Journal of the Nigerian Association of Mathematical Physics
 Volume 10 (November 2006), 497-498
 © J of NAMP

A new poof of multiple solutions of combustions problems

${ }^{1}$ R. O. Ayeni, ${ }^{1}$ A. M. Okedoye, ${ }^{2}$ F. O. Balogun, and ${ }^{3}$ F. I. Alao
${ }^{1}$ Department of Pure and Applied Mathematics
Ladoke Akintola University of Technology, Ogbomoso, Nigeria
${ }^{2}$ Department of Mathematics
Adeyemi college of Education, Ondo, Nigeria
${ }^{3}$ Department of Industrial Mathematics,
Federal University of Technology, Akure, Nigeria.

Abstract
We revisit the combustion problem $\frac{1}{r^{n}} \frac{d}{d r}\left(r^{n} \frac{d \theta}{d r}\right)+\lambda \exp (\theta)=0$, for the
plane ($n=1$), cylinder ($n=2$) and sphere ($n=3$) vessels. Using polynomial approximations. We show that the problem has two (2) solutions.

1.0 Introduction.

In the theory of laminar flames [2], the energy equation before appreciable consumption of the reactants is
of the form

$$
\begin{equation*}
\nabla^{2} \theta+\delta e^{\theta}=0 \tag{1.1}
\end{equation*}
$$

where $\theta=\frac{E}{R T_{0}^{2}}\left(T-T_{0}\right), T$ is the temperature, T_{0} is the initial temperature, E is the activation energy and R is the Universal gas constant and δ is the scaled Damkohler number.

2.0 Previous solution

For the infinite slab the problem reduces to subject to $\quad \theta(-1)=\theta(1)=0$
Problem (2.1) has closed form solution

$$
\begin{equation*}
\theta=2 \ln \left[\exp \left(\theta_{m} / 2\right) \sec h c x\right], \tag{2.2}
\end{equation*}
$$

with $c^{2}=\frac{\delta}{2} \exp \left(\theta_{m}\right)$, where $\theta_{m}=\theta_{0}$. Using equation (2.2) in equation (2.3), we obtain $\sqrt{\delta / 2}=$ $\exp \left(-\theta_{m} / 2\right) \cosh ^{-1}\left(\exp \left(\theta_{m} / 2\right)\right)$. So there exist 2 solution for θm when $0<\delta<\delta_{c}$. Here $\delta_{c}=0.878$.

In the case of the cylindrical vessel

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left(r \frac{d \theta}{d r}\right)+\delta e^{\theta}=0 \tag{2.4}
\end{equation*}
$$

A substitution, $r=\exp x$ and $\phi=\theta+2 x$ reduces the problem to $\frac{d^{2} \phi}{d x^{2}}+\delta e^{\phi}=0$,
and as before we obtain two solutions. On the other hand, in the case of spherical vessel

$$
\begin{equation*}
\frac{d^{2} \theta}{d r^{2}}+\frac{2}{r} \frac{d \theta}{d r}+\delta e^{\theta} \tag{2.6}
\end{equation*}
$$

and the problem has no closed form solution

3.0 New Method

In view of equation (2.5) it suffices to consider only equations (2.1) and (2.6)

Planar case $\quad \frac{d^{2} \theta}{d x^{2}}+\delta \exp \theta=0, \quad \theta(-1)=\theta(1)=0$.
By symmetry

$$
\begin{equation*}
\frac{d \theta}{d x}(0)=0 \tag{3.1}
\end{equation*}
$$

We seek an approximate polynomial solution $V(x)=C_{1}(x+1)^{2}(x-1)+C_{2}(x+1)(x-1)^{2}$
which satisfies the boundary conditions, where C_{1} and C_{2} are constants to be determined by the condition of the problem. Thus $\quad \frac{d^{2} V}{d x^{2}}+\delta \exp V=R(x)$.
using (3.2), we obtain $C_{1}=-C_{2}$ and take $x=-\frac{1}{3}$ or $\left(x=\frac{1}{3}\right)$,

$$
\begin{equation*}
R(-1 / 3)=+4 C_{1}+\delta \exp -\left(\frac{16}{9} C_{1}\right) \tag{3.5}
\end{equation*}
$$

For $R(-1 / 3)>0$ (as expected) (3.5) has two solutions, confirming the existence of two solutions for the planar case. From $C_{1}=C_{2}$, and (3.5) the polynomial $V(x)=C_{1}(x+1)^{2}(x-1)+C_{2}(x+1)(x-1)$, becomes $V(x)=2 C_{1}\left(x^{2}-1\right)$, $V_{\max }=V(0)=-2 C_{1}$ for the upper solution and $V(x)=-2 C_{2}\left(x^{2}-1\right), V_{\max }=V(0)=2 C_{2}$. for the lower solution.

Table1: The coefficients \mathbf{C}_{1} and \mathbf{C}_{2}

$\boldsymbol{\delta}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$
0.1	-2.61589911988	2.61589911988
0.3	-1.78200287232	1.78200287232
0.5	-1.33017158736	1.33017158736
0.7	-0.953832340092	0.953832340092
0.82	-0.643106126611	0.643106126611
0.827	-0.586440374325	0.586440374325
0.827728742	-0.562502095784	0.562502095784
0.82772874263574	-0.5625000047	0.5625000047

Spherical case

$$
\begin{align*}
& \frac{d^{2} \theta}{d r^{2}}+\frac{2}{r} \frac{d \theta}{d r}+\delta e^{\theta} \tag{3.6}\\
& \theta(0)=\text { finite, } \theta(1)=0 \tag{3.7}\\
& V(r)=C_{1}(r+1)^{2}(r-1)+C_{2}(r+1)(r-1)^{2} \tag{3.8}\\
& V(0)=C_{1}-C_{2} \tag{3.9}\\
& V(1)=0 \tag{3.10}\\
& V^{1}(0)=0 \Rightarrow C_{1}=-C_{2} \tag{3.11}\\
& R(r)=\frac{d^{2}(V)}{d r^{2}}+\frac{2}{r} \frac{d(V)}{d r}+\delta \exp (V) \tag{3.12}\\
& 12 C_{1}+\delta \exp \left(-63 / 62 C_{1}\right)=R(1 / 8) \tag{3.13}\\
& V(x)=C_{1}(x+1)^{2}(x-1)+C_{2}(x+1)(x-1)^{2} \tag{3.14}
\end{align*}
$$

The problem has two solutions.

4.0 Conclusion

Polynomial approximation confirms existence of 2 distinct solutions for planar, cylindrical and spherical vessels.

References

[1] Aregbesola, Y. A. S Numerical solution of Bratu problem using the method of weighted residual, Electronic Journal of South African mathematical Association (2003)
[2] Buckmaster J. D. and. Ludford, G. S Lectures on mathematical combustion, SIAM, Belfast (1983).

