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Abstract 

 
In [3] we developed a mathematical model of the transmission dynamics of HIV/AIDS in 
Nigeria. In this paper, we consider the effect of stochastic migrating into the susceptible 
class. A system of stochastic ordinary differential equations (SODEs) was then 
formulated. This was analyzed. Also the Fokker-Planck equation 
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 is used to transform the system into a system of 

deterministic partial differential equation. This latter equation was analyzed and it was 
shown that the stochastic migration has no significant effect on the model.  

   
  Keywords: Stochastic migration, HIV/AIDS, Susceptible, Fokker-Planck equation,  

   SODE 
 
1.0 Introduction 
 

A lot of stochastic models have been developed for HIV/AIDS, some of which include the works by 
Tuckwell and Le Corfec, Gallop, R, Kesinger, J., and Sleeman, C.K.  
 Tuckwell, H.C. and Lee Corfec, E. [10] developed a simple stochastic mathematical model and investigated 
for early HIV – 1 population dynamics. The model, which was a multi-dimensional diffusion process, included 
activated uninfected CD4 (+) T-cells, latently and actively infected CD4(+) T –cells, and free virons occurring in 
plasma. Stochastic effects were assumed to arise in the process of infection of CD4(+) T –cells and transitions might 
occur from uninfected to latently or actively infected cells by chance mechanisms. Using the best currently available 
parameter values, the intrinsic variability in response to a given initial infection was examined by solving the 
stochastic system numerically. They estimated the statistical distribution of the time of occurrence and the 
magnitude of the early peak in viral concentration. The maximum of the viral load had a value in the experimental 
range and its time of occurrence had a 95% confidence interval from 19.4 to 25.1 days. On the stochastic nature of 
the growth, they explored the effects of perturbations in the parameter values in order to assess the additional 
stochastic effects of between patient variability. They found that changes in the initial number of virions or dose 
size, the rate at which latently infected CD4 (+) T –cells were converted to the actively infected form and the 
fraction of latent cells had only minor effects on the size, speed and variability of the response. In contrast, 
decreased speed and magnitude but greater variability in response were obtained when the death rate of uninfected 
CD4 (+) T – cells and the initial number of uninfected activated CD4 (+) T-cells were decreased. They also 
determined the distribution of the time to reach a given virion density. From this distribution the probability of 
detection of the virus as a function of time could be estimated. The numerical results obtained were in the range of 
experimental values and were discussed in relation to recently proposed detection and testing procedures. 
 Gallop, R. [2] presented a stochastic model with sufficient parameters describing the behavior of the 
epidemic. By embedding non-linear difference equations in the stochastic process in decrease time, a more thorough 
understanding of the epidemic was achieved. To visually enhance the investigation of the epidemics behavior, 
comparison of trajectories of the deterministic model and those computed from the samples Monte Carlo realizations 
were made. To derive threshold conditions, non-linear differential equations were derived from the nonlinear 
difference equations. Threshold conditions were determined by investigation of the stability of the Jacobean Matrix 
for the embedded system of nonlinear differential equations Threshold conditions for the model were formulated and 
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the sensitivities of these conditions were analyzed under slight deviations of the parameter space. Provided were 
examples of this methodology applied to the HIV/AIDS epidemics in the heterosexual community. Comparison of 
the behavior of the two modeling structures, stochastic and deterministic, with respect to the threshold conditions 
were also investigated. 
 Kesinger,J.[4] in another paper compared some discrete time deterministic and stochastic models. His 
presentation was divided into two parts. In the first part, deterministic and stochastic discrete-time SIS (Susceptible-
infected-susceptible) and SIR (susceptible-infected-removed) models were analyzed and compared. The stochastic 
models were markov chains. Models with constant population size and general force of infection were analyzed. 
Then a more general SIS model with variable population size was analyzed. In the second part of the presentation, 
discrete time models for the solution of infectious diseases in plant pathosystems were analyzed. Deterministic and 
stochastic models based on the gene-for-gene hypothesis were developed. The evolution of plant maintenance and 
pathogen virulence was studied. 
 Sleeman, C.K [6] implemented models accommodating partnerships and heterogeneity with respect to 
behavioral risk classes and used them to study the evolution of epidemics in various populations. For sexually 
transmitted diseases with multiple stages like HIV/AIDS, the selection of sexual partners according to disease stage 
was considered. Computer intensive experimentation was the goal, with a more complete use of latent risk functions 
and competing risks governing transitions to the infected state than in earlier models. The mathematical structure 
was used to make connections between the stochastic processe. And a system of non linear differential equations 
embedded in the process,. thus enabling a search for threshold conditions for the stochastic process. 
 Van den Driessche, P and Watmough , J. [1] presented a precise definition of the basic reproduction number , 
R0

 , for a general compartmental disease transmission model based on a system of ordinary differential equations 

(ODEs). It was shown that if 1,.Ro <  the disease free equilibrium is locally asymptotically stable where as it is 

unstable if R0 > 1.Thus R0 
 is a threshold parameter for the model. An analysis of the local center manifold yielded a 

simple criterion for the existence and stability of super – and sub-threshold endemic equilibrium for R0
  near one. 

This criterion, together with the definition of R0 was illustrated by treatment, multi-group, staged progression, multi-
strain and vector- host models and can be applied to more complex models. The results are significant for disease 
control  
 Medlock, J.P. [5] presented a simple deterministic susceptible – infective – removed (SIR) model of HIV 
transmission in a high-risk population as a system of ordinary differential equations and was analyzed using 
techniques from dynamical systems. He later added a stochastic migration term to the deterministic model to model 
variation in the influx of individuals to the susceptible class. This model was then presented as a system of 
stochastic ordinary differential equations. Fokker Planck equation was used to transform this system to a simple 
deterministic partial differential equation  which was then analyzed. It was then shown that the system is insensitive 
to small fluctuations in migration. 
 Other works in this area can be found in [7,8, 9]. 
 In this paper, we investigate the effect of stochastic migration on the model developed in [3] as presented 
in (1.1) below.  
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2.0  The stochastic migration  
 
In our model, we assumed that the compartments (population) are closed to migration. That is, the case 

when migration into the susceptible class has a stochastic fluctuation. For simplicity, let 
    0Sµ=Λ      (2.1) 

which is the migration term. Hence in an infinitesimal time interval dt, the new migration into the susceptible class 
is 
    t

00 S dt dWS Ψ+ µµ      (2.2) 

where S0 is the carrying capacity, Wt is the Wiener process and 0>Ψ  is the noise coefficient, which determines the 
effect of the stochastic term. Hence, our model becomes 
  ( ) [ ( ( )) ( ) ( )] tijijijij dWSdttStSStdS Ψ++−−= 0

2

0 µξλµ  (2.3) 

For the disease-free equilibrium, 0=ijλ  

   ( ) [ ( ) ( ) ] tdWSdtSt Ψ++−=⇒ 0

ij2

0

ij tS1dS µξµ     (2.4) 

Let  ( ) ( ) ( ),1 0

2 tStSij Χ=−+ ξ  hence (2.4) becomes 

  ( ) ( ) ( )[ ]tdWSttd ψµµξ 0
21 +Χ−+=Χ  

Let  ( ) µξµ ′=+ 21  

 ( ) ( ) ( )[ ]tt dWSdttdWSdtttd ψµψµµ 00 −Χ′−=′+Χ′−=Χ⇒    (2.5) 

Let S0ψ = u0 , then (2.5) becomes  ( ) ( ) todWudtttd µµ ′+Χ′−=Χ   (2.6) 

 
2.1 Characteristics of the process 
 
 From (2.6) three situations arise and we now discuss them. 
Case I: µ′= 0: 

 Whenµ′  = 0, X is a constant function of time. If ξ2 = 0, it implies that Sij  (t) – S0 is a constant. This means 

that the difference between the number of susceptibles in time t and the carrying capacity of the susceptible class 
will be constant when the natural mortality rate is zero (that is, when people die only as a result of AIDS). 
Case II:u0 = 0, 
When u0 = 0, X decays exponentially with time if µ > 0. This implies that after a long time (t→ ∞ ), the number of 
susceptibles will be equal to the carrying capacity. 
Case III: :0,0 0 ≠≠′ uµ  

 This is the most interesting scenario. In this case, (2.6) is the well- know Langevin’s equation, whose 
solution is the equally well-known Ornstein-Uhlebeck’s process. The explicit solution of (2.6) is  

  ( ) ( )
∫ ℜ∈′+= −′−′− t

t

stt ItdWeueXtX
0 00 ,µµ µ    (2.7) 

where X0 = X(0) is the value of X at t = 0. 
Given (2.7), three basic things can be observed about the process X.  

(i) Since Wt is the Wiener process, X is Guassian if and only if X(0) is Guassian. This means that the 
difference between the number of susceptibles and its carrying capacity is Guassian iff it was Guassian 
at the beginning (at t = 0)  

(ii)  If E[X(0)2] < ∞, (that is, if the mathematical expectation of X(0)2 is finite), then the expectation 
(mean), variance and covariance functions of X are given by  
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  where t Λs = min(t,s). 
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(iii) If X(0) is Guassian, with mean zero and variance 
2

2

0uµ′
, then X is a stationary Guassian process with mean zero 

and covariance ( ) ste
u

ts −′−′
− µµρ

2
,

2

0 . 

  These results (the characteristics of the process X) could be alternatively obtained by using the Fokker-
Plank equation as shown in the next section.  
 
2.2  The Fokker-Planck Equation 
   
  The Fokker-Planck equation is a transformation from a system of stochastic ordinary differential equations 
(S.O.D.Es.) in variable X into a system of deterministic partial differential equations (PDEs) for the distribution for 
the variable X. 
 Given the system of n stochastic ordinary differential equations (SODEs) written in vector form as  
   ( ) ( ) tdWtXBdttXAdX ,, +=      (a) 

where A is the n-vector of the deterministic terms of the system, B is the n-vector of the stochastic terms of the 
sequence and dWt is an n-dimension Wiener process. The corresponding partial differential equation is the Fokker-
Planck equation. 

    ∑ ∑∑
= = = ∂∂

∂
+

∂
∂−=

∂
∂ n

i

n

i

n

j
ji

ij

i

i xx

PB
PA

xt

P

1 1 12

1
    (b) 

where xi and Ai are the ith components of X and A respectively and  
    P(x,t/x0 ,0) = P[x(t) = x/x (0) = x0] =δ (x - x0),  (c )  
the Dirac’s delta function. 
  Now applying Fokker-Planck equation on (2.6) we have 

   ( ) ( )
2

22
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PuS
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tt ∂
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∂
∂ µµµ      (2.8) 

with the initial condition ( ) ( )00 0,0, xxxxP −= δ  where δ is the Dirac’s delta function.  

  Take the Fourier transform of (2.8) in x and let φ(s) be the Fourier transform,  
     ( ) ( )∫

−= dxetxPts ist,(,φ  

Now  (2.8) is transformed to ( )
0

2
2
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 with the initial conditions 

( ) .0, 0xes s −== −φ  
Solving this we have two ordinary differential equations for the characteristic curves 

    ( ) ( ) ζµ ==== 0,,00,1 ss
dz

ds
t

dz

dt
 

Solving these by separation of variables gives, t = z, s = ζeµz which is z= t and ζ = se-µt.   This yields the ODE 
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where ϕ is known as the characteristic function of P 
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Solving this by separation of variables gives 
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This is the characteristic function of a Guassian, take the inverse Fourier transformation to get 
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Hence, X is Gaussian with ( )[ ] ( ) tt exeXtXE µµ ′−′− == 00 , ( )[ ] ( ) ( )te
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.  As t → ∞, the stationary solution gives  E(S) = S0  

      Var (S) = 
( )

µ
ψµ
′

′
2

20S
 

Since E (S) does not contain ψ  (the noise coefficient which determines the effect of the stochastic term), we 

conclude that the model (system) is insensitive to small fluctuations in migration. 
 
3.0 Summary and Conclusion 
 
  The effect of stochastic migration into the susceptible class was considered.  
 It was observed that: 
i) The difference between the number of susceptibles in time t and the carrying capacity of the susceptible 

class will be constant when people die solely as a result of AIDS, (µ =0). At this point none of the 
susceptibles joins the resistant group (ξ2 =0). 

ii) After a long time of the start of the AIDS epidemics (t → ∞), the number of susceptibles will be equal to 
the carrying capacity of the susceptible class.  

iii) The difference between the number of susceptibles and its carrying capacity is Guassian if and if it was 
Guassian at the beginning (at t = 0). 

iv) The mean and variance of the number of susceptibles as t → ∞, are respectively 

( ) ( ) ( )
µ
ψµ
′

′
==

2
,

20
0 S

SVarSSE  

where E(S) is the expected value of S and Var(S) is the variance of S.  
We therefore conclude that stochastic migration into the susceptible class has no significant effect on the 

model. 
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