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Abstract 

 
In this paper, we carry out a qualitative study of Kermack and 

Mckendrick’s epidemic model. We derive a special case of this model for recurrent 
diseases (relapse – recovery model). Using the new model, we investigate the severity 
of the epidemic and then test the stability of the original model. It is then shown that 
the number of invectives after a very long time from the inception of the epidemic is 
a constant. It is also shown that the steady state is unstable. Trajectories that help to 
know the extent of the severity are also presented. Through these trajectories it is 
shown that the severity of this epidemic can be estimated when the rate of 
infectiousness (r) and the removal rate (δδδδ.) are estimated. 
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1.0 Introduction 
 
 A lot of epidemic models have been presented in the literature. Some of them include [4,5,8]. 
Barley, [2] considered recurrent epidemic and endemicity. He looked at a basic deterministic model on measles. He 
modified the model by making an additional assumption that the stock of susceptibles is continually replenished by 
those who recovered from the disease. He introduced a birth parameter µ and modified the model. He obtained the 
steady state. He later showed that solution outside the steady state involve damped harmonic train of waves with 
period 2π/ξ. 
 Webb [9] analyzed an epidemic model of an infectious Phenomenon. The model allows for an age–
dependency to describe the phase of incubation, recovery and relapse, and for a spatial dependency to describe 
diffusion of the population in geographical space. 
 For more work on recurrent epidemics see [1, 4, and 10]. 
 The discrete version of Kermack and Mckendrick’s model as presented in [4, 5, 6, 7] is  
  xn + 1 = e-ayn xn       (1.1) 
  yn + 1 = (1 – e – ayn) xn+ byn 
  zn + 1 = zn + (1 - b)yn 
where  xn = number of susceptibles in period n 
 yn = number of infectives 
 zn = number of removals 
 a = rate of infection 
 b = removal rate. 
The continuous time version of this model as in [5] is  

  rIS
dt

dS −= , IrIS
dt

dI δ−= , I
dt

dR δ=     (1.2) 
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where 
 S = number of susceptibles 
 I = number of infectives 
 R = number of removals 
 r = infection rate 
 δ = removal rate 
 N = population size. 

In this investigation we derive a special case of (1. 2) for recurrent diseases (relapse – recovery model). We 
derive the model, investigate the severity of the epidemic and then test the stability of the original model. 

 
2.0 Relapse–recovery model 
  

Relapse–recovery diseases are those diseases in which a susceptible is infected, recovers and becomes a 
susceptible again. This is denoted by the graph S�I�S. 
Examples of this type of disease include Gonorrhea and Malaria 
 Suppose that after a fixed length of time, say,τ, and an infective return to being fully susceptible again. 
Then instead of the model in (1.2), we have 

  )()()()( ττ −−+−= tStrItStrI
dt

dS
     (2.1) 

  )()()()( tStrItStrI
dt

dI +−−−= ττ  

Since I+ S = N  ⇒  S = N – I, hence (2.1) reduces to the single equation 

  { })]()[()]()[( ττ −−−−−= tINtItINtIr
dt

dI
   (2.2) 

We now discuss the severity of the epidemic  
 
2.1 Severity of the Epidemic 
  

Here we determine the number of infectives after a long time (t�∞). We then put this in a Theorem 
 

Theorem 2.1 
As t�∞, I�I* and I* is a constant  
 

Proof 
We now determine the value of I*. Before we can do this, we first solve (2.2). 
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Using partial fractions in the L. H. S. and Simplifying gives dt
r

dI
IN
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As t�∞, I�I*, where I* = N
Io

NIo

3

2

3

2 = which is a constant. 

Note that we assumed ( ) )(
2

1
tItI =−τ .  In general, if ( ) )(

1
tI

n
tI =−τ .  Then 

    I* = N
n

n









+1
      (2.3) 

which is a constant. Hence, the number of infectives after a very long time from the day of the inception of the 
epidemic is a constant. 
 Alternatively, we can investigate the severity of the epidemic by the differential equations in (1.2). Taking 
the ratio of the first two equations in (1.2) we get 

    
δδ −

−=
−

−=
rS

rS

IrIS

rIS

dI

dS
 

Therefore, dS
rS

dI 






 −= 1
δ

. Integrating this equation gives CSS
r

I +−






= log
δ

, where C is the constant of 

integration. Using the initial conditions I(t) = Io and S(t) = So at t = 0, we have  

    oologo SS
r

IC +






−= δ
 

⇒    ( ) ( ) oo/log ISS
r

I SSO ++






= −δ
   (2.4) 

Fig. 1 below shows the typical trajectories describing this solution in the infinitesimal sampling process, the 
threshold level of S* becomes 

    S* = (1 - b)/(1 - e-a) ∼ r
δ . 

S* is the value of S for which 0=dS
dI . 

 
 
 
 
 
 

Figure 1. 
 
 
 
 
 
 
 
 

From Figure1, we see that trajectories starting near but above S* describe epidemics that end at comparable 
distance below this value. Trajectories that start well above S* and end up near S = 0. However, in each case, the 
final size of the susceptible population, S∞, is where the trajectory meets the I = 0 axis. Therefore, solving the 
equation, 

     CS
r

S =






− log
δ

 

for its smaller of two roots gives the final size. Hence, where the rate of infectiousness (r) and the removal rate (δ) 
are estimated, the epidemic severity can be estimated. From (2.4), this analysis shows that  

(i) if S* = 
r

δ
< Io+ So, then S �S*  

 

S0=1.5S* 

S0=2.0S* S0=5.0S* 

I=log (S/S0) + S0 - S 

S 

I 

 0.1* == Sr
δ
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 (ii) if S � Io+ So, the infection dies out of the population, and 
 (iii) when S �S*, the disease is endemic. 
 
3.0 The steady state and its stability  
  

The steady state occurs at the point where 0===
dt

dR

dt

dI

dt

dS
. From (1.1), 

  - rI  o So = 0    (i) 
   rI oSo - δIo = 0    (ii ) 
   δIo = 0     (iii) 
where So, Io and Ro are the steady state values of S, I and R respectively. 

(ii) ⇒Io (rSo - δ) = 0 ⇒Io = 0 or So = r
δ .  Hence the steady state is (So, Io, Ro) = ( )0,0,r

δ .  To discuss the stability 

of the steady state, we first linearize (1.1) to get 
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We now obtain the eigenvalues of D. 

0

00
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λδ

λδ
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λ
rI

ID  

⇒ λ(- rI o – λ) (rS - δ - λ) = 0, ⇒λ = 0, - rI o, r So - δ.  Hence the eigenvalues of D are λ1 = 0, λ2 = - rI o, λ3 = rSo - δ..  
The steady state above is stable if λ1> 0, λ2 > 0 and λ3 > 0.  But λ1 = 0, λ2 = 0 since r > 0 and Io = 0 and λ3 = 0 since 

So = r
δ . Hence the steady state (So, Io, Ro) = ( )0,0,r

δ  is not stable, rather it is a saddle point. 

 
4.0 Summary and conclusion  
  

We have considered the Kermack and Mckendrick’s model. We considered the relapse – recovery case and 
hence modified the model. We investigated the severity of the epidemic and found that the number of infectives 
after a long time from the inception of the epidemic is a constant.   Considering the severity in terms of the number 

of susceptibles, it was shown that (i) if S* = ,oo SIr +<δ  then S � S* (ii) if S� Io + So, the infection dies out of 

the population and (iii) when S� S* which is when S* < Io + So, the disease will be endemic.   We observed that 
the original model has a non-trivial steady state. This steady state is not stable but is a saddle point 
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