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Abstract 

 
This paper presents mathematical models for the East African 

trypanosomiasis or sleeping sickness. It is aimed at modelling the population 
dynamics for the human and domestic animal victims as well as the dynamics of the 
tsetse fly population that acts as the vector that spreads the parasite causing this 
disease. Since sleeping sickness is caused by two protozoan parasites that are 
morphologically similar but cause dramatically different diseases in humans and 
domestic animals, this paper examines the East African sleeping sickness only. An 
extended model is provided to show the significance of infectious contacts between 
the tsetse flies and animals that serve as the reservoir for the parasite that causes 
this disease. Steady states for the models are also presented and analysed. 
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1.0 Introduction. 
 

African sleeping sickness is caused by two protozoan parasites that are morphologically similar but cause 
dramatically different diseases. In humans, the East African sleeping sickness also known as the Rhodesian sleeping 
sickness is caused by the parasite Trypanosoma brucei rhodesiense, or T. brucei rhodesiense whereas West African 
sleeping sickness, also known as Gambian sleeping sickness, is caused by Trypanosoma brucei gambiense or 
T.brucei gambiense. Both diseases are transmitted by tsetse flies [11]. Trypanosomiasis in cattle is caused by the 
parasites Trypanosoma congolense and Trypanosoma vivax and is also carried by the tsetse fly.  Details on the 
disease and its economic impact on humans and domestic animals can be found in [5, 6, 8].  

This paper seeks to model mathematically the population dynamics of the East African sleeping sickness 
(EASS). The paper by Roger [3] provided a general model for the African sleeping sickness caused by the parasite 
Trypasonomiasis brucei or T.brucei, involving two vertebrate host species and the tsetse fly vector. In the paper, he 
generalized the disease and modelled the population dynamics of the vertebrates involved in the disease cycle. 
Moreover the role of the wild animals that serves as reservoir for the parasites was not discussed in the model. 

Research [4] has shown that there actually exist two morphologically similar parasites that cause different 
diseases though both parasites are carried by the tsetse fly. Hence this paper will concentrate only on the East 
African sleeping sickness, caused by one of the parasites. More so, we formulate a mathematical model that takes 
into consideration the role of the wild animals that serve as reservoirs for the parasites, a significant and very 
important role not discussed in [3]. East African sleeping sickness is an acute disease that typically leads to death 
within weeks or months if not treated, unlike its West African counterpart that is chronic, since symptoms may not 
appear for months to years after the initial infection [4, 7]. 

For the EASS case, the initial bite leaves a distinctive sore spot called a chancre. Symptoms, which appear 
one to four weeks after infection, may include swollen lymph nodes, irritability, fever, severe headache, fatigue, 
muscle and joint pain, and a skin rash. During the second stage of the disease, the parasite crosses the blood-brain 
barrier and attacks the central nervous system. Neurological complications include slurred speech, confusion, and 
difficulty with walking. 
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Seven species of tsetse flies in the genus Glossina act as vectors of the disease to humans [9, 12, 13]. The 
cycle begins when a fly bites an infected mammal and ingests the parasites. The protozoans multiply and develop 
over a series of weeks within the gut and salivary glands of the fly. When the fly bites another human or domestic 
animal host, the mature forms of the parasite enter the host, settling in the blood and spinal fluid [10].  

The EASS variety lives within African wild animals particularly in antelope (in savannah and woodland 
areas), such as bushbuck and in wild pigs and warthogs and these wild populations act as a reservoir for the 
parasites. Tsetse flies bite these wild animals and then infect any domestic animals or humans that they subsequently 
bite. Usually they cause no problems with the antelope's health [5].  
The aim of this paper is to develop a mathematical model for better understanding of the dynamics of the disease as 
well as propose approaches for its control. 
 
2.0 The mathematical model 
 

To model EASS, it is important to keep track of the disease status for the human population, domestic 
animal population (the wild animals having the protozoan do not have any problem with the disease) as well as the 
tsetse fly population. 

The EASS will be modelled as a SIS disease. This is because the sickness typically occurs in waves, 
whereby the patient seems to recover, only to relapse a few days later. This succession of outs of sickness continues 
until the infected person dies. This series of recovery and relapse is due to the parasite changing its surface coating 
in an attempt to avoid the immune system [1].  

For the purpose of this work, the human population will be divided into two different classes, namely the 
susceptible and infective classes.  Also the animal population as well as the tsetse fly population will be divided into 
similar set of classes. Modelling the flows between the human, animal as well as tsetse fly populations leads to a 
system of non-linear ordinary differential equations. 

Steady state for total eradication of the disease will be examined and see if it is feasible in practical terms. 
 
2.1. Derivation of Model 
 

The following populations will be considered: the human population, domestic animal population and the 
tsetse fly population. 

Each of the populations will be divided into 2 compartments containing susceptible and infected. Since we 
are dealing with the EASS, we shall omit an incubation class for the human and domestic animal populations; hence 
a person or domestic animal that catches the disease becomes infectious instantaneously.  

Let )(tN H  be the density of the total number of humans at timet . Also let )(tN A be the density of the total 

number of domestic animals at timet . Likewise, let )(tNT  be the total number of tsetse flies at timet .  

Since we are having two compartments for each population, we similarly state the densities of the total 
number of susceptible and infected in each populations at timet . Let )(tSH ,  )(tS A  and )(tST  denotes the densities 

of susceptible humans, domestic animals and tsetse flies at timet , respectively. Also let )(tI H , )(tI A  and )(tIT  

denote the densities of infected humans, domestic animals and tsetse flies at time t  respectively. 

Let us suppose that the average infectious period is 1−
Hγ  for humans and 1−

Aγ  for the domestic animals (the 

s'γ therefore stands for the rate at which the infected recover and become susceptible again). Assume that Hβ is the 

infectious contact rate between humans and the tsetse flies. This will depend on two parameters: the biting rate,a  of 
the tsetse flies andHp , the probability that the susceptible becomes infected after each bite. Hence we have that

HH ap=β . Likewise, let AA ap=β  be the contact rate between the domestic animals and the flies, with a  as 

explained above andHp , the probability that the domestic animal bitten will get infected. 

 
Also susceptible tsetse flies can get infected (i.e. carry the parasite) when they bite humans and domestic 

animals that already infected. Hence, let T1β  be the contact rate between susceptible flies and infected humans and 

let T2β be the infectious contact rate between the flies and infected domestic animals. Using a similar argument as 

above, we have that THT ap=1β  and TAT ap=2β , where TATH pp  and  are the probabilities that a susceptible fly are 

will become infected on biting an infectious human and domestic animal respectively. So theβ ’s represents the 
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infectious contact rate between the susceptible and infected which depends on the biting rate of the tsetse flies and 
the probability of getting infected. Of course this again depends on the amount of blood meals obtained by the flies 
from the host. We assume that there are enough hosts for the required blood meals. 

We assume that the flies do not die of trypanosomiasis and that once they get infected, they becomes 
infectious throughout their life span (approximately 6 months).We shall ignore human and domestic animal birth 
and death rates. 

The rate of change of HS will be determined by the movement of newly infected out of this compartment 

and the entry of recovered individuals into the compartment. Also the rate of change of HI  will be determined by 

the inward movement of infected individuals and the outward movement of those that have recovered intoHS . The 

same explanation holds for the rate of change for AS  and AI . 

Likewise the rate of change of TS  will depend on the outward movement of initially susceptible tsetse flies 

that are now infected (due to contacts with infected humans and animals) and their death rate as well as new 
susceptible tsetse flies due to birth. Also the rate of change of TI  will be determined by the inward movement of the 

infected flies into the compartment and the outward movement due to death. 
Putting all of these together, the governing equations for all populations in the different compartments are: 
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Each equation represents the rate of change, with respect to time, t  of the different compartments. The first 
terms in (2.1)-(2.4) is the incidence of the disease in the human (equation (2.1) and (2.2)) and domestic animal 
(equations. (2.3) and (2.4)) populations while the last terms is the rate at which infected recover and become 
susceptible again. In equation (2.5), the first two terms represents the incidence of the disease among the tsetse fly 
population while the third and fourth term represents the birth and death rates for the susceptible flies, respectively. 
In (2.6), again the first two terms is the incidence for the tsetse fly population while the last term is the death rate for 
the infected flies. We assumed that the human population, animal population and the tsetse fly population is closed. 
Hence in addition to the governing equation we shall also be having that 

 TTT

AAA

HHH

NIS

NIS

NIS

=+
=+
=+

 

As was stated earlier, the incubation period of the disease is neglected as symptoms starts to appear after 
one to four weeks of infection unlike in the West African sleeping sickness case where symptoms may not appear 
for months or even years after the initial infection. In this case (West African sleeping sickness), incubation period 
may have to be included in the modelling process. This is a major difference between the East African sleeping 
sickness and the West African sleeping sickness. 

 
Next we nondimensionalise the dependent variables in equations (2.1) to (2.6). We scale quantities 

representing the susceptible and infective in each category with their respective total population size. Hence we shall 
be having that 
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Hence the governing equations (2.1) becomes, 

 )( 1 HTHH
H vvuk

dt

du −−= γ       (2.7) 
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 )( 2 ATAA
A vvuk

dt

du −−= γ       (2.9) 

 )( 2 ATAA
A vvuk

dt

dv −= γ       (2.10) 

)1( 43 −−−−= TATHTT
T uvukvukb

dt

du     (2.11) 

)( 43 TATHTT
T vvukvukb

dt

dv −+=      (2.12) 

where
HH

TH

N

N
k

γ
β=1 ,  

AA

TA

N

N
k

γ
β=2 , 

T

T

b
k 1

3

β=  and 
T

T

b
k 2

4

β= , and 1   ,1  ,1 =+=+=+ TTAAHH vuvuvu . 

We have a system of 6 coupled nonlinear ordinary differential equations to solve. However this can be 
reduced to a system of 5 coupled nonlinear ordinary differential equations with one algebraic equation. Hence we 

have the equations for  ,,,
dt

dv

dt

du

dt

dv

dt

du AAHH and HTT
T vvkb

dt

dv
)1((( 3 −=  )1(4 Tvk −+  )TA vv − to solve with 

TT vu −=1 .  
 
2.2. Analytical Results  
 

To study the behaviour of the system of differential equations that describes the dynamics of the infected 
(i.e. equations (8), (10) and (12)), we find the equilibrium solutions, and linearize about these to examine their 
stability. 
 
2.2. Equilibrium Solutions. 

We now set each of the three differential equations to zero i.e. 0  ,0  ,0 ===
dt

dv

dt

dv

dt

dv TAH  and solve for 

Hv , Av and Tv for which the system will no longer change. So we have that 
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There is a steady state (equilibrium point) of the system at )0 ,0 ,0(),,( =TAH vvv  i.e. a state where there is 

no infectious human, domestic animal or even tsetse flies as ∞→t  (after a long time has passed). By intuition, 

there is also a non-trivial equilibrium point at ) , ,(),,( ***
TAHTAH vvvvvv =  which is rather complicated to write down in 

simple algebraic form. 
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2.3 Linearization of the system 
 

To determine the behaviour of the infected populations near each of the equilibrium solutions, we need to 
compute the linearization of the system, which is obtained from the Jacobian matrix of the system under 
consideration.  For the system of equations (2.8), (2.10) and (2.12), the Jacobian is the following: 



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
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
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

−−−−−
−−−
−−−
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)1(         1               0

)1(              0          1

4343

22

11

AHTT

AT

HT

vkvkvkvk

vkvk

vkvk

J  

If we substitute a set of equilibrium values forHv , Av and Tv  in the matrix J, then the matrix J will 

represent the linearization of the system of differential equations under consideration about that equilibrium 
solution. We will now examine the two equilibrium solutions. 
2.3.1. Equilibrium 1 

For the solution (0,0,0), the eigenvalues of J  was found to be =−= 21   ,1 λλ  +−1  )( 4231 kkkk +  and 

)(1 42313 kkkk +−−=λ which are all real numbers. Hence the stability of this point depends crucially on

42310 kkkkR += . If 10 <R  the three eigenvalues will be negative, making the equilibrium solution (0, 0, 0) 

asymptotically stable otherwise the point is unstable. In other words, if 10 <R , the disease dies out after enough time 

has passed. If 10 >R , it means that the point (0, 0, 0) will not be stable. This means that obtaining a disease free 

situation will not possible. Hence the disease remains endemic. 

Now
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β +=   is the basic reproduction rate of the infection. We can write this as 

TH RRR 000 +=  where HR0  is the basic reproductive ratio for the human case while 
TR0

is the basic reproductive 

ratio for the domestic animal case. We see that HR0  is the number of secondary cases in humans that are expected to 

be produced by a single primary case (in humans) introduced into a wholly susceptible population (of tsetse flies and 

humans). The human case leads to 
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 cases in the tsetse flies, each of which leads to 
T

T

b
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 cases in humans. 

Also TR0  is the number of secondary cases in domestic animals that are expected to be produced by a single primary 

case (in domestic animals) introduced into a wholly susceptible population (of tsetse flies and domestic animals). 

The domestic animal case leads to 
AA

TA

N

N

γ
β

 cases in the tsetse flies, each of which leads to  
T

T

b
2β

 cases in the domestic 

animals.   
Therefore the East African sleeping sickness dies if and only if 10 <R .  

2.3.2. Equilibrium 2 
By intuition, we know there exist a non-trivial steady state at ) , ,(),,( ***

TAHTAH vvvvvv =  which is rather 

complicated to write in simple algebraic form. However, the stability will again depend crucially on0R . For the 

point to be stable (which implies endemicity since the infective in the human, domestic animals and tsetse fly 
population does not tend to zero as ‘time’ tends to infinity), clearly and obviously 10 >R . Hence the disease remains 

endemic in both the human and domestic animal populations.  
 
3.0 Extended model 
 

This work will now consider an extension of the model (2.1)-(2.6) just considered.  In the model, infected 
insects were simply introduced into the population of humans and domestic animals. Recall that the East African 
sleeping sickness has wild game mammals as the main reservoir for the disease. Hence contacts between these 
animals and the tsetse flies will definitely play a role in the number of infectives in the human population and the 
domestic animal population. It is after the contacts with these wild animals that the cycle of cross-transmission 
starts.  

Let M  be the number of such wild games in any given locality. Let us assume that the susceptible tsetse 
flies acquire infection from these wild animals at the rate TMScϕ . Define c  to be the number of potentially infective 
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contacts that a susceptible tsetse fly has per day with any of the wild animals; ϕ  is the probability that a tsetse fly 

will actually get an infection after a potentially infective contact with a wild animal. Let us assume that M  is 
constant for that period when the contact is made and the cycle of infection begins. 

Hence the governing equation for the extended model becomes: 
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The equations remain as explained in Section 2. Also the human, domestic animals and tsetse fly population remains 
constant. If we nondimensionalise the system as done in Section 2, using the same non-dimensional variables while 
leaving the time scale unchanged, we shall have the non-dimensional problem (to be solved) for the extended model 
to be: 
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where the parameters ,,, 321 kkk  and 4 k  remains as they are in Section 2. The additional parameter 5k . 
Tb

Mcϕ= We 

have a system of 6 coupled nonlinear ordinary differential equations to solve. However this can be reduced to a 
system of 5 coupled nonlinear ordinary differential equations with one algebraic equation. Hence we have the 

equations for  ,,,
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3.1. Analytical results  
 

The same analysis as was carried out in the first model will also be carried out for the extended model. 

Again the equations for analysis will be those of
dt

dv
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dv TAH  and  , .  The work shall investigate equilibrium 
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There is a steady state of the system at )0 ,0 ,0(),,( =TAH vvv . Again by intuition, there is also a non-trivial 

equilibrium point at ) , ,(),,( ***
TAHTAH vvvvvv =  which is rather complicated to write down in simple algebraic form. 

 
2.3. Linearization of the system 
 

To determine the behaviour of the infected populations near each of the equilibrium solutions, we need to 
compute the linearization of the system, which is obtained from the Jacobian matrix of the system under 
consideration. 

For the system of equations (3.8), (3.10) and (3.12), the Jacobian is the following: 
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If we substitute a set of equilibrium values forHv , Av and Tv  in the matrix J, then the matrix J will 

represent the linearization of the system of differential equations under consideration about that equilibrium 
solution. 
3.3.1. Equilibrium 1 

For the point (0,0,0), J  has the eigenvalues  ,44
2

1

2

1
1  ,1 3142

2
5521 kkkkkk +++−−=−= λλ   

3142

2

553 44
2

1

2

1
1 kkkkkk ++−−−=λ In this case, the eigenvalues will all be negative if and only if 

1542310 <−+= kkkkkR , where 0R  is as explained in Section 2. Therefore the point (0, 0, 0) will be asymptotically 

stable if and only if 10 <R . In this case the disease dies out after enough time has elapsed. For this model we see a 

much tighter condition on0R . This though may really be practically unrealistic as it would mean carrying out the 

near impossible task of eradicating the tsetse flies totally and/or killing the entire wild, park animals that serve as 
reservoirs for the parasites causing the disease, leading to no contacts between the flies and these animals! 
3.3.2. Equilibrium 2 

Again by intuition, a non-trivial steady state exists at the point ),,( ***
TAH vvv  where the stability will again 

depend crucially on0R . Obviously the point will be stable if and only if 10 >R , hence the disease remains endemic. 

 
4.0 Summary and conclusion 
 

In this work, two models for the dynamics of populations affected by the acute disease, the African 
sleeping sickness (East African variant) are presented. The first model looks at the complete picture of the disease 
by examining the effect of the tsetse fly on both human population and domestic animal population in any given 
settlement where the flies exist. The second model is an extension of the first which includes the contact rate 
between the tsetse flies and the animals serving as reservoirs of the parasites. Here the infectious contact rate of 
tsetse flies to the animal plays a huge role in the whole disease cycle. 

How then do the society/government at least control the disease, knowing that achieving a disease free state 
is almost impossible, suggesting endemicity? One of the reasons for making models of infectious diseases is to 
design policies aimed at eradicating or at least controlling them. Currently, there is neither a vaccine (so that 
vaccination could be a means of controlling or even eradicating the disease) nor a drug available to prevent infection 
with sleeping sickness. Also there is no immunity to the disease [7]. Hence prevention of sleeping sickness requires 
avoiding contact with the tsetse fly. That invariably will mean controlling the vectors (tsetse flies) that cause the 
disease. 

The most significant control policy is to reduce0R , the basic reproductive ratio, below 1 for both models. 

This basically entails reducing TN (the tsetse fly population) by the spraying of insecticides or chemicals in areas 

(villages, parks and so on) where the insects are rife. By implication this will also lead to a decrease in Tb .  
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Vector control still remains the best strategy against the disease. Restricting human and animal movements 
to regions where there are many wild animals that could have interactions with the tsetse flies and then pass on the 
parasites to the flies could be adopted. Also, people are encouraged to put on protective garments that will prevent 
the tsetse flies from biting them. In the main time further research may go into discovering drugs or vaccine to stop 
this deadly scourge. 
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