is the Euclidean space of n tuples with the Eeelidnorm.0. The state space CG{[-h, 0], E) is
the Banach space of continuous functions, the deta@. For the function:[-h, t] =E",

x(s) = x(t + ) fort > 0 and €[-h,0]
The functionf J x C =E" is continuous.

3.0 Definition of Terms

Definition 3.1

The trivial solution, x = 0 of (2.1)is stable if for any given t, O E, and a positive number € there exists o =
0 (to, €) such that @ O B(0, d) implies x(to, @) O S(0) for all t > t,. IC[-h,0] andp(o,r), a ball centre at 0 with
radiusr.

Definition 3.2
Thetrivial solution x = 0of (2.1)isuniformly stableif for any given € > Othere exists 9= J(€) (independent
of to) such that

@O B(0, d) implies x(to, ®) O B(0, €) for all t > t,.

Definition 3.3
The trivial solutiorx = 0 of (3.1) is asymptotically stable, if it ibte, such thap 0 3(0, 6) implies.
X(to, ®—*0 as t>co (3.1)
In the case where the trivial solution is unifoyratable and satisfies condition (3.1) the systesaid to be
uniformly asymptotically stable.

Definition 3.4
The solutionx(ty, @) of (3.1) is exponentially asymptotically staliethe large if there exist L >0 and ¢ >
0 such that the solution satisfies

% (to, @ = @anddx (o, ¢) O0< Le™ ™ Oop (1
Lemma3.1
Let V(t) and P(t) be continuous functionsfor t>t,. Let C>0,M >0 andV(t)sC+ j;{M\/(s)+p(s)} ds then
V(t) < Ce" (t-t0) 4 J‘ot P(s)e“" (t-s) ds

Proof
See Chukwu [5]
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Lemma3.2
Suppose [, 7{s)ds - 0 ast - e, then lim e ['e"(sjis =0 for all t - 1.

Proof
See Chukwu [5]

4.0 Main Results
4.1 Stability criteria for linear systems with unbounded delays

A stability result for linear delay systems is sthand proved via the exponential estimate of thatiens.
This result complements known results (see ChulajuHale [10] ). To motivate our discussion on expotial
asymptotic stability, we consider exponential eat#of the solution of system (2.1).

x(t) = L(t .
By direct integration, we have x(t)= [ L(s,x)ds+C
Exploiting the boundedness conditionlgri.e. | |L(t,Xt) < K x|
we have x(t) = fo K|x,| ds+x(t,) (4.1)
Clearlyx(tg) = C. by the initial condition. It is know that forlafalues of
X, X< & ( see [15]) 4.2)

Apply (42), into (4.1) to havex(t)| < € < gl k[
0

x| ds,

[x(t)] < e[ L [xdssm exp('[ :O I ds) , M is a positive constant (4.3)
This Gronwall type integral inequality is the rempa exponential estimate of the solution of syst2rh)

Proposition4.1
System 2.1 with its basic assumptions is exponignssable if the exponential estimate tends tcozas
t—>o0

Proof

If k is negative in 3.3, we observe that the solutibr{201) tends to zero as—+~ faster that any
exponential function. In which case the system)(2slsaid to be exponentially asymptotically stalfethis
condition holds for any initial value of the statector, the system is said to be exponentially gdgtitally stable
in the large or globally exponentially, asymptolfigatable.

If the exponential estimate of the solution ordilyaapproaches zero asto then system (2.1) is said to
be asymptotically stable. Evidently, if system J2sl exponentially, asymptotically stable thensitaisymptotically
stable. However, the converse does not necessatiy
We here provide an example to illustrate the conoépxponential asymptotic stability.

Consider the system

X(t) = - (1 +sin ?x(t)) x(t) with the initial condition xig) =x,, By direct integration, we have

Inx(t) = _L; (L+sin? x(s)ds +C

x(t)= exd— j:o (1+ sin® x(x))ds+ C)= X, exp- j:o (1+ sin® x(s))ds
The condition ()00 ast -+ holds, showing that the trivial solution of thesgm becomes
O (1) O<O0 x (to) 00

Thus establishing exponential asymptotic stabilithe solution, of course approaches zero fasten #uay
exponential function. Since the result holds foy amtial value of the state, we have exponentigyraptotic
stability in the large.

Evidently, exponential asymptotic stability im@ieniform asymptotic stability, however the coneeis
not necessarily true.
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4.2 Stability criteria for linear perturbations

We shall now state and prove the necessary angtisuff conditions for perturbations of linear syste
with unbounded delays to be exponentially, asyng#tly stable in the large.

Theorem4.1
Consider system (2.2)

2Ll 1x) »”
where L(t, x )= i AX(t —wk)+[° Alt,8)(t +8) with its basic assumptions, Suppose (i) system (2.1) is uniformly

asymptotically stable (ii) the function f = f; + f, satisfies the condition fy(t, @) < m(t)00@Tt > 0, @ € C where
m=! nft)dt < co and there exists an £> 0 such that |, (t, @) < &g t - 0, 9O C . Assume further that there exists
0

a continuous Lyapunov functional V(t, ¢) defined on [0, e ] x C which satisfies the following conditions.
0] DO V(t, @)<M 0000

(ii) V(L @) - V(t, Y)I=M D - pO0p, e C

(iii) Vit, @ < -aV(t, @

then system (2.1)is exponentially asymptotically stable in the large.

Proof

From condition (ii), V(tp) <M for @& C. Condition (iii) and the hypothesis bshow that/(t, ¢) < -a V(t,
@ + MOF (t, @for all t > t, @ € C. We now show that system (2.2) is exponentiaflymptotically stable in the
large, that is there exist an L > 0, ¢ > 0 such thea solutiornx(t,, @) of system (2.2) satisfieq(t,, @) = ¢ and i,
(to, @O0 < Le® ™ O0p00  Since the linear system (2.1) is assumed unlfoesymptotically stable, from Hale
[10], there exist constants M > @,> 0 such that for everly> t, and @ € C the solutior(to, @) of (2.1) satisfies
Ox(t, @O0 < Me*™ @ [Opid t > t,. Let us consider a functionZ(t, ¢) such that

Z(t,q;):v(t,(o)exp{— MJ, n(s) ds} which is defined on 1 x C. Choose:%. In this domain,

2(t,¢) = exd- M As)asfv - Mt} < exd-M [ Afs)as- M AtV (1. @) - av .0+ M(F .0 + F [ o))}
< exp{— MJ. ﬂ(S)dS}{— MtV (@) -av(t.¢) + MAltV(t, @) + MeV(t,0) Hence

<(Me- a)\/(t,qo)exp{— M/, n(s)ds} < —%Z(t,qo).
Z(t, % (to, @) < Z(to, e 2 7Y

This implies
Il = Mlafexc [, e - -1,
with L=M ex;{Mj 7ft) o, cz%]

We establish the required result.
The next theorem further shows that a strong welatiip exists between exponential asymptotic stabil
and uniform asymptotic stability.

Theorem4.2
Suppose that (i) system (2.1)s uniformly asymptotically stable so that for some k >1, a > 0 thesolution
xt(to, @) of (2.1)satisfies O (to, 9) 00 < ke~ O, t > to, @€ C.
(ii) the function f =f; + f, satisfies the condition
|f.,(t. @) < Alt); t 2, OC
where  M(t)=]"«(s)ds -~ 0 ast -
a

|f..(t. o) <«|d; t - 9OC; €= o
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Then every solution x; (to, @) of (2.1)is uniformly asymptotically stable.

Proof
By the variation of constant formula, the solutadf(2.2) can be expressed by

Xty @.1)=x(t,,#0)+ [ Xt,(6, ssf (s, x,)
wherex(to, @, 0) is the solution of system (2.1) with
X0 (to, @) = @ andX(6,s) = X(t +6, s),0 € [-h, 0]
whereX(t, s) is the fundamental matrix for system (2.1). Byform asymptotic stability of (2.1) as spelt ont i
Hale [10],
OOX(t, )00 < ke® (=9 t >
holds. We now obtain an estimate of the soluxif, @) of (2.2)

% (t. @) < K|gfle = + [, ae ™ x[ds+ ] ke_a(m)/((s) ds, t>t,
" <K|ge ™ +| :0 {eke™|x*[| + ke™«(s)} ds
By the lemma (2.1), If we appW(t) = OOx, 0™ then

~a(t=s)

so that % x*

at —at (t-to) t as (t-s)
[ le* < Klgfe e + ! ke k(s)e“* ds
so that %] Kgfle ) + k| :0 gl -l (s)ds; t>t,
(£)10) . —[ﬂj(t—s) _
or x| <Kl ™™ +kf, e = «(s)ds
Therefore NE k||¢1|e’[%j(tft°) +k[ I‘e{%)(tfs)/((s) ds;

By Lemma (2.2), iftt is given as in condition (ii) of the lemma then
lime [ 'e"«(s)ds=0; forall t>1
It follows that ~ |x (t,, @) - O, ast -

This concludes the proof
To illustrate theorems (4.1) and (4.2), we constberfollow example.

Example4.1
Consider the system x(t) = Ax(t)+ Bx(t —1)+ F(t, )g) (4.5)
[ 0 1 j (0 oj
where A= , B=
-2 -3 0 -

f(t, x) = [€' (log sinx(t) + cosx(t - 1) (t - 1).
To investigate the asymptotic behaviour of the tsmfuof the system, we consider first, the lineartpf system
(4.5) x(t) = Ax(t) + Bx(t - 1) (4.6)
Its characteristic equitation is obtained thus

A(A)=(11-(A+Be))

_/10_01+00_/10_O 1+O 0
“lo 2 -2 -3) 0 -e”J[[ o 4) (-2 -3-¢") |0 A+3-¢"
detA(1)= (¥ +31+de” +2=0)
Comparing this result with the equatidh+ bA+ gAe™" + k = 0 which according to Driver [6] in pp. 32, exdmg.1
will have negative real parts for its rootdif g, b > 0,q > 0. In the light of this result, we conclude tha roots of
the characteristic equation for system (4.6) haesative real parts and hence the system is uniforml
asymptotically sable by Theorem (4.4)
Also observe that

OF (t, x (t), x(t — 1))J = [e" (log sin x(t)+ cosx(t - 1)X(t - 1)]
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e (log sinx(t))x(t - 1)]0+ e'cosx(t - 1) W(t - 1)]0

Of(t, @)O=€'.0. ¢ - 1) = 0[f,(t,@) = De'x(t - 1)0 = €' ODp0
Let «(t)=€" then [ “e™ds — Oast — o, clearly, Fy(t, ¢) O < T(t) andfy(t, ¢) < e00g0, t > 1, @€ C, f, andf,

are bounded and by theorem (4.1), we concludesifsiem (2.2) is exponentially asymptotically stahlé¢he large;
and by theorem (4.2), the system is uniformly adptigally stable.

From the above examples, it is not just sufficienknow that a system is uniformly asymptoticaligide.
There is need to investigate how fast the statbebystem approaches zero and this establishesgthiicance of
the concept of exponential asymptotic stabilityhia large.

5.0 Conclusion

The equation studied is a perturbation of linedaylesystem with infinite and unbounded delays ia th
state. Necessary and sufficient conditions are guder the asymptotic stability and the exponerdisymptotic
stability in the large of the system (2.2) undderence. The distinction between the two variaritasymptotic
stability are made. Asymptotic stability guarantées the solution(x(t)O of system (2.2) approaches zero as t
o while exponential asymptotic stability in the larg concerned with the rate at which the solufig(t)C of the
system approaches zero . This is inseparable fioen eixponential boundedness of the solution, whih i

mathematically expressed th < k||q4 et for t > t, andc, k constants.

The Lyapunov function and theorem played key rolestablishing our results. We exploited the caoilit
that the derivative of the Lyapunov function must egative definite and have small upper boundugrantee
asymptotic stability. We illustrated our resultsngsilluminating examples. This research is an mesign of the
work in [5] and [7], carrying over these previowesults to systems with infinite and unbounded delay new
method of handling equations of this type presarfescination as it exploits the convergence of stiseries and
improper integrals to achieve the desired results.
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