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Abstract

This paper presents mathematical models for the East African
trypanosomiasisor sleeping sickness. It is aimed at modeling the population
dynamics for the human and domestic animal victims as well as the dynamics of the
tsetse fly population that acts as the vector that spreads the parasite causing this
disease. Since deeping sickness is caused by two protozoan parasites that are
mor phologically similar but cause dramatically different diseases in humans and
domestic animals, this paper examines the East African sleeping sickness only. An
extended model is provided to show the significance of infectious contacts between
the tsetse flies and animals that serve as the reservoir for the parasite that causes

this disease. Steady states for the models are also Erwented and analxsed.
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1.0 I ntroduction.

African sleeping sickness is caused by two protozmarasites that are morphologically similar buisea
dramatically different diseases. In humans, tha B&#can sleeping sickness also known as the Riadesleeping
sickness is caused by the para3itgpanosoma brucei rhodesiense, or T. brucei rhodesiense whereas West African
sleeping sickness, also known as Gambian sleepakmess, is caused byrypanosoma brucei gambiense or
T.brucei gambiense. Both diseases are transmitted by tsetse flies [Ihjpanosomiasis in cattle is caused by the
parasitesTrypanosoma congolense and Trypanosoma vivax and is also carried by the tsetse fly. Detailsthua
disease and its economic impact on humans and dicraegmals can be found in [5, 6, 8].

This paper seeks to model mathematically the poipulalynamics of the East African sleeping sickness
(EASS). The paper by Roger [3] provided a generadiehfor the African sleeping sickness caused leypitrasite
Trypasonomiasis brucei or T.brucei, involving two vertebrate host species and thesgs#ly vector. In the paper, he
generalized the disease and modelled the populdyoamics of the vertebrates involved in the diseagcle.
Moreover the role of the wild animals that serveseservoir for the parasites was not discusséueimodel.

Research [4] has shown that there actually existrvrphologically similar parasites that causeedéht
diseases though both parasites are carried bys#tset fly. Hence this paper will concentrate ontytbe East
African sleeping sickness, caused by one of thagites. More so, we formulate a mathematical mdudsl takes
into consideration the role of the wild animalsttisarve as reservoirs for the parasites, a sigmfiand very
important role not discussed in [3]. East Africd@eping sickness is an acute disease that typitedigs to death
within weeks or months if not treated, unlike it®$V African counterpart that is chronic, since stonps may not
appear for months to years after the initial infac{4, 7].

For the EASS case, the initial bite leaves a difitie sore spot called a chancre. Symptoms, whigear
one to four weeks after infection, may include demllymph nodes, irritability, fever, severe heduycfatigue,
muscle and joint pain, and a skin rash. Duringgbeond stage of the disease, the parasite crdssddobd-brain
barrier and attacks the central nervous systemrdWagical complications include slurred speech,fasion, and
difficulty with walking.
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Seven species of tsetse flies in the geBlussina act as vectors of the disease to humans [9, 12,Thg]
cycle begins when a fly bites an infected mammal iagests the parasites. The protozoans multiptly develop
over a series of weeks within the gut and saliands of the fly. When the fly bites another hunoardomestic
animal host, the mature forms of the parasite géhtehost, settling in the blood and spinal flui@]|

The EASS variety lives within African wild animaparticularly in antelope (in savannah and woodland
areas), such as bushbuck and in wild pigs and wgsttand these wild populations act as a reseraoirthe
parasites. Tsetse flies bite these wild animalsthed infect any domestic animals or humans treyt Subsequently
bite. Usually they cause no problems with the apie’s health [5].

The aim of this paper is to develop a mathematioadel for better understanding of the dynamicshefdisease as
well as propose approaches for its control.

2.0 The mathematical model

To model EASS, it is important to keep track of tisease status for the human population, domestic
animal population (the wild animals having the pmatan do not have any problem with the diseas&)edisas the
tsetse fly population.

The EASS will be modelled as a SIS disease. Thisesause the sickness typically occurs in waves,
whereby the patient seems to recover, only to selapfew days later. This succession of outs &hsigs continues
until the infected person dies. This series of vecp and relapse is due to the parasite changsnguitface coating
in an attempt to avoid the immune system [1].

For the purpose of this work, the human populatidhbe divided into two different classes, naméhe
susceptible and infective classes. Also the anpopllation as well as the tsetse fly populatioth sé divided into
similar set of classes. Modelling the flows betwegle@ human, animal as well as tsetse fly populatieads to a
system of non-linear ordinary differential equation

Steady state for total eradication of the diseaiderexamined and see if it is feasible in preatiterms.

2.1 Derivation of Modd

The following populations will be considered: thentan population, domestic animal population and the
tsetse fly population.

Each of the populations will be divided into 2 cartments containing susceptible and infected. Simee
are dealing with the EASS, we shall omit an incigratlass for the human and domestic animal pojumst hence
a person or domestic animal that catches the didgeEsomes infectious instantaneously.

Let N, (t) be the density of the total number of humans attirn#dso let N, (t )be the density of the total

number of domestic animals at tifheLikewise, let N, (t ) be the total number of tsetse flies at time

Since we are having two compartments for each population, wkarfynstate the densities of the total
number of susceptible and infected in each populations at tibetS, (t), S,(t) and S, (t ) denotes the densities

of susceptible humans, domestic animals and tsetse fligsett, respectively. Also ldt,(t ) 1,(t) and I.(t)
denote the densities of infected humans, domestic animatsetsd flies at timé respectively.

Let us suppose that the average infectious perigq'isor humans and/,* for the domestic animals (the
y'stherefore stands for the rate at which the infected recoverexnmirie susceptible again). Assume tfais the

infectious contact rate between humans and the tsetse flisswillhdepend on two parameters: the biting ratef
the tsetse flies anpl, , the probability that the susceptible becomes infected after@@mchHence we have that

B, =ap, . Likewise, let 5, =ap, be the contact rate between the domestic animals and the fltesawas

explained above ang, , the probability that the domestic animal bitten will ipétcted.

Also susceptible tsetse flies can get infected (i.e. carrydhasipe) when they bite humans and domestic
animals that already infected. Hence, [t be the contact rate between susceptible flies and infected haméns

let B,. be the infectious contact rate between the flies and infected iomesnals. Using a similar argument as
above, we have thaB, =ap,, andg,, =ap,,, where p,, andp,, are the probabilities that a susceptible fly are
will become infected on biting an infectious human and damestimal respectively. So th¢'s represents the
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infectious contact rate between the susceptible and infected wépeimdls on the biting rate of the tsetse flies and
the probability of getting infected. Of course this agipends on the amount of blood meals obtained by the flies
from the host. We assume that there are enough hosts feqthesd blood meals.

We assume that the flies do not die of trypanosomiasis lmidohce they get infected, they becomes
infectious throughout their life span (approximately 6 rhepwWe shall ignore human and domestic animal birth
and death rates.

The rate of change o8, will be determined by the movement of newly infected outhef compartment

and the entry of recovered individuals into the compartnfdsb the rate of change df, will be determined by
the inward movement of infected individuals and the otdwaovement of those that have recovered $jtoThe
same explanation holds for the rate of changeSjoandl ,

Likewise the rate of change & will depend on the outward movement of initially susii@pttsetse flies

that are now infected (due to contacts with infected humansaaimdals) and their death rate as well as new
susceptible tsetse flies due to birth. Also the rate of chaihgie will be determined by the inward movement of the

infected flies into the compartment and the outward movementaddeath.
Putting all of these together, the governing equations fgoaulations in the different compartments are:

dth =Bl 4, 2.1)
dt =B, li:l -Vl (2.2)
ddst‘f* - —ﬁAi’;IT i, 2.3
ERRL S (2.4

Sops 4.5 LE4BN, -dS, (2.5)

A

(2.6)

BITST ﬂZTSI' N T T
A

Each equation represents the rate of change, asfhect to timet of the different compartments. The first
terms in (2.1)-(2.4) is the incidence of the digeasthe human (equation (2.1) and (2.2)) and démesimal
(equations. (2.3) and (2.4)) populations while thst terms is the rate at which infected recoved bacome
susceptible again. In equation (2.5), the first texans represents the incidence of the disease @thentsetse fly
population while the third and fourth term reprdsehe birth and death rates for the susceptilds, ftespectively.
In (2.6), again the first two terms is the incideffior the tsetse fly population while the last tesrthe death rate for
the infected flies. We assumed that the human pdipul animal population and the tsetse fly popaitats closed.
Hence in addition to the governing equation welsilab be having that
S, +1, =
S, +1,=N,

S +1, =

As was stated earlier, the incubation period ofdisease is neglected as symptoms starts to apfiear
one to four weeks of infection unlike in the Wedtidan sleeping sickness case where symptoms magppear
for months or even years after the initial infentidn this case (West African sleeping sicknesg)ubation period
may have to be included in the modelling proces$ss Ts a major difference between the East Afriskeping
sickness and the West African sleeping sickness.

Next we nondimensionalise the dependent variabiegquations (2.1) to (2.6). We scale quantities
representing the susceptible and infective in eatlgory with their respective total populatioresidence we shall
be having that
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uH — _H , VH —_H
N,, N,
SA |A
uA = s VA =
NA NA
u, :i, v, = IT
N, N,
Hence the governing equations (2.1) becomes,
du
dtH =W (kluHVT ~Vy ) (27)
dv,
dtH =V (kluHVT _VH) (28)
du
—A =—y (kuyv, -V 29
dt yA( 2YATT A) ( )
dv,
th = ya(kuy, —v,) (2.10)
du
dtT = b (=kuv, —Kuv, —u; =1) (2.11)
dc\j{[T = bT (k3uTVH + k4uTVA _VT) (212)
wherek, =&, k, =&, k, o andk, =&, andu, +v, =L u,+v,=1 u +v, =1
yH H yANA bT bT

We have a system of 6 coupled nonlinear ordinaffgrdintial equations to solve. However this can be
reduced to a system of 5 coupled nonlinear ordid#fgrential equations with one algebraic equatidence we

du, dv, du, dv, . %:bT((kg(l—vT)vH +k,(L-v;) v,-v;)to solve with

have the equations for—, . '
dt  dt dt dt

u =1-v,.
2.2.  Analytical Results

To study the behaviour of the system of differdngiguations that describes the dynamics of theciate
(i.e. equations (8), (10) and (12)), we find thesiBlgrium solutions, and linearize about these xareine their

stability.

2.2. Equilibrium Solutions.

We now set each of the three differential equatimnzero i.e.ddltH =0, d(;{[“ =0, d(;/tT =0 and solve for

v, , v, and v, for which the system will no longer change. So w&eenthat
Va(k@=Vv,)Vv —v,) =0
Valk,@=V,)v; =v,) =0
by (K, =V, )V, +K, A=V, )V, =V;) =0

There is a steady state (equilibrium point) of sgetem at(v,,v,,v,) = (0,0,0)i.e. a state where there is
no infectious human, domestic animal or even tsiisg ast — « (after a long time has passed). By intuition,
there is also a non-trivial equilibrium point @t, ,v,,v;) = (v,,V,,V,) which is rather complicated to write down in
simple algebraic form.
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2.3 Linearization of the system

To determine the behaviour of the infected popaoieginear each of the equilibrium solutions, we rneed
compute the linearization of the system, which amed from the Jacobian matrix of the system unde
consideration. For the system of equations (228)0) and (2.12), the Jacobian is the following:

~ky, -1 0 k@-v,)
J=|0 -k, -1 k,@d-v,)
k,l-v,) Kk @-v,) —-kyv,—-kyv,-1
If we substitute a set of equilibrium values ¥gr, v,and v, in the matrix J, then the matrix J will

represent the linearization of the system of déifgial equations under consideration about thatlibgum
solution. We will now examine the two equilibriumlstions.
2.3.1. Equilibrium1

For the solution (0,0,0), the eigenvalues bfwas found to bel, =-1, A, = -1+ ,/(kk, +k)k,) and

A, =-1-,/(kk, +k,Kk,) which are all real numbers. Hence the stability this point depends crucially on
R =kk, +kk,. If R <1 the three eigenvalues will be negative, making égeilibrium solution (0, O, 0)
asymptotically stable otherwise the point is unistalm other words, iR < 1the disease dies out after enough time
has passed. IR, > ,lit means that the point (0, 0, 0) will not beld#a This means that obtaining a disease free
situation will not possible. Hence the disease irsnandemic.

NowR, = BeNe Ao BN: B

YaNy b yuN,

R, =R, +R,; where R, is the basic reproductive ratio for the human cabiée R is the basic reproductive
ratio for the domestic animal case. We see Rgt is the number of secondary cases in humans thabgrected to
be produced by a single primary case (in humang)daoced into a wholly susceptible population &#tse flies and

is the basic reproduction rate of the infectigve can write this as

humans). The human case Ieads’—gt-‘é,’\\ll—T cases in the tsetse flies, each of which Ieadg—lfo cases in humans.
Ya Ny

Also R, is the number of secondary cases in domestic dsithiat are expected to be produced by a singteguyi

case (in domestic animals) introduced into a whellgceptible population (of tsetse flies and doimestimals).

g

The domestic animal case Ieads—téN—T cases in the tsetse flies, each of which Iead%b cases in the domestic
ValN,
animals.

Therefore the East African sleeping sickness diead only ifR < 1
2.3.2. Equilibrium 2

By intuition, we know there exist a non-trivial atly state alv,,v,,v;)=(V,,V,,v. )which is rather
complicated to write in simple algebraic form. Haeg the stability will again depend crucially Bn. For the
point to be stable (which implies endemicity sirtbe infective in the human, domestic animals ardsés fly
population does not tend to zero as ‘time’ tendsfioity), clearly and obviouslyR, > 1Hence the disease remains
endemic in both the human and domestic animal dipuls.

3.0 Extended model

This work will now consider an extension of the rab(2.1)-(2.6) just considered. In the model, atéel
insects were simply introduced into the populatddrhumans and domestic animals. Recall that thé Efsan
sleeping sicknesbas wild game mammals as the main reservoir fordikease. Hence contacts between these
animals and the tsetse flies will definitely playade in the number of infectives in the human gapon and the
domestic animal population. It is after the corgawith these wild animals that the cycle of crass¥mission
starts.

Let M be the number of such wild games in any givenligcd et us assume that the susceptible tsetse
flies acquire infection from these wild animalgta ratecgMS, . Define C to be the number of potentially infective
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contacts that a susceptible tsetse fly has pemitéyany of the wild animalsp is the probability that a tsetse fly
will actually get an infection after a potentialyfective contact with a wild animal. Let us assuthat M is
constant for that period when the contact is maudkthe cycle of infection begins.

Hence the governing equation for the extended moeledmes:

ddStH =-f S S, 3.1)
L —ﬁH N, e Ar (3.2)
ddst‘f* -5, j‘i L+, (3.3)
SN (3.4

A

d_Sr__ngsr_—ﬁZTSrl_A+bTNT—dTSr—c¢MSr (3.5)

BlTST H +BZTSI' N _dl +C¢Msr (3.6)

The equations remain as explamed in Sectlon 2 e human, domestic animals and tsetse fly ptipnlaemains
constant. If we nondimensionalise the system ag doisection 2, using the same non-dimensionahkias while
leaving the time scale unchanged, we shall havedinedimensional problem (to be solved) for theeested model
to be:

du,

- u, v, 3.7
e CICCIC ) 3.7
dv
d_tH:yH (kluHVT _VH) (38)
du
th ==y (ku.y, —v,) (3.9)
dv,
A AT 3.10
dt =ya(k, V,) (3.10)
dtT = bT (_I%UTVH - kAUTVA —U -1+ k5uT) (311)
dstT = by (KU, +Kuv, —Vv;) (3.12)

where the parametets, k,,k, andk, remains as they are in Section 2. The additionsdipetek,. =

¢M
b,
have a system of 6 coupled nonlinear ordinary difféal equations to solve. However this can beuced to a

system of 5 coupled nonlinear ordinary differenggjuations with one algebraic equation. Hence wee hhe

d(‘;tH ,d(;’tH ’d:tA’ddvtA =b ((k,@-V,)V, +k,@-Vv,)v, -V, +k.(1-V.)) to solve with

u =1-v,.

3.1.  Analytical results

The same analysis as was carried out in the fimdahwill also be carried out for the extended ntode
dv, dv, an dv,

dt ' dt dt

The work shall investigate equilibrium

av, _ 4 v, _ 0 dv,

, \ =0 i.e.
dt dt

solutions for,
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Yok @-Vv,)v; —v,) =0
Valk,@=V)v; —v,) =0
by (K@= Vo)v, K, A=V )V, — v +kA-v)) =0
There is a steady state of the systelv,av,,v,) = (0,04pain by intuition, there is also a non-trivial
equilibrium point at(v,,v,,v,) =(v,,V,,V, )which is rather complicated to write down in simplgebraic form.

23. Linearization of the system

To determine the behaviour of the infected popoieginear each of the equilibrium solutions, we rteed
compute the linearization of the system, which [amed from the Jacobian matrix of the system unde
consideration.

For the system of equations (3.8), (3.10) and (3th2 Jacobian is the following:

-ky,-1 0 k,(1-V,)
J=|0 -k, -1 k,@l-v,)
K (@L-Vv) K,@d-v) —kv, —kyv, -k -1
If we substitute a set of equilibrium values ¥gr, v,and v, in the matrix J, then the matrix J will

represent the linearization of the system of difféial equations under consideration about thatlibgum
solution.
3.3.1. Equilibrium1

For the point (0,0,0)]) has the eigenvaluet =-1 A, = —1—%k5 +%\/k52 +4k,k, +4kk,,

/13=—1—%k5—%\/kj+4k2k4+4k1k3 In this case, the eigenvalues will all be negatifeand only if

R =kk, +kk, -k <1, where R, is as explained in Section 2. Therefore the p@n0, 0) will be asymptotically
stable if and only iR < 1In this case the disease dies out after enough tias elapsed. For this model we see a
much tighter condition oR,. This though may really be practically unrealisig it would mean carrying out the

near impossible task of eradicating the tsetss tii@ally and/or killing the entire wild, park arafs that serve as
reservoirs for the parasites causing the diseaadirlg to no contacts between the flies and theiseas!
3.3.2. Equilibrium 2

Again by intuition, a non-trivial steady state égist the point(v,,,v,,v. )where the stability will again

depend crucially oR, . Obviously the point will be stable if and onlyRf >1, hence the disease remains endemic.

4.0 Summary and conclusion

In this work, two models for the dynamics of popigdas affected by the acute disease, the African
sleeping sickness (East African variant) are priegserhe first model looks at the complete pictof¢he disease
by examining the effect of the tsetse fly on bottman population and domestic animal populationnn given
settlement where the flies exist. The second m&len extension of the first which includes the tech rate
between the tsetse flies and the animals servingsesvoirs of the parasites. Here the infectiowstact rate of
tsetse flies to the animal plays a huge role inthele disease cycle.

How then do the society/government at least cotitildisease, knowing that achieving a diseasesfete
is almost impossible, suggesting endemicity? Ong¢hefreasons for making models of infectious disgds to
design policies aimed at eradicating or at leasitrotling them. Currently, there is neither a vaeci(so that
vaccination could be a means of controlling or essdicating the disease) nor a drug availabj@égent infection
with sleeping sickness. Also there is no immunityhe disease [7]. Hence prevention of sleepinknsiss requires
avoiding contact with the tsetse fly. That invahjatwvill mean controlling the vectors (tsetse flidhpt cause the
disease.

The most significant control policy is to reduRg the basic reproductive ratio, below 1 for bothdeis.

This basically entails reducind|, (the tsetse fly population) by the spraying of sis@des or chemicals in areas
(villages, parks and so on) where the insectsigeBy implication this will also lead to a decsesinb, .
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Vector control still remains the best strategy agathe disease. Restricting human and animal mertsm

to regions where there are many wild animals tbatcchave interactions with the tsetse flies armhtpass on the
parasites to the flies could be adopted. Also, [eeape encouraged to put on protective garmentswtiaprevent
the tsetse flies from biting them. In the main tifngher research may go into discovering drugsamcine to stop
this deadly scourge.
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