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Abstract 
 

The neutron diffusion equation was solved under a “single cylinder one 
group (thermal neutrons)” approximation. The resulting equation was applied with 
a mixing index,ν , for various formation matrices and porosities. The ratio of 
counts from two different detectors was plotted as a function of porosity for these 
formations. These plots are useful for wireline log interpretations. 

 
 
1.0 Introduction. 
 

The determination of reservoir properties is very essential in the prospecting for crude oil and gas. One of 
the tools employed is neutron logging, where the slowing down behaviour of the neutrons through matter yields the 
necessary information, i.e., the porosity, φ, of the formation. This parameter is an indication of the likely amount of 
oil/gas stored in the reservoir. This work presents the slowing down process of thermal neutrons in a “one-cylinder” 
geometry, using a mixing parameter, ν. The resulting equations are used to derive data sets and charts, from which 
field logs could be interpreted.  
 
2.0 Theoretical consideration 
 

During the passage of neutrons through matter, their number must be conserved. The neutron balance 
equation states that for a given volume, 
 
 
 
This leads to the Boltzman transport equation, which, provided the angular distribution of the neutron velocity 
vector is isotopic, simplifies to (in the “one-group” approximation) the diffusion equation. 
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, and L is the diffusion length, which is given by [1], 

trL 2
1=       (2.3) 

and tr  is the average distance (measured in straight line) a neutron travels between the points of  
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thermalization and absorption. In a source free medium, equation (2.2) becomes 

0( )22 =− Φ∇ sL      (2.4) 

and 
2
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L
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2.1 Solution of the diffusion equation in cylindrical geometry 
 

Many authors have solved the diffusion equation as an exercise in nuclear reactor design [2,3,4]. The 
geometries employed in such solutions are in spherical coordinates, which is not appropriate for solving the problem 
in geophysical prospecting application involving boreholes. Consider the problem in cylindrical geometry, using the 
“single-cylinder” approximation. In right cylindrical coordinates (r, θ, z), and assuming azimuthal symmetry of Φ, 

we have 
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If the dependence of neutron flux on coordinates is separable, then Φ (r, z) = R(r)Z(z), and equation. (2.4) becomes

 )()(
2

2

zZrR
r

′′=
∂

Φ∂
 and  )()(

2

2

zZrR
z

′′=
∂

Φ∂
    (2.6) 

Substituting (2.5) and (2.6) into (2.4) yields 0
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i.e.    f(r) + f(z) + const = 0    (2.7) 
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Equation (2.9) is Bessel’s differential equation of the 1st kind, and its solution is the Bessel function of order zero. 
The general solution is  ).(B  )(A  )( m rYrJrR mmmm µµ

oo
+= .   A and B are constants and 

o
J , 

o
Y  are zero-order Bessel 

functions of the first and second kind respectively. 

Considering variation along z-axis, equation (2.7) is ,
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The only physically admissible solution of equation (2.10) is  
)(- exp const.  mzZ γ=      (2.11) 
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J , where 
o

r is the effective radius of the reservoir i.e. the radius at which the flux 

vanishes, which is the diffusion length, L. Then  
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The mα  are determined by the zeros of the function )( mJ α
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. If we have a point source, 
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The neutron current through z = 0 plane is given by Φ∇= zD- mI which from equation (2.13) gives 
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Expanding )(rδ in a Fourier – Bessel series [5], we obtain ( ) )(0 m
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This equation gives the neutron flux on the axis of the borehole when the detector is at a distance, z, from the source. 
 
3.0 Calculation methods 
 

On the axis of the borehole, r = 0, and, J0(0) = 1. The ratio of the neutron count at detector positions z1 and 
z2 is computed from equation (2.24), where the series is taken to fifth order.  This yields 
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The input parameters for the computation are listed in Tables 1 and 2. The material scattering parameters have been 
calculated using detailed methods, which include the Goertzel-Greuling procedure [8,9,10]. 
In well logging, the detectors of thermal neutrons must be at a distance from the source greater than 70cm. For this 
computation, we have used z1 = 100cm and z2 = 80cm.  The porosity, Φ , of the medium affects the neutron 
scattering parameters, and the nature of the formation (whether single component, or, a mixture) is also important. 
Suppose the diffusion length, L, is the parameter of interest in a two component matrix having volume fractions f1 
and f2 of components 1 and 2, with respective diffusion lengths L1 and L2. The diffusion length of the matrix, Lmat, is 
given by [11], 

2211max L  L ffL ννν +=     (3.2) 

where ν is the mixing index.  For a formation with porosity φ, 
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4.0 Results and Discussion 
Figure 1 shows typical neutron flux ratio plots as calculated from equation (3.1), for the indicated 

formation matrices. This was done for oil-bearing formations, in varying porosities from 0 to 0.5, which is the range 
encountered in actual logging operations. 

The plots show normal trend with a decrease of flux ratio with increase in porosity. This is in agreement 
with the increased scattering power of the hydrogenous media with increase in porosity. 
In actual well logging, the wire line tool measures the detector count ratios. With additional information from the 
analysis of cuttings, and from other measurements such as gamma ray or aluminium activation, the reservoir matrix 
type is determined. The appropriate chart could then be read directly to determine the porosity, which is an 
important reservoir parameter. The porosity is an indication of the oil reservoir capacity - an important economic 
factor. 
 
5.0 Conclusion 
 

The solution of the diffusion equation in cylindrical geometry has afforded the calculation of the detector 
count ratio in a realistic manner. The computed plots are of benefit to the wire line log interpreter. 

Table 1: Bessel function roots and values 
 

M 1 2 3 4 5 

)(2
1 mJ α  2.405 5.520 8.654 11.792 14.931 

)(2
1 mJ α  0.269 0.116 0.073 0.054 0.043 

 
Table 2: Material neutron scattering parameters. 

 
Material Sandstone Limestone Dolomite Anhydrite Crude oil 
Diffusion Length (cm) 18.25 13.26 15.16  2.10 
Slowing down length (cm) 28.79 25.69 21.28 31.38  
Mixing index -1.66 -1.76 -2.00 -1.65  

 

F ig u r e .1 :  F lu x  r a t io  v s  p o r o s i t y  
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0  0 .1 0 .2 0 .3 0 .4 0 .5 
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F lu x  ra t io 
S a n d s to n e  1 0 0 % 
 
S a n d s to n e  5 0 % , L im e s to n e  5 0 %  

S a n d s to n e  4 5 % , L im e s to n e  4 5 %
 D o lo m i te  1 0 % 
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