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Abstract

In this paper, we carry out a qualitative study of Kermack and
Mckendrick’s epidemic model. We derive a special & of this model for recurrent
diseases (relapse — recovery model). Using the newdel, we investigate the severity
of the epidemic and then test the stability of theriginal model. It is then shown that
the number of invectives after a very long time fra the inception of the epidemic is
a constant. It is also shown that the steady staie unstable. Trajectories that help to
know the extent of the severity are also presentedhrough these trajectories it is
shown that the severity of this epidemic can be eéstated when the rate of

infectiousness (r) and the removal rated,) are estimated.
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1.0 Introduction

A lot of epidemic models have been presentedaditarature. Some of them include [4,5,8].

Barley, [2] considered recurrent epidemic and endiggnHe looked at a basic deterministic modelnogasles. He
modified the model by making an additional assuawpthat the stock of susceptibles is continualpterished by
those who recovered from the disease. He introdad#@th parametqn and modified the model. He obtained the
steady state. He later showed that solution outkielsteady state involve damped harmonic traimasfes with
period 2v¢.

Webb [9] analyzed an epidemic model of an infaiBhenomenon. The model allows for an age—
dependency to describe the phase of incubationyeeg and relapse, and for a spatial dependendggoribe
diffusion of the population in geographical space.

For more work on recurrent epidemics see [1, 4,13.

The discrete version of Kermack and Mckendricktsdel as presented in [4, 5, 6, 7] is
Xn+1= € X, (1.1)
Yn+1= (1 _e—ayr) Xnt an
Z,+1=2+ (1 -b)y,
where X, = number of susceptibles in period n
Yn = number of infectives
Z, = number of removals
a = rate of infection
b = removal rate.
The continuous time version of this model as ini$5]

d—S=—rIS,ﬂ=rIS—d,z—?=d (1.2)

dt dt
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where

S= number of susceptibles

| = number of infectives

R = number of removals

r = infection rate

o= removal rate

N = population size.

In this investigation we derive a special caseloP] for recurrent diseases (relapse — recovedeiowe
derive the model, investigate the severity of thilemic and then test the stability of the origimaidel.

2.0 Relapse-recovery model

Relapse-recovery diseases are those diseasescin avkusceptible is infected, recovers and becames
susceptible again. This is denoted by the g@&ph—>S.
Examples of this type of disease include GonordrehMalaria

Suppose that after a fixed length of time, sagnd an infective return to being fully suscegtiabain.

Then instead of the model in (1.2), we have
i—? =-rl (t)S(t)+rl (t—-7)S(t-7) (2.1)

% =1l (t-7)S(t=7) +11 (t)S(t)

Sincel+ S=N = S =N-1lhence (2.1) reduces to the single equation
%= {loIN-101-1¢E-DIN -1t -]} 2.2)

We now discuss the severity of the epidemic
2.1 Severity of the Epidemic
Here we determine the number of infectives afteng time (). We then put this in a Theorem

Theorem2.1
Ast—, |=1" andl’ is a constant

Proof
We now determine the value bf Before we can do this, we first solve (2.2).

Letl(t—r)=%l(t)
dr _ 1=t _1 =rt TR
:a—r{l(t)[N |©1-31 OIN zl(t)]} r{zl(t)N @)+ (t)}
it ion-312 = 23
=rSION - 1°0) r{l(t){N 2I(t)}}

O di = rdt

;I(t)[N —il(t)}

3
Using patrtial fractions in the L. H. S. and Simyailifg gives(%lN + 2|\j N3I jdl :%dt. Integrating gives
Inrt . - g lo
=ae2 . Applying the initial boundary condition&) =l,we have———=a
2N -3l 2N -3lo

lo

_ 2Nlo
2N-31 (2N-3lo

30+ (2N -3l0)e"

Therefore, je%m. Solving forl givesl =
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2Nlo _ 2

Ast—>o, |>1* where [ = 3l =— N which is a constant.
o]

w

Note that we assumedt - r) = % [(t). In general, ifl (t - r) = 1I (t). Then
n

« [ n
I" = (n—ﬂjN (2.3)

which is a constant. Hence, the number of infestager a very long time from the day of the incepbf the
epidemic is a constant.
Alternatively, we can investigate the severityited epidemic by the differential equations in (1T3king
the ratio of the first two equations in (1.2) we ge
aSs__ s _ -rS
dl rns-a rS-o0

rS
integration. Using the initial condition§) =1, andS(t) = S att = 0, we have

C= IO—(gjlogSO+So

Therefore,dl = (i —1de. Integrating this equation givds= (éj logS-S+C, whereC is the constant of
r

- | =(§j|og(3/so)+(so -S)+1, (2.4)

Fig. 1 below shows the typical trajectories desngtihis solution in the infinitesimal sampling pess, the
threshold level of Sbecomes

= - -e 0,
S=(1-b)/1 e?)D%.
i ichdl/ =
St is the value ofSfor which AS_ 0.
I

= - o/ — _
I=log (S/S) + S-S %_S"—l.o

Figure 1

L S=2.05" 5.5
/- %

N s

S=1.55¢

From Figurel, we see that trajectories starting hataboveS* describe epidemics that end at comparable
distance below this value. Trajectories that steeit aboveS* and end up ne&B = 0. However, in each case, the
final size of the susceptible population, & where the trajectory meets the 0 axis. Therefore, solving the

equation,
S- (éj logS=C
r

for its smaller of two roots gives the final sitéence, where the rate of infectiousne3sa(d the removal rat®)
are estimated, the epidemic severity can be esttn&trom (2.4), this analysis shows that

0] if St= 9 <lot &, thenS—»>S
r
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(ii) if S=> I+ S, the infection dies out of the population, and
(iii) when S+ S, the disease is endemic.

3.0 The steady state and its stability

The steady state occurs at the point Wh%{-sec % = ?j—? =0. From (1.1),
-r1°S=0 0
rn°s’-a°=o0 (i)
Jd°=0 (i)

whereS’, I° andR° are the steady state valuesSof andR respectively.
(i) =1°0rS*-9)=0=1°=00rS = % . Hence the steady state 8,(°, R°) = (% ,0,0). To discuss the stability
of the steady state, we first linearize (1.1) tb ge
-n% s 0
D=| n® P-4 0

0 o 0
We now obtain the eigenvalues of D.
-119-2 P 0
D-1A=| n° rL-56-2 0 |=0
0 o 0-4

=S A-r°=A) (S -5-2)=0,=A=0,-r1° r S - 4 Hence the eigenvaluesbfareh; = 0,A, = -rl° A3 =rS"- J.
The steady state above is stable# 0,\, > 0 and\; > 0. ButA;=0,A, = 0 sincer > 0 and®= 0 and\; = O since

S= % . Hence the steady sta®,(1°, R°) = (% ,0,0) is not stable, rather it is a saddle point.

4.0 Summary and conclusion

We have considered the Kermack and Mckendrick’'sehdlfe considered the relapse — recovery case and
hence modified the model. We investigated the #gvef the epidemic and found that the number dédtives
after a long time from the inception of the epidemsia constant. Considering the severity in seainthe number

of susceptibles, it was shown that (i)5if = % <lg+$Sy thenS— S (ii) if S=1,+ S, the infection dies out of

the population and (iii) whe8—+ St which is whenSt < |, + S,, the disease will be endemic. We observed that
the original model has a non-trivial steady statés steady state is not stable but is a saddia poi
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