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Abstract 
 

We revisit models of hydrocephalus in the literature. In particular, we 
examine the class of models based on Biot’s theory of consolidation with fixed 
boundary forcing. Instead of fixed boundaries we take free boundaries. We prove 
existence and uniqueness of solutions. As in the fixed boundary forcing, we show   
that in a free boundary, the pressure is higher when the permeability depends on 
deformation. On the other hand, the total filtration is lower. Unlike the fixed 
forcing, the effect of the deformation on permeability reduces over time: 
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1.0 Introduction. 
 
 Models of hydrocephalus, which is characterized by excessive accumulation of fluid in the brain, have 
appeared in the literature over the past 2 decades ([1] – [6]). The fundamental premise of these models is that a 
correct description of hydrocephalus must take into account the sponge – like physical constitution of the brain 
parenchyma. Based on this, the ventricular enlargement is assumed to be the result of the squeezing out of the fluid 
from the microscopic pores of the brain parenchyma as a consequence of the hydrodynamic loading due to an 
increase in the ventricular cerebrospinal fluid pressure, whilist, the accumulation of the fluid observed in 
periventricular edema can be explained as the result of  filtration through the ventricular walls [4]. Hence the brain is 
treated as a porous medium. 
 In a recent paper Sivaloganathan et al. [4] derived a single non-linear parabolic equation for the 
unidirectional deformation of the brain tissue. 
 In this paper, we start with the single equation and instead of fixed boundaries we assume free boundaries 
and we investigate the properties of the pressure and filtration. Of particular interest is the structure of the spatial 
and temporal solutions. 
 
2.0 Mathematical Model 
  

The single equation that controls pressure and velocity profiles is  
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where     
( )

α
ρ−= tf
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Here 
ρ is pressure 
u is velocity of the cerebrospinal fluid 
f(t) is the forcing function 
x is the space variable 
t is time 
α is the Lame coefficient 
c measures the dependence of permeability on deformation. 

Sivaloganathan et al. [4] use the following for boundary and initial conditions 
v (o,t)  = 0    (2.4) 

v(L,t) = 
( )

α
tf

    (2.5) 

v (x,0) = 0    (2.6) 
(2.4) and (2.5) assume a fixed boundary. In this paper, we assume moving boundaries 
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where xo is the source of forcing function and xf denotes the final boundary Both boundaries are functions of time. In 
this paper our boundary and initial conditions are 

v(xo,t) = 0, t > 0      (2.7) 

v(xf,t) = 
α

0p
, t > 0     (2.8) 

v(x,t) = 0, t < 0      (2.9) 
 

3.0 Similarity Solution 
  

Let the similarity variable be 
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that is,   
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f (λ)  = 0, t > 0      (3.3) 
f ′(λ) = σ, t > 0      (3.4) 

f (1) =
α

0p
, t > 0      (3.5) 

 We imposed boundary condition (3.4) to ensure a unique solution. When (3.4) is used, σ is guessed so that 
boundary condition (3.5) is finally satisfied. We continue to change σ until (3.5) is satisfied. 
 We are interested in a solution f(η) for which 

( ) ( ) afaf ≤−≤−≤≤ ση
α
ρηηλ ',,1    (3.6) 

That is, both f and its derivative f’(η) are bounded. 
 
4.0 Existence and uniqueness of solution 
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Theorem 4.1 
Problem (3.2) which satisfies (3.3), (3.5) and (3.6) has a unique solution 
 
 

Proof: 
 Let x1 = η 
 x2 = f(η) 
 x3 = f’( η) 
Then 
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Thus, 

( )
( )

( )













−==′

==′
==′

31

2
2

3
2

32133

332122

32111

2

1
,,

,,

1,,

xx
A

xecxxxfx

xxxxfx

xxxfx

cx

α

   (4.2) 

Hence 3,2,1,3,2,1, ==
∂
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ji
x

f

j

i  are continuous and bounded.  Hence by Theorem 11.7 [2] problem (3.1) which 

satisfies (3.2), (3.4) and (3.5) has a unique solution 
 
5.0 Properties of the Solution 
 

The disease free case is given by c=0. In this case. 
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As shown in the appendix thus a solution of (3.1) is a lower solution for (5.1) since c > 0 and  0
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Now f(η) is a lower solution implies that v(x,t) is a lower solution. Thus p(x, t) is higher for c > 0 than for c 
= 0 by equation (2.2). Also ux is lower for c > 0 than for c = 0 by equation (2.3). 
 We have therefore obtained the same results of Sivaloganathan et al. [7] by method of upper and lower 
solutions. These important results are the following: Variable permeability (c > 0) increases the pressure of the 
cerebrospinal fluid and reduces its velocity. 
 
6.0 Numerical computation 
  

We display in Figures 1-3 the graph of f(η) against η for various values of λ. In each case, a solution exists. 
 

7.0 Discussion of the result 
 

Now 

( )
α

ρρ
α

ρρη −=−= 00 , xuf .   

There is no steady state. When t is large, f (η) ≡  0 so the pressure is constant and cerebrospinal fluid moves at 
constant velocity. 
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Definition [1] 
A smooth function v0 is said to be an upper solution of the problem (5.1) which satisfies (3.2) and (3.4) if v

satisfies 

 0
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v0(λ)  >  0    v0(1)  > 0. This implies that 

A smooth function u0 is said to be a lower solution of (5.1) if the inequalities are reversed. In this case
     

 

[1] R.O. Ayeni (1978 ) Thermal Runway, Ph.D Thesis, Cornell 
[2] W.R. Derrick and S.I. Grossman 
[3] M. Kacymarek, R .P. Subram

state solutions for Cylindrical geometry, Bull math Biol 59 295 
[4] A. W. Ogunsola (2005) React

LAUTECH Ogbomoso 
[5] S. Sivaloganathan, G. Tenti and J.M. Drake (1998) 

cerebrospinal fluid App math comput. 94 243 
[6] S. Sivaloganathan, M. Stastna, 

parenchyma with pulsatile ventricular pressure, Appl math comput 165, 687 
 
 

Journal of the Nigerian Association of Mathematical Physics Volume 10 (November 2006), 511 -516 
Biot’s equations of consolidation theory R. O. Ayeni, A. W. Ogunsola, A. O. Popoola and 

 
 

Appendix 
 

is said to be an upper solution of the problem (5.1) which satisfies (3.2) and (3.4) if v

This implies that ( ) ( ) 1,
0

≤≤≥ ηληη fv  

is said to be a lower solution of (5.1) if the inequalities are reversed. In this case
( ) ( ),0 ηη fu ≤  
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