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Abstract 

 

A new interactive simulator for Quantum Computation has been 
developed for simulation of the universal set of quantum gates and for construction 
of new gates of up to 3 qubits. The simulator also automatically generates an 
equivalent quantum circuit for any arbitrary unitary transformation on a qubit. 
Available quantum computer simulators attempt to emulate the various physical 
realisations of quantum computation, simulate existing quantum algorithms or are 
aimed at facilitating the development of new algorithms. However, because of the 
level of advancement and complexity of quantum computation algorithms, these 
simulators tend to be quite complex, at least from a novice’s point of view. As a 
result of this, beginners are often at a loss when trying to interact with them. The 
simulator here proposed therefore is aimed at bridging the gap somewhat, making 
quantum computer simulation more accessible to novices in the field. 

 
 
1.0 Introduction 
 

The field of quantum computation, which deals with the harnessing of physical phenomena unique to 
quantum mechanical systems to realise a fundamentally new mode of information processing, has come quite a long 
way; why, its basic ideas were formulated well over two decades ago! [1, 2]. However, progress in the 
software/algorithm related aspect of quantum computation has been relatively slow. This can be deduced from the 
fact that, from its incipience, only a small number of quantum computer algorithms have been discovered. The 
simple explanation for this is: “coming up with good quantum algorithms seems to be hard”  [3]. Well, what more do 
we expect when Richard Feynman, a Nobel Laureate in quantum mechanics—the very basis of quantum 
computation—said, “I think I can safely say that nobody understands quantum mechanics”. It is little wonder then 
that developing computational algorithms which are based on such a theory is difficult.  
However, we seek to go beyond this ‘simple explanation’ because as scientists, inquisitiveness is our defining 
characteristic, as asking questions and finding answers is the very essence of science. Therefore, the question which 
inspires the research work presented in this paper is: Why is coming up with quantum algorithms hard? This 
question was addressed by Michael Nielsen and Isaac Chuang [3]. According to them, algorithm design for quantum 
computers is hard because designers face two difficult problems not faced in the construction of algorithms for 
classical computers. First, our human intuition is rooted in the classical world and naturally, we come up with 
classical algorithms when that intuition is used as an aid to the construction of algorithms. Second, it is not enough 
to design an algorithm which is merely quantum mechanical. To be truly interesting, the algorithm must out-perform 
any existing classical algorithm!  
Here, the following are added to the line of questions on the progress of quantum computation:  
(1) Are there other reasons why it seems to be hard to come up with quantum algorithms? 
 (2) While it is true that our intuition is rooted in the classical world; what can be done practically, to found and 
substantiate our intuitive powers in the quantum domain? 
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To question (1) above, the answer is “yes”. Another possible reason which is hereby identified is that the 
number of scientists involved in active research on the algorithm related aspect of quantum computation is relatively 
few. There is no doubt that the chances of getting major breakthroughs in quantum computation will increase if 
more individuals are involved. However, many researchers and scientists hesitate to get involved in quantum 
computation for a number of reasons. Some are reluctant because of sheer pessimism; they feel that the field will 
develop no further. Others are taken aback because they feel quantum computation is just not for them to peer into. 
Even though they get curious about the possibilities that it offers, the formalism in which it is presented is not 
palatable for them and thus, they lose the courage to delve deeper.  

To address question (2) we ask another question: Why is our intuition rooted in the classical world? The 
answer is obvious. It is because in the world around us and in our everyday activities, things behave according to the 
laws of classical physics. This means that if everyday objects behaved quantum mechanically, we likely would more 
easily be able to intuit in that way. For that reason, creating ‘objects’ which behave according to the laws of 
quantum mechanics and making such available for everyday interaction would no doubt help more individuals 
develop their intuitive powers in the direction of quantum computation. This can be done through quantum 
computer simulation. The new simulator presented herein is aimed at doing just that.  

Since quantum computer hardware systems which have been constructed are insufficient for detailed 
exploration of some of the algorithms that have been proposed, and even are currently not available outside research 
laboratories; quantum computer simulators have been useful for exploring quantum algorithms thereby enabling 
investigations on such to take place, which would otherwise be impossible given the current state of quantum 
computer hardware. In fact, a lot of excellent simulators have been designed to simulate various aspects of quantum 
computation, to verify the feasibility of quantum computers, to investigate the effect of errors on quantum 
computation, etc. Brilliant reviews have been written on these as well [4, 5, 6].  
However, because these simulators tend to concentrate on emulating various physical realizations of quantum 
computation, simulating the available quantum algorithms, demonstrating new theories of quantum computation, 
there are hardly any simulators which lend themselves to the easy understanding of beginners in the field. In fact, 
there is no Windows® based simulator available which concentrates on simulating the behavior of a single qubit as a 
quantum mechanical system, thereby enhancing appreciation for what a quantum computer actually does at the most 
fundamental level, in terms of unitary gate operations etc, and which, for instance, enables a user to start 
computation on a qubit which is in any arbitrary initial state as may be specified by the user (all known simulatorsi 
[4, 5, 6] only allow a user to start computations on basis states). Many simulators are used to perform quantum gate 
operations on qubits; however, none automatically generates a single quantum circuit, composed of only two types 
of gates, which performs any specified transformation of the qubit (that is with only the initial and final states 
specified). Moreover, there is a need for simulators aimed at helping fledglings in quantum computation gain some 
familiarity, and aiding their understanding of the workings of more advanced simulators, thereby instilling in them a 
measure of confidence which will encourage them to delve deeper into the field. The simulator here proposed is 
targeted at filling these needs. It presents itself as a practical tool for addressing question (2) raised above, serving as 
a contribution in its own little way to the field. 
The following gives a summary of basic principles of quantum computation on which the machinery of the new 
simulator is based.  
 
2.0 Basic ideas in quantum computation 
 
 A quantum bit (qubitii ) is the basic unit of information in quantum computation. The qubit can exist in 
states 0 or 1 like its classical counterpart (i.e. the bit), but is different in the sense that it can also exist in a coherent 

superposition state 10 βα +  in which it can have both values at the same time, with 
2α and 

2β representing the 

probability that it will be ‘found’ in each state, α  and β  being complex numbers. This strange property of the qubit 

arises as a direct consequence of its strict adherence 
_____________________________ 
1This refers to software that was accessible via the web at the time of writing 
2The term was coined by Schumacher [8] 
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to the laws of quantum mechanics which differ profoundly from the laws of classical physics. In fact, quantum 
computation is based on the following three postulates of quantum mechanics: (1) Superposition (2) Coherence, and 
(3) Entanglement.  
2.1 Superposition expresses the ability of a quantum mechanical system to be in two classical states at the same 
time as mentioned above. However, there have been generalisations in which the basic unit of computation would 
then be a quantum system which could have more than two basis states as done in the Quantum Qudit Theory [7]. 
However, to keep things simple, this discussion and hence the simulator here proposed will be based on qubits, that 
is computational units which can be found in only two classical states. The qubit can be in a linear superposition of 
the states  0  and 1  —it is in the state 0 with probability amplitude C∈α  and in the state 1  with probability 

amplitude C∈β . It is as though the qubit “does not make up its mind” as to which of the 2 classical states it is in. 

Such a ‘2-state’ quantum system is said to be in a superposition of the two classical states, and its state can be 

written as a unit (column) vector  2C∈








β
α

.  

In Dirac notation, this may be written as:  

10 βαψ +=    C∈βα , and 1
22 =β+α     (2,1) 

The Dirac notation has the advantage that it labels the basis vectors explicitly. This is very convenient because the 
notation expresses both that the state of the qubit is a vector, and that it is data (0 or 1) to be processed. (The 
{ }1 , 0  basis is called the standard or computational basis.) 

This linear superposition 10 βαψ +=  is part of the ‘private world’ of the qubit. For us to know its state, we 

must make a measurement. Measuring ψ  in the { }1 ,0  basis yields0  with probability 
2α , and 1  with the 

probability 
2β . 

One important aspect of the measurement is that it alters the state of the qubit: the effect of the measurement is that 
the new state is exactly the outcome of the measurement, i.e. if the outcome of the measurement of 10 βαψ +=  

yields 0 , then following the measurement, the qubit is in state 0 . This means that one cannot collect any 

additional information about  α and β  by repeating the measurement. 

 
2.2 Coherence refers to the ability of a system to remain quantum rather than classical over a period of time. 
Decoherence occurs when the quantum state degenerates into a classical state upon being measured. Here, 
‘measurement’ refers to events both intentional and accidental, in which information is being transferred out the 
quantum system. In the absence of such events, the system maintains its quantum coherence. 
 
2.3 Entanglement effects come to light in the case of systems of more than one qubit. It is a strange phenomenon in 
which, if the quantum state of one of the qubits changes, then the state(s) of the other(s) change(s) in a particular 
way, even if there is no interaction between them. The kinds of such correlations are much more than one would 
expect classically. 
Consider the case of two qubits. Classically speaking, each qubit can be either in the 0 or 1 state. Therefore, the two 
qubits are in one of the four states –00, 01, 10, 11– and this represents two bits of classical information. Quantum 
mechanically, they are in a superposition of those four states: 

11100100 11100100 ααααψ +++=    (2.2) 

where  1
2

=∑ij ijα .  

Again, this is just Dirac notation for the unit vector in 

4C :





















11

10

01

00

α
α
α
α
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where C∈α ij , 1
2

=∑ij ijα . 

Now consider the state of a two qubit system given by 11
2

1
00

2

1
+=ψ .  This stateiii  is a very popular example 

of an entangled state. Notice that the state cannot be represented as ( ) ( )1010 1010 ββαα +⊗+ iv for any complex 

numbers 0α , 1α , 0β  or 1β . We cannot analyze the state of each individual qubit in this system, because the states of 

the two qubits are entangled. If we take a measurement on the first qubit, then the state of the other qubit is 
determined by the outcome of the measurement. With probability ½ we see 0  as the outcome of the measurement, 

and in this case, we know that the state of the system must be 00 .  

Quantum computers depend on the principles expressed above. That is, they exploit the ability of a 
quantum particle to be in two states at the same time, such as the spin of a nucleus pointing simultaneously up and 
down relative to an applied magnetic field. With the two states representing a ‘one’ and a ‘zero’, N such particles, 

each representing a qubit, can then be combined or entangled so that they represent N2  values simultaneously. A 
quantum computer would then, in principle, be able to process these values at the same time, making it 
exponentially faster than a classical computer. 
  
3.0 Simple Operations on Qubits 
 

A qubit may be defined more concretely as a quantum system in which the Boolean states 0 and 1 are 
represented by a prescribed pair of normalised and mutually orthogonal quantum states labelled as { }1,0 . The two 

states form a ‘computational basis’ and any other (pure) state of the qubit can be written as a superposition 

10 βα +  for some α and β  such that 1
22 =+ βα . A qubit is typically a microscopic system, such as an atom, 

a nuclear spin, or a polarised photon. A collection of n qubits is called a quantum register of size n. 
As expounded by Ekert et al. [9], if we assume that information is stored in the register in binary form, the number 6 
for instance will be represented by a register in the state 011 ⊗⊗ . In more compact notation, a  stands for 

the tensor product 0121 aaaa nn ⊗⊗ −− K , where { }1,0∈ia , and it represents a quantum register prepared with 

the value 1
1

1
1

0
0 222 −

−++= n

n aaaa K . There are n2 states of this kind, representing all binary strings of length n or 

numbers from 12  to0 −n  and they form a convenient computational basis. In the following { }na 1,0∈  (a  is a 

binary string of length n) implies that a  belongs to the computational basis. 

Thus a quantum register of size three can store individual numbers such as 3 or 7 

3011

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

1

0

0

1
110 ≡≡

































=





















⊗







=








⊗







⊗







=⊗⊗ ,   (3.1) 

Similarly,   7111111 ≡≡⊗⊗ ,      (3.2) 

but, it can also store the two of them simultaneously. For if instead of setting the first qubit to 1or  0  we prepare a 

superposition ( )1  0
2

1 +  then we obtain 
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( ) ( )111011
2

1
 111  0

2

1 +≡⊗⊗+       (3.3) 

      ( )73
2

1
 +≡      (3.4) 

In fact we can prepare this register in a superposition of all eight numbers – it is sufficient to put each qubit into the 

superposition ( )1  0
2

1 + . This gives 

( ) ( ) ( )1  0
2

1
1  0

2

1
1  0

2

1 +⊗+⊗+ ,   (3.5) 

which can also be written in binary as (ignoring the normalisation constant 2/32− ) 
   111110101100011010001000 +++++++   (3.6)  

or in decimal notation as  76543210 +++++++ ,   (3.7) 

or simply as ∑
=

7

0x

x .  

4.0 Quantum gates and networks 
 

These preparations, and any other manipulations on qubits, have to be performed by unitary operations. A 
quantum logic gatev is a device which performs a fixed unitary operation on selected qubits in a fixed period of time 
and a quantum network is a device consisting of quantum logic gates whose computational steps are synchronised 
in time [13]. The outputs of some of the gates are connected to the inputs of others. The size of the network is the 
number of gates it contains. 
The most common quantum gate is the Hadamard gate, a single qubit gate H performing the unitary transform 
known as the Hadamard transform. It is defined as 










−
=

11

11

2

1
H ,

x ( ) xx
x −+− 11H

. 

The matrix is written in the computational basis { }1,0  and the diagram on the right provides a schematic 

representation of the gate H acting on a qubit in statex , with x = 0, 1. 

Here is a network, of size three, which effects the Hadamard transform on three qubits. If they are initially in state 
000  then the output is a superposition of all eight numbers from 0 to 7. 
















{ }76543210
2

1
3/2

+++++++=

0

0

0

2

10 +

2

10 +

2

10 +













++++

++++
=

111110101100

011010001000

2

1
3/2

DECIMAL IN

BINARY IN

H

H

H

 
If the three qubits are initially in some other state from the computational basis, then the result is a superposition of 
all numbers from 0 to 7 but with exactly half them will appear in the superposition with the minus sign, for example, 













+−+−

+−+−

111110101100

011010001000

2

1
101

3/2
a    (4.1) 

In general, if we start with a register of size n in some state { }ny 1,0∈  then  

{ }
xy

nx

xyn ∑
∈

⋅− −
1,0

2/ )1(  2a      (4.2) 

where the product of ( )01 ,, yyy n K−=  and ( )01 ,, xxx n K−=  is taken bit by bit : 

( )001111 xyxyxyxy nn ++=⋅ −− K     (4.3) 
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We will need another single qubit gate – the phase shift gate φ  defined as 00 a  and 11 φiea , or, in matrix 

notation,  

       







= φφ

ie0

01

2

1
                      

φ
x xeiφ

    (4.4) 

The Hadamard gate and the phase shift gate can be combined to construct the following network (of size four), 
which generates the most general pure state of a single cubit (up to a global phase), 

0 1sin0cos ϑϑ φie+
φπ +

2ϑ2

H H
   (4.5) 

The above is obvious, in fact: 
Performing the Hadamard transform on the basis ket0 , we have 

( )10
2

1
0 +a . 

 A subsequent of phase shift of ϑ2  gives 

( ) ( )10
2

1
     10

2

1 2 ie ϑ++ a . 

Another Hadamard transform now yields 

( ) ( ) ( )







−+++ 10

2
10

2

1

2

1
   10

2

1 2
2

i
i e

e
ϑ

ϑ
a ( ) ( )( )1101

2

1 22 ii ee ϑϑ −++= . 

Finally, phase-shifting this resultant state by φπ +
2

 gives 

( ) ( )( ) ( ) ( ) ( ) 




 −++−++ +

1101
2

1
      1101

2

1 22222 iiiii eeeee ϑφπ
ϑϑϑ

a ( ) ( ) ( ) 





 −++= −+− 10

2

1
2 ϑϑφπ

ϑϑϑ iiiiii eeeeee

( ) ( ) 






 −++= ϑϑ−φϑϑ−ϑ
1

2
0

2

1 iiiiii eee
i

eee ( ) ( ) 






 −−++= −− 1
2

0
2

1 ϑϑφϑϑϑ iiiiii eee
i

eee

( ) ( ) 






 −++= ϑ−ϑφϑϑ−ϑ
1

2

1
0

2

1 iiiiii eee
i

eee ( )1sin0cos ϑϑ φϑ ii ee +=  

We then neglect the phase factor 
ϑie  to obtain Equation (4.5). 

Consequently, the Hadamard gates and the phase gates are sufficient to construct any unitary operation on a single 
cubit. 

Thus they can be used to transform the input state 000 K  of the n cubit register into any state of the 

type nψψψ K21 , where iψ  is an arbitrary superposition of 0  and 1 . These are rather special n-qubit states, 

called the product states or the separable states. In general a quantum register of size 1>n can be prepared into 
states which are not separable i.e. entangled states. For example, for two qubits (n  = 2), the state 

                                                      ( )1001000 βαβα +⊗=+                                      (4.6) 

is separable into, 01 =ψ  and 102 βαψ += , whilst the state  

1100 βα +  )0,( ≠βα  cannot be separated because it cannot be written as a tensor product.  

In order to entangle two (or more) qubits we have to extend our repertoire of quantum gates to two-qubit gates. The 
most popular two-qubit gate is the controlled-NOT gate (c-NOT), also known as the XOR or the measurement gate. 
It flips the second (target) qubit if the first (control) qubit is 1  and does nothing if the control qubit is  0  . The 

gate is represented by the unitary matrix  
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x

y yx ⊕

x
 



















=

0100

1000

0010

0001

C

 (4.7) 
where   x, y = 0 or 1 and  ⊕  denotes XOR or addition in modulo 2. If we apply the C-NOT to Boolean data in 

which the target qubit is 0  and the control is either 0  or 1  then the effect is to leave the control unchanged 

while the target becomes a copy of the control, i.e. 
  1 ,0            0 = xxxx a     (4.8) 

One might suppose that this gate could also be used to copy superpositions such as 10 βα +=Ψ , so that 

    0 ΨΨΨ a     (4.9) 

for any  Ψ . This is not so! The unitarity of the C-NOT requires that the gate turns superpositions in the control 

qubit into an entanglement of the control and the target. If the control qubit is in a superposition state   
10 βα +=Ψ , )0,( ≠βα , and the target in0  then the C-NOT generates the entangled state 

 ( ) 1100010 βαβα ++ a ) (4.10) 

Another common two-qubit gate is the controlled phase shift gate ( )φB  defined as  

( )




















=φ

φie

B

000

0100

0010

0001 x

y

yxeixyφ













  

  (4.11) 
Again, the matrix is written in the computational basis { }11 ,10 ,01 ,00  and the diagram on the right shows the 

structure of the gate. 
More generally, these various 2-qubit gates are all of the form controlled-U, for some single-qubit unitary 

transformation U. The controlled-U gate applies the identity transformation to the auxiliary (lower) qubit when the 
control qubit is in the state 0  and applies an arbitrary prescribed U when the control qubit is in the state1 . The 

gate maps y0  to y0  and y1  to )(1 yU , and is graphically represented as  

                                              U  
The Hadamard gate, all phase gates, the C-NOT, form an infinite universal set of gates i.e. if the  C-NOT gate as 
well as the Hadamard and all phase gates are available then any n -qubit unitary operation can be simulated exactly 

with )4( nO n  such gates [10]. (Here the asymptotic notation - ))(( nTO is used, which means bounded above by 

)(ncT  for some constant c for sufficiently large n.)  This is not the only universal set of gates. In fact, almost any 

gate which can entangle two qubits can be used as a universal gate [11, 12]. Mathematically, an elegant choice is a 
pair of the Hadamard and the controlled-V (c - V) where V is described by the unitary matrix 

 







=

i
V

0

01
 (4.12) 

The two gates form a finite universal set of gates –networks. Networks containing only a finite number of these 
gates can approximate any unitary transformation on two (and more) qubits.  
A quantum computer will be viewed here as a quantum network (or a family of quantum networks) and quantum 
computation is defined as a unitary evolution of the network which takes its initial “input” into some final state 
“output”. 
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5.0 Quantum Computer Simulation 
 

As Feynman said [2], the only way to effectively model a quantum mechanical system is by using another 
quantum mechanical system. Therefore, a quantum computer simulator is merely an attempt to model a quantum 
mechanical systemvi on a classical system and the simulator must keep track of exponentially many computations in 
order to do this accurately. If it were possible to construct an efficient quantum computer simulator, then it would no 
longer be necessary to construct a quantum computer via production of quantum computer hardware (except perhaps 
for Moore’s law). The simulator itself would effectively be a quantum computer.  

Therefore quantum computer simulation remains only an attempt to model the operations of a quantum 
computer. In fact, every simulator has this as its primary objective. However, quite a number of quantum computer 
simulators have been developed for secondary aims, as reviews on simulators show [3, 4, & 5].  

 
6.0 Q~GATE Simulator  
 

Q-GATE, the quantum computer simulator presented in this paper was designed with the following 
objectives: 
1. To simulate the most fundamental quantum logic gate operations, applying them to any input qubit state. 
(2) To carry out its operations while preserving the quantum mechanical notations as well as the displaying the 

gate operations in matrix form. 
(3) To emphasise the matrix manipulation carried out in the various gate operations. 
(4) To automate the creation of quantum circuits. 
(5) To provide a software tool that may serve as a teaching aid for the basic concepts of quantum logic. 
(6) To provide simulator that mimics all the basic properties of a quantum computer. 
(7) Ultimately, to increase the number of individuals involved in quantum computation. 
 
6.1 Brief Description 
 

Q~GATE has a very user-friendly GUI (graphical user interface). It is lavished with tool tip textsvii which 
tell the user what to do with each graphical component and it also uses different forms of user interactivity: from 
drag-and-drop to clicking, scrolling, e. t. c.   
It makes use of the following matrix representations of the computational basis vectors 

 ,     (6.1) 
So that 

,  (6.2 
and so on.  
Moreover, Q~GATE presents the input and output qubits both in Dirac notation and matrix form. It simulates gate 
operations on quantum registers of up to size 3. It adopts the matrix formulation of quantum computation, in which 
the gates are actually unitary matrices, and the gate operations are essentially matrix multiplication operations. 
Hence, if we apply the Hadamard gate (for instance) to the state of a qubit, which itself is a column matrix, we are in 
effect, carrying out the following: 

For  101 βαψ +=   in Dirac notation, or 








β
α

 in matrix form,  

21 ψψ =H , i.e. 

21
2

1

11

11

2

1 ψ
βα
βα

β
α

ψ =








−
+

=
















−
≡H  (6.3) 

 
 
 









=

0

1
0 








=

1

0
1



















=







⊗








=⊗=

0

0

0

1

0

1

0

1
0000
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6.2 Gate Simulations 
 

1-qubit, 2-qubit, and 3-qubit gate operations are simulated and these simulations are very useful in the 
understanding and design of quantum circuits because they contain a universal set of gates [10, 11, 12]. The rows 
and columns of the unitary matrices are labelled from left to right and top to bottom as 000K , 100K  to 111K  
with the bottom-most wire being the least significant bit. 
The circuit symbols as well as matrix representations of the gates simulated are shown below. 
 

1-qubit gates 
 

The Hadamard gate 

H 








− 11

11

2

1

 
 

The Pauli-X gate 

X 








01

10

 
 

The Pauli-Y gate 








 −
0

0

i

i
Y

 
 

The Pauli-Z gate 

Z 








− 10

01

 
 

The Phase gate (S or V gate) 










i0

01
S

 

The 
8

π
 gate 

T 







π 4/

0

01
ie

 
2-qubit gates 

 
The controlled-NOT gate 



















0100

1000

0010

0001

 
The swap gate 



















1000

0010

0100

0001
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The controlled-Z gate 

Z×Z 

















− 1000

0100

0010

0001

 
The controlled-phase gate 

×S 

















i000

0100

0010

0001

 
3-qubit gates 

 
Toffoli gate (controlled-controlled-NOT) 

































01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

 
The Fredkin gate (controlled-swap gate) 

































10000000

00100000

01000000

00010000

00001000

00000100

00000010

00000001

 

Note that 
4/πie  is the square root of i , so that the 

8

π  gate is the square root of the phase gate, which itself is the 

square root of the Pauli-Z gate. 
Another interesting feature of Q~GATE is that it allows the user to create a custom (user-defined) gate. This 

can be done either by applying a succession of the predefined unitary gates or by manually entering the complex 
number components of the gate operator matrix, in which case the user has to test and confirm the unitarity of the 
specified gate, upon which the gate is then accepted. 
Q~GATE also captures what happens when a qubit is measured. By modelling the effect of measurement so well, it 
enhances the understanding of the meaning of the probability amplitudes and the quantum states. 
 
6.3 Gate construction example –An interactive session 
 

Let us assume we want to simulate the application of a 2-qubit unitary operation defined by  





















−−
−−
−−

=

ii

ii
U

11

1111

11

1111

2

1ˆ       (6.4) 
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to a quantum register of size 2 (this is a special case of the Quantum Fourier Transform [3]). 
The first thing to do is to run the executable file Q~GATE.exe from the programs menu. (That should be after 
Q~GATE has been installed of course!). This loads the main program window which has tabs for toggling between 
one, two, three, and higher qubit operations. For the purpose of the problem at hand, we click on the 2 qubit tab. The 
tab page for two qubit operations comes up, and we then click on the “User defined gate” command button in the 
frame with the caption “Gate”. A window then pops up, which allows us to specify values for each matrix element 
for the gate. After entering the elements of the gate according to equation (25), and running the unitarity test, we are 
then ready to use this gate on the input register. If, for instance, we specify the state of the input register to be00 , 

which is 

 





















0

0

0

1

 in matrix form, then Q~GATE basically performs the following.  

( )11100100
2
1

1

1

1

1

2
1

0

0

0

1

11

1111

11

1111

2
1ˆ +++≡





















=





















×





















−−
−−
−−

=

ii

ii
U ψ . 

The simulator is thus very simple to use. In fact, its elegant simplicity and presentation of the mathematical as well 
quantum mechanical notations constitute a part of the features which make Q~GATE stand out as a simulator. 
 
6.4 Circuit Generation 
 

Q~GATE automates the generation of circuits which carry out a specified transformation on a qubit. Its 
automatic generation of an equivalent circuit is based on the discussions in section 4.0 above, and it particularly 
makes use of equation (14) i.e. 

     21 ψψ a ( )1sin0cos ϑϑ φϑ ii ee +=    (6.5) 

Recall that this represents a most general state of the qubit. Therefore, to specify any desired rotationviii  or 
transformation of the qubit, we only need to specify θ  and φ  in the equation. 

Q~GATE allows the user to specify an arbitrary final state of a qubit, not only by means of a sequence of gate 
operations, but also by another interactive and perhaps more user friendly means (especially from a novice’s point of 
view) –sliders. There is no known simulator which makes use of this. The sliders are used to specify the values of 

2α  and 
2β  and subsequently the complex number values of α , β ; and hence the state of the qubit  

10 β+α=ψ .  

An instance of this is shown below. 

 
Figure 1: Specifying a qubit state in Q~GATE by means of sliders. 
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The sliders are coded in such a way that the restriction imposed by the normalization condition 

1
22 =+ βα  is enforced. That way, the user can select a truly ‘arbitrary’ state. 

 
More to that, a user may choose to generate a quantum circuit which rotates a qubit in the computational 

basis state 0  to the state 10 βα +  specified by the user. This makes Q~GATE a useful tool for grasping the 

fundamental concepts of building a quantum circuit which performs a particular transformation on a qubit. 
In obtaining the values of θ  and φ , Q~GATE employs the well known Newton’s Method. The values are 

used to construct the phase-shift gates in equation (4.5). Q~GATE then couples these phase shift gates with the 
Hadamard gate as shown in the diagram. The user can of course, also use Q~GATE to verify that this network 
indeed performs that transformation.  

The method employed by Q~GATE in generating an equivalent circuit to perform a specified 
transformation on a single qubit is the following:  
We can recast equation (6.5) as, ( )1sin0cos ϑϑψ φϑ ii ee += .    (6.6) 

 To build the circuit in equation (4.5) it is sufficient to obtain θ  and φ . Since the specified state  ψ  will be in the 

form  10 βαψ += , with iir ααα += , and iir βββ += ,  (6.7) 

expanding equation (6.6) and equating the real and complex parts of the coefficients of the basis states yields 

 

φθθθθβ
φθφθθβ

θθα
θα

sincossincossin

sinsincoscossin

cossin

cos

2

2

2

+=
−=

=
=

i

r

i

r

    (6.8 

In equation (6.8) we obtain θ  easily from the value ofrα ,  ( )rαθ ±= −1cos   (6.9) 

From equation (3.1), we obtain two values of θ , one corresponding to rα+ , and the other to rα− . We can find 

which of these values to select by trying them out in equation (29b). Thus we obtainθ . Next, we use the value of θ  

in equation (6.6) to obtain φ  given the value of rβ .  

However, because of the implicit nature of the resulting function of φ  i.e. 

( ) φθφθθβφ sinsincoscossin 2+−= rg , Newton’s method is used to obtain φ  to a fairly good degree of accuracy. Recall 

that according to Newton’s method, if we make a first approximation 0φφ = , however bad, to the root of ( )φg , then 

subsequent ones 1φ=φ , 432 ,, φφφ …, such that  

( )
( )n

n
nn g

g

φ
φφφ

′
−=+1 ;    (6.10) 

after a number of iterations, we can obtain a fairly accurate φ , since each approximation is always better than the 

preceding one.   Q~GATE iterates this procedure programmatically (with 00 =φ radians) to give us the value of φ . 

The values of θ  and φ are then used to construct the quantum circuit as in equations (4.5) and (6.5) 

 
7.0 Simulator Design 
 

The simulator was designed with the Visual Basic 6.0 programming language. One advantage of using 
visual basic is that Any PC running an MS Windows OS and a VB500.DLL can run VB applications. This is 75 % 
of all the world’s PCs. I therefore found VB very suitable, especially with the aim of the Q~GATE simulator in mind 
–reaching out to beginners in quantum computation. Links to the program files and source codes can be accessed 
through http://tunmise.4t.com.  he screenshots of the simulator during design and run-time are shown below (Figures 
3, 4). 

Q~GATE takes an input of qubits specified by the user and allows the user to perform a simulation by 
clicking on a gate. The result of the operation is seen immediately. There is also a status/log window which keeps 
record of all operations carried out in a simulation session, allowing the user to save this for future reference.   
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Figure 3:Q-GATE simulator (Visual Basic design) 

 

 
Figure 4: Q-GATE simulator (Runtime) 

 
8.0 Limitations of Q-GATE 
 

In addition to the general limitations of quantum computer simulators [18], Q~GATE 
♦ does not include simulation of errors, 
♦ cannot be used for carrying out simulations on a large number of qubits. 

These however help to keep Q~GATE simple, so as not to defeat its purpose. 
 
9.0 Conclusions 
 

Q~GATE gives a useful addition to the available quantum computer simulators. It increases our 
appreciation for quantum logic and basic quantum computational operations in a unique way, providing a teaching 
aid for introductory aspects of quantum computation. The method employed in the generation of circuits which 
rotate qubits from a basis state to any specified arbitrary state, can be generalised and may find application in the 
modelling of quantum mechanical systems.  
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Notations 
 The Bell state 
 ⊗ Denotes the outer tensor product 
 Of course quantum logic gates are different from their classical counterparts because they can create and perform operations on 
superpositions 
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 which in this case, is the quantum computer 
 small pop-up balloons 
 A qubit is seen as a vector in Hilbert space 
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