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Abstract

A mathematical model for the dynamics of Lassa fever is presented.
Contributions from regular contact with the species of ratsthat carry the virusthat
cause L assa fever and infectious contact with those suffering from the disease is seen
as significant in the spread of the disease. Steady states of the model are examined
for epidemic and endemic situations. A second model that incorporates the effect of
vaccination on a subset of the target population is proposed, although at the
moment there is no vaccine against the disease. However our model shows that in
the interim, control of the rodents carrying the virus and some isolation policy for
infected individuals are the best strategies against the spread of the disease.
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1.0 Introduction

Lassa fever is a viral haemorrhagic fever trangaitty rats. It has been known since the 1950stheut
virus was not identified until 1969, when two misgry nurses died from it in the town of Lassa igé¥ia. Found
predominantly in West Africa [12] it has the poiahto cause tens of thousands of deaths. Even &itevery, the
virus remains in body fluids, including semen [12].

The rat speciedMastomys in particular, M. natalensisserves as the vectors for the virus. This is a
consistent host reservoir for the Lassa virus bezafi congenital neonatal infection, which resuntsats with long-
lasting and/or lifelong infection. Because of thealmanism of infection, there is no break in thauratchain from
virus to host species [6]. The rats themselvehitragow no symptoms of the disease, but they dteditus freely
in urine and droppings, and secrete the viruseir galiva.

Because certain varieties ifastomysften live in human homes, the virus is easilys$raitted to humans.
Transmission of the virus occurs via direct contaith rat urine, faeces, and saliva; via contaithwexcretion- or
secretion-infected materials; or via ingestion xidretion-contaminated food. In some areas, thentedare used as
a food source, thus providing additional exposwrethte infected rat blood, as well as allowing ingpes of
potentially contaminated meat [8].

Unlike other arenaviruses, Lassa virus can beyfeikily transmitted from human to human. Humas ¢
contract the disease from other humans via aetogosmission (coughing), or from direct contacthwitfected
human blood, urine, or semen.

The first symptoms of the disease typically occt8 Weeks after the patient comes into contact with
virus and can include increasingly high fever, gbreat, cough, eye inflammation (conjunctivitiggcial swelling,
retrosternal pain (behind the breastbone), bach, pgihdominal pain, vomiting, diarrhea and generabkmess
lasting for several days. Neurological symptomsehalso been described, including hearing loss, drejmand
encephalitis (brain inflammation). The most comntarg-term complication of Lassa fever is deafnd$j.[

The mortality rates for Lassa virus are typicallyimated at 15% to 20%. Some studies estimate fitprta
as high as 45%. One survey of Lassa infection wwtality rates indicates that less than 1% of akda-virus
infections in West Africa will eventually result fiatal disease. The mortality rates for Lassa app@ be much
higher in people of non-African stock [6].
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Lassa virus also causes high fetal mortality amgh hmortality in pregnant women. The mortality rate
92% for fetuses in early pregnancy, 75% for fetusdke third trimester, and 100% in the neona&lqal for full-
term babies. High concentrations of the virus Hasen found in both fetal tissue and in the placggjta

Currently, there is no effective prophylactic treant for Lassa fever. However, some sources re@rm
prophylactic doses of Ribavirin for people cominghigh-risk contact with viremic patients [6].

There are data evidences to show that Lassa fetigitwis rife in the northern part of Edo State0] and
in other parts of Nigeria.
In this paper, we present a mathematical modethferdynamics of the disease. We take a criticat kiothe link
between the rodent population as well as the hup@pulation. Steady states are examined and a thicesh
condition is obtained. We also examined situatitret could allow for endemicity. Probable contrtlategies
against the disease are then proposed at the ¢hd abrk.

2.0 The mathematical model

The model will be basically a SIS model coupledat@population of the rat specids.natalensis The
rationale for using a SIS type is because recoviedididuals could become susceptible to the diseamin.

In the formulation of our model, we simply invoketie principle ofOccam’s razof1], which expressed
in modern terms by Einstein, is “Everything shoblkl made as simple as possible, but not simplerbugh the
model is simple, we strive to ensure that the beai@bles involved in the disease dynamics ar¢ucag.

The mathematical model is:

‘Z—tszm—ms—ﬁvs—msw
di

E=B\/S+ms—y{—ml 2.1)
dv _ _X B
E—rV(l K) Y

S(0)=N,1(0)>0V(0)=0

The symbols used in the model are listed in Tabdnd a diagrammatic representation of the modglvien in
Figure 1.

Number of susceptibles

Number of those who are infected with Lassa fever
Population of rodents carrying the virus

Human birth rates (/day)

Human death rates (/day)

Pairwise infectious contact rate with rodents (Jday

Pairwise infectious rate with infected individugiday)
Rate at which infected recover from lassa feveay(yd
Growth rate of the rodents (/day)

Carrying capacity of the environment for the rodent
Death rate of the rodents (/day)

ZI® XTI F <]~ |»

Total population of humans
Table 1. Symbols used in the mathematical model.
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Figure 1: Diagrammatic representation of the M odel

The equations in (1) describe the dynamics of qu#ile and infected individuals as well as the rdgopulation.
The first equation in (1) describes the dynamicstied susceptibles. The population is of constané Bl.
Susceptibles in the community are renewed at agatnd die at the rate. The susceptibles become infected with

the disease due to contacts with the rodents \tiiisefer to eating the rodents, contact with thigieces e.t.c.) at
rate S and also due to infectious contacts with individusuffering from Lassa fever at rate Since it is a SIS

model we are using, recovered individuals get hladke susceptible pool at raggrecovery rate).

The second equation in (1) describes the dynanfiteednfected people in the community; those surifg
from Lassa fever. The equation states that theciafl population increases as susceptibles beatfaetdd (first
two terms in the second equation) and decreagbgwasecover from the disease and the rate at whehdie.

The third equation in (1) describes the dynamicshefrodents. We have simply used a logistic growth
equation to describe the population of the rodenmits, K being the environmental carrying capacity for théents

andr the growth rate. The rodents die (either naturallipy outright killing) at the rai .

All individuals in both human classes die at thensaatam. For the sake of the model, we assume that the
birth rate is equal to the death rate.

3.0 Equilibrium Analysis

When modelling infectious diseases, the most ingmbrissue that arise is whether the disease wilda
the community or not. To have a better understandihthe dynamics of the disease, equilibrium aradbikty
analyses are performed.

We set each of the three derivatives in (1) eqoatero and solve for S, | and V. This gives thedix
points, or equilibrium solutions; that is, it givealues of S, |, and Yor which the system will no longer change
(since all of the derivatives, or rates of changé,be zero).

31 Stability Analysis
To determine the behaviour of the different popaleat near the equilibrium solutions, we need to ot

the linearization of the system, which is obtaifredn the Jacobian matrix of the system.
For the system of equations in (2.1), the Jacoldiais, the following matrix:

-m-pV -al -aS+y - BS
BV +al aS-y-m £S 3.1)
\Y rv
0 0 r@ ?) K @

Now we compute the equilibrium points for the epnieand endemic situations (if they exist) and lugirt stability
analysis using the Jacobian matrix in (3.1) above.
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3.2 Lassafreepopulation.

There is a disease free equilibrium point, wheeegbint iS’,17,V") = (N ,00) . The superscript indicates

equilibrium quantities. The important question histeassume a small number of infectives come @antommunity,
what will happen to the community? Will the diseé®® state be achieved? To answer that questiercanry out
the stability analysis for the steady state.

For the pointS,1",B") =(N ,00) the Jacobian of the system is the following mxatri
-m —aN+y -
0 aN-y-m [N (3.2)
0 0 r-¢
The eigenvalues of the Jacobian was found td,be-m, A, =aN —(y+m), A, =r-¢.

For the disease free state to be stable, all eigenvalues ofn{B2pe negative. This is possible if and only if
y+m>aN 3.3)
¢>r (3.4
So if (3.3) and (3.4) are achieved, then the disease diemduhere will be no invasion of the population by the
disease. The inequality in (3.4) tells us that there shaukll lound on the growth (population) of the rodentsen th
community. Once the inequalities in (3.3) and (3.4) arefigatjsthen the disease dies out after enough time has
passed and then we achieve a disease free situation i.e. the diseataté is asymptotically stable. From (3.3) we
y+m
a

can obtain a threshold condition. From the equation, we aee th N <

(3.5)

yrm (3.6))
a

If the initial susceptibleS > S then the disease will spread and there will beegidemic. From (3.6), the basic

Hence the critical susceptible pool is S =

7 g (3.7)

y+m
If R, >1, a disease outbreak will occur (the equilibriuminpaunder consideration becomes unstable and the
infection spreads), otherwise the diseases diesandtan introduction of infectives into a whollyssaptible
population will not be enough to start an outbreélkthe disease. In other words, the number of Lassas will

reduce and will in fact return to zero§ < .1
The S threshold (3.7) increases proportionally to theovecy and death rates of the infected. It decreases

on the other hand, when infectious contact raté wtected individuals increase. Henceguce the contact rate
with infected persons (by say an isolation policy); the greater mustieenumber of susceptibles in order to trigger
an outbreak of Lassa fever.

Interestingly, the threshold condition does notedgpbon contact rate with the rodents. This is almslip
because the human population has nothing to do thttpopulation of the rodents. However, as facaglition
(3.3) is satisfied, then the threshold conditiotdld.e. condition (3.6) and (3.7). Figure 4 shasituation where
the rate of killing the rats is less than their plagion growth rate, yet the disease free statenwasichieved even
though the initial susceptible pool did not excedHenceall conditions ((3.3), (3.4), (3.6) and (3.7)) must be

taking ‘simultaneously’ to achieve a disease ftates

reproduction number for the infection is given by R =

We note though that contacts with infected humaradso very crucial to the overall dynamics of dieease, when
considering the disease free state, since it isjamfactor in determining, .

3.3 Endemic Lassa fever.

Again setting the derivatives in (2.1) to zero antVing algebraically, we obtain the endemic equilim:
S=N-I (3.8)
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B’ _Klr-¢9 (3.9)

r
m’z+|*(w—m+y+m)—w|\|:o

(3.10)

where (3.10) needs to be solved as a quadratidiequa give the positive value(s) for.
For the pointS’,1",B" ) the Jacobian is:

Cm-A -al -aS +y s
B +al’ as —-y-m sy (3.11)
AN
0 0 r--—)——-
( K) 7

After carrying out some algebra and applying theoed-order Routh-Houwitz criteria (calculations amitted
here as they are a little lengthy), all three eigédues of (3.11) are negative if and only if

v >K0-9) (3.12)
2r

N >2§+%(M—(y+2m)) (3.13)

N >2S +%(M—(y+ m) (3.14)

Hence the endemic steady state will be stabladf anly if the inequalities in (3.12), (3.13) ar@li4) are all
satisfied; otherwise the equilibrium point will ramn unstable.

Condition (3.12) will always be satisfied for endenty but condition (3.14) is a little stronger thé3.13)
on the total population size. Once this size gaghe inequality in (3.14) and condition (3.12piso satisfied, then
Lassa fever becomes endemic in the community.

We give numerical solutions to the model (2.1) forhypothetical community with the following
parameters given in Table 2:

Parameters Community
500
0.00054
0.00054
0.005
0.0002
0.2

0.02

300

0.045
Table 2: Data for numerical simulation of the model

T
= Susceptibles
= = Infected

|*RX-T<XQ®ITZ

—100

L L L L L L L ' L
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

days
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Figure 2: Population size of susceptibles and infected

We are interested in what happens to the commuwviign striving to achieve a disease free state. iBhat
our priority; to eradicate the disease if possible.

Figure 2 and figure 3 gives the population sizéhefcommunity as well as the rat population. Frayarg
2, we clearly observe that the community gets tlisaase free state, since the population of thentsd(figure 3)
returned to zero as well as the population of tiiecited (figure 2). Worthy of note is th& = 1003. The initial
susceptible pool is far less th&) and the other conditions for achieving a disease $tate were met; hence the
disease could not invade the population but digdafiar enough time has passed.

12

04 A

population of rodents

02H A

0 5(‘)0 10‘00 15‘00 20‘00 25‘00 30‘00 35‘00 40‘00 45‘00 5000
days
Figure 3: Rodent population

In figure 4, we adjusted the value fgrandr in Table 2, where we took the former to be 0.048 the latter to be
0.2 (population growth rate of rats exceeds the aatwhich they are killed). The critical suscelgtipool S, (3.6)
remains the same, the initial susceptible number stil less thai®,, yet from figure 4, we see that a disease free

state was not achieved. In fact the number of teféés so large to indicate an epidemic in the comity. This
shows that to achieve a disease free state, wetakesinto consideratioall conditions that are needed to achieve
such a state i.e. (3.3), (3'4), (3.6) and (3.7).

500

T T T
v = = Susceptibles
6 —— Infected

450 —

1
1
400}, 4
1
1]
350, B
1
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N

300

250 - 1

-———- -
-

0 100 200 300 400 5(‘)0 600 7(‘)0 800 9‘00 1000
days
Figure 4: Population of susceptibles and infected where therate of killing therodentsislessthan their growth rate
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4.0 Theimpact of vaccination.

Vaccination remains the only means for controllmgny infectious diseases [5]. We are interested in
seeing what fraction of the susceptibles should/dexinated to eliminate the infectious disease ftbenwhole
population. The critical vaccination fractions #@nese fractions of the population that should becirsated to just
achieve elimination. Knowledge of the critical venation fractions provides a starting point foredise elimination.
These fractions can provide epidemiologists witforimation about the best deployment of limited diies of
vaccine to contain the infectious disease.

Unfortunately, at the moment, there is no vaccomtgainst Lassa fever. However recent research has
shown that there is a possibility of getting vaesifior humans. This assertion is based on trisgd®wfe vaccines on
primates [2]. The findings in [2] showed that vaxationis still the most viable control measure. It wascdivered
that there is no correlation betwemttibody levels and outcome in human patients,iaactivatedsaccines produce
high titers of antibodies to all viral proteibpgt do not prevent virus replication and deathdnhuman primates.

Accordingly 44 macaques were vaccinated with vaacuirus-expressetiassa virus structural proteins
separately and in combinatiomith the object of inducing a predominantly TH1-¢ynmune responsgollowing
Lassa virus challenge, it was discovered that allaacinated animals dig@% survival). Nine of 10 animals
vaccinated with all proteinsurvived (90% survival). Although no animals thateived full-lengthglycoprotein
alone had a high titer of antibody, 17 of 19 suedichallenge (88%). In contrast, all animals vaccidatéth
nucleoproteirdeveloped high titers of antibody but 12 of 15 dj2d% survival) All animals vaccinated with single
glycoproteins, G1 or G2, diebdut all those that received both single glycopradiG1l plusG2) at separate sites
survived, showing that both glycoproteirse independently important in protection. Neithgnoup had
demonstrablantibody levels prior to challenge.

It was demonstrate that in primat@amune responses to epitopes on both glycopromiasequiredo
protect against lethal challenge with Lassa viruthout havinguntoward side effects and that this protection is
likely to beprimarily cell mediated [2]. This clearly showsathan effective, safe vacciagainst Lassa virus can
and should be made for the human population.

In this regard, we simply state a mathematical rhtiu incorporates vaccination of those enterimg t
susceptible population and those who recover floadisease. There is no need vaccinating the adqmpulation.
The model proposed is:

%f =(@L-v)UN —mS- BVS-alS

%=,8vs+als—y{—ml

dR (4.1)
E:VM+V/,[N

dv _ _V._

E—rV(l K) w

Of course the rodent population remains as theltealwiays be rodents in the community.
In the mathematical model in (16), we vaccinate rapprtionv, of those entering the susceptible

population and then also vaccinate those who redovm the disease. The new clals stands for individuals that
are vaccinated and have a measure of immunity sigtiia disease. Of course the efficacy of the wecased will
determine the length of time one has the immuhitg.leave analysis of the model for future work.

5.0 Discussion and conclusion

We present a mathematical model for the dynamicktaska fever. We observe that to achieve a distase
situation and prevent an epidemic, we strongly needontrol the vectors causing the disease, thents of the

M.natalensis family. Simply stated, this will mearadicating the rat population. This is totallyagreement with

the findings done by the Merlin Institute, Londen[8]. However most people will kick against tidea as the rats
serve as meat for some people especially in WeataAf8].

Eradication or at least serious control of the nislds clearly in agreement with our mathematical
conditions that will make the disease free statéesable (conditions (3.3) and (3.4)). In additepserious effort to
reduce contacts with infected individuals is su¢gmsThis can be achieved by an isolation policyerghthe

Journal of the Nigerian Association of Mathematicd&hysics Volume 1(November 2006457 - 464
Mathematical model for Lassa fever Daniel Okuonghae and Robert Okuonghae J of NAMP



infected individuals are isolated until they recofrem the disease. All of this is needed since amrmfection is
due to contact with rodents or infectpdtients. However widespread prevention of suchtamtnis presently
impractical,so provision of a vaccine for community and hodpitse is anmperative public health need and
remains the best option to tackle the menace [4].7,

In addition to the work on vaccination presented2h production of a combined, single dose vaccine
against yellow fever and Lassa fever has also pegposed in [3]. However, the cost and logistjmadblems of
delivering it would be huge, particularly in devgilog countries where there is some level of endigynitn the
interim, vector control and isolation of infectedrgons still remain the best strategy against pineasl of Lassa
fever.

Further developments on lassa modelling requiretéebunderstanding of the rodent vectors. We may
incorporate movements of the rodents as well asemewts of the infected individuals into virgin tery into the
model and see the effect this will have on the aleliynamics of the disease.

The epidemiology of both rat and human populaticetpuires urgent investigation if we are to undewdtéhis
disease fully. It could be done through developing

. International collaboration over research

. A map of the complete epidemiological and clinisialry

. Involvement of the communities affected

. Effective and affordable diagnostic kits and treatin

. Efficient and effective specialist treatment cesitre

. An effective and affordable vaccine to control théction in its natural habitat, protect interiostal

visitors, and deter the use of the virus as antagfdriological warfare [11]
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