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Abstract

A new interactive simulator for Quantum Computation has been
developed for simulation of the universal set of qantum gates and for construction
of new gates of up to 3 qubits. The simulator alsautomatically generates an
equivalent quantum circuit for any arbitrary unitary transformation on a qubit.
Available quantum computer simulators attempt to enulate the various physical
realisations of quantum computation, simulate exishg quantum algorithms or are
aimed at facilitating the development of new algothms. However, because of the
level of advancement and complexity of quantum comytation algorithms, these
simulators tend to be quite complex, at least froma novice's point of view. As a
result of this, beginners are often at a loss whetnying to interact with them. The
simulator here proposed therefore is aimed at briding the gap somewhat, making
guantum computer simulation more accessible to noges in the field.

1.0 Introduction

The field of quantum computation, which deals witle harnessing of physical phenomena unique to
guantum mechanical systems to realise a fundanientl mode of information processing, has comé¢egailong
way; why, its basic ideas were formulated well oweio decades ago! [1, 2]. However, progress in the
software/algorithm related aspect of quantum coatprt has been relatively slow. This can be deddicad the
fact that, from its incipience, only a small numlrquantum computer algorithms have been discoverée
simple explanation for this is: “coming up with gbquantum algorithms seems totmrd’ [3]. Well, what more do
we expect when Richard Feynman, a Nobel Laureatejuantum mechanics—the very basis of quantum
computation—said, “I think | can safely say that odp understands quantum mechanics”. It is littlender then
that developing computational algorithms whichlaased on such a theory is difficult.

However, we seek to go beyond this ‘simple expianatbecause as scientists, inquisitiveness is drfiing
characteristic, as asking questions and findingvansis the very essence of science. Thereforgjubstion which
inspires the research work presented in this p&pewhy is coming up with quantum algorithms hartfzis
guestion was addressed by Michael Nielsen and Bhaang [3]. According to them, algorithm designdoantum
computers is hard because designers face two ufffizoblems not faced in the construction of alfpons for
classical computers. First, our human intuitiorrasted in the classical world and naturally, we eoup with
classical algorithms when that intuition is usedaasaid to the construction of algorithms. Secadnis, not enough
to design an algorithm which is merely quantum ra@dtal. To be truly interesting, the algorithm mast-perform
any existing classical algorithm!

Here, the following are added to the line of quesion the progress of quantum computation:

(1) Are there other reasons why it seems to be hard cone up with quantum algorithms?
(2) While it is true that our intuition is rooted ihé classical world; what can be done practically,found and
substantiate our intuitive powers in the quantumdm?

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006433 - 446
Quantum computer gate simulations Adetunmise C. Daal J of NAMP



To question (1) above, the answer is “yes”. Anotiessible reason which is hereby identified is that
number of scientists involved in active researchhenalgorithm related aspect of quantum computdtiaelatively
few. There is no doubt that the chances of gettivagor breakthroughs in quantum computation willrézse if
more individuals are involved. However, many reskars and scientists hesitate to get involved iantum
computation for a number of reasons. Some areteeitibecause of sheer pessimism; they feel thatigte will
develop no further. Others are taken aback bedhesefeel quantum computation is just not for thenpeer into.
Even though they get curious about the possitslitieat it offers, the formalism in which it is peased is not
palatable for them and thus, they lose the coumgelve deeper.

To address question (2) we ask another questiory. i/bur intuition rooted in the classical worldher
answer is obvious. It is because in the world adousmand in our everyday activities, things betas@rding to the
laws of classical physics. This means that if edtayyobjects behaved quantum mechanically, we likeyld more
easily be able to intuit in that way. For that mgscreating ‘objects’ which behave according te taws of
guantum mechanics and making such available forydag interaction would no doubt help more indiathu
develop their intuitive powers in the direction gfiantum computation. Thisan be done through quantum
computer simulation. The new simulator presentedihaés aimed at doing just that.

Since quantum computer hardware systems which ba&es constructed are insufficient for detailed
exploration of some of the algorithms that havenbg®posed, and even are currently not availabisideli research
laboratories; quantum computer simulators have hesful for exploring quantum algorithms therebylding
investigations on such to take place, which wouldeovise be impossible given the current state wngum
computer hardware. In fact, a lot of excellent datars have been designed to simulate various &spéguantum
computation, to verify the feasibility of quantunonsputers, to investigate the effect of errors omrum
computation, etc. Brilliant reviews have been weriton these as well [4, 5, 6].

However, because these simulators tend to contentra emulating various physical realizations ofmum
computation, simulating the available quantum atgors, demonstrating new theories of quantum coatfuurt,
there are hardly any simulators which lend theneselo the easy understanding of beginners in #ié. fin fact,
there is no Windowsbased simulator available which concentrates muilsiting the behavior of a single qubit as a
guantum mechanical system, thereby enhancing apficecfor what a quantum computer actually doethatmost
fundamental level, in terms of unitary gate opersi etc, and which, for instance, enables a usestdc
computation on a qubit which is &ny arbitrary initial state as may be specified by tiser (all known simulators
[4, 5, 6] only allow a user to start computatiomshasis states). Many simulators are used to perfprantum gate
operations on qubits; however, none automaticadlyegates a single quantum circuit, composed of miytypes
of gates, which performs any specified transforomatf the qubit (that is with only the initial arfohal states
specified). Moreover, there is a need for simukatimed at helping fledglings in quantum computatiain some
familiarity, and aiding their understanding of therkings of more advanced simulators, therebyllimggiin them a
measure of confidence which will encourage thendetve deeper into the field. The simulator hereppeed is
targeted at filling these needs. It presents i@ela practical tool for addressing question (Bexhabove, serving as
a contribution in its own little way to the field.

The following gives a summary of basic principldsqoantum computation on which the machinery of tiesv
simulator is based.

2.0 Basic ideas in quantum computation

A quantum bit qubit' ) is the basic unit of information in quantum compiota The qubit can exist in
states 0 or 1 like its classical counterpart ¢he.bit), but is different in the sense that it @o exist in a coherent

superposition stater|0) + 8|1) in which it can have both values at the same tiaith, |a|” and |3 representing the

probability that it will be ‘found’ in each stat€f and[3 being complex numbers. This strange property @fibit
arises as a direct consequence of its strict adbere

This refers to software that was accessible via theeb at the time of writing
The term was coined by Schumacher [8]
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to the laws of quantum mechanics which differ punfdly from the laws of classical physics. In fagtiantum
computation is based on the following three postslaf quantum mechanics: (1) Superposition (2)eGatce, and
(3) Entanglement.

2.1 Superpositionexpresses the ability of a quantum mechanicakgygb be in two classical states at the same
time as mentioned above. However, there have bererglisations in which the basic unit of compotativould
then be a quantum system which could have morettharbasis states as done in the Quantum QuditryH&h
However, to keep things simple, this discussion lagce the simulator here proposed will be basegubits that

is computational units which can be found in onlyp tclassical states. The qubit can be in a linepesposition of

the states|0) and|1) —it is in the staté0) with probability amplitudez C and in the statél) with probability

amplitudegOC . It is as though the qubit “does not make up itsdhas to which of the 2 classical states it is in
Such a ‘2-state’ quantum system is said to be su@erpositionof the two classical states, and its state can be

a
written as a unit (column) vectaEﬁ) ace.

In Dirac notation, this may be written as:
2 2
w)=al0)+ A1) a,pOCandlal +[B =1 2.1)
The Dirac notation has the advantage that it labels the basissvegmicitly. This is very convenient because the

notation expresses both that the state of the qubit is arvecto that it is data (0 or 1) to be processed. (The
{]0> |1>} basis is called thetandardor computational basiy

This linear superpositiofy) = a|0) + B|1) is part of the ‘private world’ of the qubit. For us know its state, we
must make a measurement. Measuriid.g> in the {]0>|1>} basis yield) with probability|a|z, and 1) with the

probability | 4"
One important aspect of the measurement is that it altersatieeo$ the qubit: the effect of the measurement is that
the new state is exactly the outcome of the measurementthe.dfitcome of the measurementy} = a|0) + A1)

yields| O>, then following the measurement, the qubit is in 3141}3. This means that one cannot collect any

additional information aboutt and[3 by repeating the measurement.

2.2 Coherencerefers to the ability of a system to remain quantumerathan classical over a period of time.
Decoherenceoccurs when the quantum state degenerates into a classiealuptat being measured. Here,
‘measurement’ refers to events both intentional and aceilentwhich information is being transferred out the
guantum system. In the absence of such events, the sysii@mins its quantum coherence.

2.3 Entanglementeffects come to light in the case of systems of more thamabit. It is a strange phenomenon in
which, if the quantum state of one of the qubits charthes, the state(s) of the other(s) change(s) in a particular
way, even if there is no interaction between them. The lofidsich correlations are much more than one would
expect classically.

Consider the case of two qubits. Classically speaking, eachagubbe either in the 0 or 1 state. Therefore, the two
qubits are in one of the four states —00, 01, 10, 11-thasdepresents two bits of classical information. Quantum
mechanically, they are in a superposition of those foursstate

@) = a,,|00) +a,|01) +a,,[10) +a,,[11) (2.2)
where >, |a'ij|Z =1.
Again, this is just Dirac notation for the unit vector in

C*:

00
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2
whered ; U C, Zij‘aij‘ =1
Now consider the state of a two qubit system give‘qppy%‘ooﬁ%‘lj) . This statd is a very popular example
2 2

of an entangled state. Notice that the state cannot be represe(rh@h)}aﬁaJl))D (,80|0>+,6’1|1>)“’ for any complex
numbersa,,a,, B, or B,. We cannot analyze the state of each individual qubit irsjfieem, because the states of
the two qubits are entangled. If we take a measurement ofirghgubit, then the state of the other qubit is
determined by the outcome of the measurement. With prdlydhailwe see| O) as the outcome of the measurement,
and in this case, we know that the state of the system ren|lﬂ}§1>b

Quantum computers depend on the principles expressed abaaeisTlthey exploit the ability of a
guantum patrticle to be in two states at the same time, suble apin of a nucleus pointing simultaneously up and
down relative to an applied magnetic field. With the twoestagpresenting a ‘one’ and a ‘zero’, N such patrticles,

each representing a qubit, can then be combined or entangled ﬁm;heﬂepresenQN values simultaneously. A
guantum computer would then, in principle, be able to protlesse values at the same time, making it
exponentially faster than a classical computer.

3.0 Simple Operations on Qubits

A qubit may be defined more concretely as a quantum system in wiecBdolean states 0 and 1 are
represented by a prescribed pair of normalised and mutugtiggenal quantum states Iabelledﬂ@,ﬂ)}. The two
states form a ‘computational basis’ and any other (pure® sththe qubit can be written as a superposition
al0)+ BJ1) for somed and B such thafa|" +|4" =1. A qubit is typically a microscopic system, such as amato

a nuclear spin, or a polarised photon. A collection gfibits is called guantum registerof sizen.
As expounded by Ekeet al [9], if we assume that information is stored in thegggiin binary form, the number 6

for instance will be represented by a register in the $taté|1) 0|0). In more compact notatiofa) stands for
the tensor produdi, ) Ola,,)...|a,) O|a,), where|a ) 0{03}, and it represents a quantum register prepared with
the valuea=2%a, +2'a, +...2""a_, . There are2"states of this kind, representing all binary stsirg length n or
numbers from0to2" -1 and they form a convenient computational basishin following |a>D{0,]}" (a is a

binary string of length n) implies th@) belongs to the computational basis.
Thus a quantum register of size three can storeivithéhl numbers such as 3 or 7

=|011) =|3), (3.1)

OO O O o r OO O

Similarly, |1 0|01 =113 =|7), 3.2
but, it can also store the two of them simultangowor if instead of setting the first qubit }0) or|1) we prepare a

superpositioniqo> +|1>) then we obtain

72
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50+ BIoB o= o1g+pag) 63
5%03>+|7>) (34)

In fact we can prepare this register in a supetiposof all eight numbers — it is sufficient to peaich qubit into the

superposition1—00> +|1>). This gives

V2
1 1 1
—(0)+|1))O0—=(0)+|1))0—=|0)+|1)), 3.5
50+ 1o (0)+)o (o) +1) @)
which can also be written in binary as (ignoring tiormalisation Constarﬁ_3/2)
|000) +|001) +]010) +|011) +[100) +|103) +[110) +|1113) (3.6)
or in decimal notation as|0) +|1) +|2) +|3) +|4) +|5) +|6) +|7), (3.7)

7
or simply asZ| X> :
x=0
4.0 Quantum gates and networks

These preparations, and any other manipulatiorgubits, have to be performed by unitary operati@ns.
guantum logic gatéis a device which performs a fixed unitary opematn selected qubits in a fixed period of time
and aquantum networkis a device consisting of quantum logic gates whomsaputational steps are synchronised
in time [13]. The outputs of some of the gates@menected to the inputs of others. Tieeof the network is the
number of gates it contains.

The most common quantum gate is thedamard gate a single qubit gatél performing the unitary transform
known as the Hadamard transform. It is defined as

A e

The matrix is written in the computational ba{j§>,|l>} and the diagram on the right provides a schematic

representation of the gateacting on a qubit in staltn), withx =0, 1.

Here is a network, of size three, which effectsaglamard transform on three qubits. If they aiaity in state
|OOO> then the output is a superposition of all eightbars from 0 to 7.

IN BINARY
0 H [0)+]t) 1 []000) +]001) +|010) +|011) +
>ﬁ:2m+>>>>
o 1100) +[101) +]110) +|111)
o) —{mp— x|
=W{\0>+\1>+\2>+\3>+\4>+\5>+\6>+\7>}
. 0)+1)
‘0> V2 IN DECIMAL

If the three qubits are initially in some othertstitom the computational basis, then the resudt ssiperposition of
all numbers from 0 to 7 but with exactly half thevill appear in the superposition with the minusnsifpr example,

1 (/000 -|001) +|010)-(011) +
oy L 19091004 019013 wn
~[100) +|103) ~[110) +|113)
In general, if we start with a register of siz& some statey 1{01}" then
[y)>27 3 (D"x) (4.2)
oy
where the product of = (yn,l,...,yo) and x = (xn,l,...,xo) is taken bit by bit :
Y= (Yo Xy e VX F YX,) (4.3)
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We will need another single qubit gate — fease shift gateg defined ag0)+|0) and|1)+ €*|1), or, in matrix
notation,

x)

g .
sy owo s

J2(0 €
The Hadamard gate and the phase shift gate cawrbbimed to construct the following network (of sioeir),
which generates the most general pure state oigéestubit (up to a global phase),

29 3t¢
0) H @ H @ cos | 0) + e sin 1)

The above is obviou# fact
Performing the Hadamard transform on the basikO}(elwe have

9> (0)+[n)
A subsequent of phase shift 38 gives

0+1) » 5o+ )
Another Hadamard transform now yields
1 25

E(]0)+e2”‘|1)) I—)%(%QO)+|1>)+%(]O>—|1>)J :%((1+e2ﬂ]o>+(1—e”)1>).

Finally, phase-shifting this resultant state-gyir @ gives

%((l+ e* ]O> + (1_ e X1>) = %((1*’ e” ]O> + e(gw) (1‘ e*” Xl>) = %e”((e‘“’ + e“9]O> + e(gw) (e“" - e‘”]l}j
(L o)+ Lerle® o)) me Lo elo peter-e))

= e”(% (e"'S + ei‘s) 0) + %e“" (ei3 - e’”)l}j =e’(cos0) + & sind|1)

We then neglect the phase facﬁ? to obtain Equation (4.5).

Consequently, the Hadamard gates and the phase gratsufficient to construct any unitary operationa single
cubit.

(4.5)

Thus they can be used to transform the input $&{6)...|0) of then cubit register into any state of the

type|y,)|¢,)..|&,) . where|y,) is an arbitrary superposition ¢8) and |1). These are rather speciatjubit states,

called the product states or the separable stitggeneral a quantum register of sine>1can be prepared into
states which are not separable i.e. entangledsstabe example, for two qubitsi(= 2), the state

a|00) + 410)=|0) 0 (a]0) + A1) (4.6)
is separable intdy,) =|0) and|w,) =a|0)+ A1), whilst the state
a|00)+ B11) (a, B # 0) cannot be separated because it cannot be writtartensor product.

In order to entangle two (or more) qubits we havextend our repertoire of quantum gates to twdtaqgdies. The
most popular two-qubit gate is thentrolled-NOT gate (c-NOT), also known as the XOR or the measens gate.
It flips the second (target) qubit if the first (ttool) qubit is|1) and does nothing if the control qubit {©) . The
gate is represented by the unitary matrix

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006433 - 446
Quantum computer gate simulations Adetunmise C. Daal J of NAMP



S © o+
S O = O
= o O O

0
X X
0 x) %)
; ) %0y
y xOy
0 ‘ @4.7)
where x,y =0 or 1 and [J denotes XOR or addition in modulo 2. If we apgig C-NOT to Boolean data in

which the target qubit i$0) and the control is eithdi0) or |1) then the effect is to leave the control unchanged
while the target becomes a copy of the conirel,

|X)[0) - | x)| x) x=0,1 (4.8)
One might suppose that this gate could also betaseapy superpositions such [8) = a|0) + A1) , so that
|W)O) > [W)|w) (4.9)

for any |LIJ> This is not so! The unitarity of the C-NOT reasrthat the gate turns superpositions in the clontro
qubit into an entanglementof the control and the target. If the control quks in a superposition state
|W)=a|0)+ A1), (a,8#0), and the target {®) then the C-NOT generates the entangled state

(a]0) + A1) 0) > a]00) + A11) ) (4.10)
Another common two-qubit gate is tbentrolled phase shifgateB((p) defined as
1 0 0 O ‘x>
_ O 1 O O ixyQ
B@={y o 1 o . &) y)
i Yy
000 e (4.11)

Again, the matrix is written in the computationalsbs{]OO},|O]>,|10>,|1]>} and the diagram on the right shows the

structure of the gate.
More generally, these various 2-qubit gates arefalhe form controlledd, for some single-qubit unitary
transformatiorld. The controlledd gate applies the identity transformation to theileary (lower) qubit when the

control qubit is in the statki)) and applies an arbitrary prescribdddvhen the control qubit is in the st{it)e The
gate mapf))| y) to |0)y) and|1)y) to |1)(U|y)), and is graphically represented as

The Hadamard gate, all phase gates, the C-NOT, &riimfinite universal set of gates i.e. if the NOT gate as
well as the Hadamard and all phase gates are hleattzen anyn -qubit unitary operation can be simulated exactly

with O(4"n) such gates [10]. (Here the asymptotic notatio@(T (n)) is used, which means bounded above by
cT(n) for some constant for sufficiently largen.) This is not the only universal set of gatesfdet, almost any

gate which can entangle two qubits can be usedumévarsal gate [11, 12]. Mathematically, an elegdmwice is a
pair of the Hadamard and the controlide - V) whereV is described by the unitary matrix

10
v_(o i] (4.12)

The two gates form a finite universal set of gatastworks. Networks containing only a finite numioérthese
gates can approximate any unitary transformatiotwan(and more) qubits.

A quantum computewill be viewed here as a quantum network (or ailfaf quantum networks) anguantum
computationis defined as a unitary evolution of the networkich takes its initial “input” into some final séat
“output”.
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5.0 Quantum Computer Simulation

As Feynman said [2], the only way to effectivelydaba quantum mechanical system is by using another
guantum mechanical system. Therefore, a quantunpetansimulator is merely an attempt to model antwa
mechanical systefnon a classical system and the simulator must keef of exponentially many computations in
order to do this accurately. If it were possibletmstruct an efficient quantum computer simulatoen it would no
longer be necessary to construct a quantum compiat@roduction of quantum computer hardware (ekpephaps
for Moore’s law). The simulator itself would effealy be a quantum computer.

Therefore quantum computer simulation remains amyattempt to model the operations of a quantum
computer. In fact, every simulator has this apitsary objective. However, quite a number of quamtcomputer
simulators have been developed for secondary aisngviews on simulators show [3, 4, & 5].

6.0 Q~GATE Simulator

Q-GATE, the quantum computer simulator presentedhia paper was designed with the following
objectives:

1. To simulate the most fundamental quantum logic gaerations, applying them &my input qubit state.

(2) To carry out its operations while preserving tuantum mechanical notations as well as thealisg the
gate operations in matrix form.

) To emphasise the matrix manipulation carrietiothe various gate operations.

4) To automate the creation of quantum circuits.

(5) To provide a software tool that may serve tsaghing aid for the basic concepts of quantunctlogi

(6) To provide simulator that mimics all the basioperties of a quantum computer.

@) Ultimately, to increase the number of indivithugvolved in quantum computation.

6.1 Brief Description

Q~GATEhas a very user-friendly GUI (graphical user ifstee). It is lavished wittiool tip text$' which
tell the user what to do with each graphical congmbrand it also uses different forms of user imtgvay: from
drag-and-drop to clicking, scrolling, e. t. c.

It makes use of the following matrix representatiointhe computational basis vectors

0={3) m=[}) on
So that ' .
1
: (1 1) |0
00)=10)510)=( |7 (o] = |5
0), 6.2
and so on.

Moreover, QGATE presents the input and output qubits both in Divatation and matrix form. It simulates gate
operations on quantum registers of up to size &ddpts the matrix formulation of quantum compotatin which
the gates are actually unitary matrices, and ttie gperations are essentially matrix multiplicatioperations.
Hence, if we apply the Hadamard gate (for instatméf)e state of a qubit, which itself is a columatrix, we are in
effect, carrying out the following:

For |¢,)=al0)+ A1) in Dirac notation, 0(;] in matrix form,

Hlw,)=|w,). ie.
Hly,) s%ﬁ _11)(;] = %(Z i ’Z] =|w,) 6.3)
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6.2 Gate Simulations

1-qubit, 2-qubit, and 3-qubit gate operations dmukated and these simulations are very usefuhi t
understanding and design of quantum circuits bec#usy contain a universal set of gates [10, 11, Ti2e rows
and columns of the unitary matrices are labelleanfieft to right and top to bottom &30... ,@0...1 to 11...1
with the bottom-most wire being the least significhit.

The circuit symbols as well as matrix representetiof the gates simulated are shown below.

1-qubit gates
The Hadamard gate
1 1 1
. V21 -1
The Pauli-X gate
01
X
10
The Pauli-Y gate
0 -1
= i
The Pauli-Z gate
A i P
z 0 -1
The Phase gat&erV gate)

2

7l
The — gate
8 g
1 0
0 eme
2-qubit gates
The controlled-NOT gate
1 0 0 O
- 0100
O 0 0 1
Y 0010

The swap gate

10
—_—

o O ©
oS O H O
H O © O

0
1
0
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The controlled-Z gate

1 00 O
01 0 O
0 01 O
Z
0 0 0 -1
The controlled-phase gate
1 000
0100
g 0010
0 0 0 1
3-qubit gates
Toffoli gate (controlled-controlled-NOT)
1000000 0
01000000
e 00100000
00010000
B S 00001000
00000100
S
00000001
0000001 0
The Fredkin gate (controlled-swap gate)
100000 0 0]
01000000
— 00100000
00010000
00001000
— 00000010
00000100
000000 O 1]

Note that e is the square root df, so that the™ gate is the square root of the phase gate, wiself is the
8
square root of the Pauli-Z gate.

Another interesting feature of @ATEIis that it allows the user to create a customr{dseéined) gate. This
can be done either by applying a succession opthdefined unitary gates or by manually enterirgy ¢cbmplex
number components of the gate operator matrix,hiithvcase the user has to test and confirm thenityitof the
specified gate, upon which the gate is then acdepte
Q~GATEalso captures what happens when a qubit is mehdByemodelling the effect of measurement so well,
enhances the understanding of the meaning of titwapility amplitudes and the quantum states.

6.3 Gate construction example —An interactive sessi

Let us assume we want to simulate the applicati@2qubit unitary operation defined by

1 1 1 1

A 1 i -1 -i
211 -1 1 -1

1 -i -1 i
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to a quantum register of size 2 (this is a spa@aé of the Quantum Fourier Transform [3]).

The first thing to do is to run the executable fpeGATEexe from the programs menu. (That should be after
Q~GATEhas been installed of course!). This loads thenmpaagram window which has tabs for toggling betwee
one, two, three, and higher qubit operations. Rerpurpose of the problem at hand, we click orthebit tab. The
tab page for two qubit operations comes up, andher click on the “User defined gate” command hbuito the
frame with the caption “Gate”. A window then popgs which allows us to specify values for each mattement

for the gate. After entering the elements of thie gacording to equation (25), and running theauityt test, we are

then ready to use this gate on the input regifteior instance, we specify the state of the inpgister to b{sDO) ,

which is
1
0| in matrix form, then Q~GATE basically performs fioowing.
0
0
11 1 1 1 1
1 i -1 -i 0] 1/1|_1
=51, 0 0 ¥ ol75li =500+ |00 +[10) +12)
1 -i -1 i 0 1

The simulator is thus very simple to use. In féstelegant simplicity and presentation of the raathtical as well
guantum mechanical notations constitute a pateféatures which make GATEstand out as a simulator.

6.4 Circuit Generation

Q~GATE automates the generation of circuits which carryy @specified transformation on a qubit. Its
automatic generation of an equivalent circuit isdzhon the discussions in section 4.0 above, apdriicularly
makes use of equation (14) i.e.

) |w,) :é§(cos9|0>+e‘”sinz9|1>) (6.5)
Recall that this represents a most general statthefqubit. Therefore, to specify any desired ot or
transformation of the qubit, we only need to spe€if and ¢ in the equation.

Q~GATE allows the user to specify an arbitrary final staf a qubit, not only by means of a sequence & ga
operations, but also by another interactive antigges more user friendly means (especially fromvéceds point of
view) —sliders. There is no known simulator whichk®s use of this. The sliders are used to speoifyalues of

|O(|2 and |B|2 and subsequently the complex number valuesOaf 3; and hence the state of the qubit

W) = af0) +p1).
An instance of this is shown below.
1-Qubit Input
@ »‘ .
[32 )‘ 05
El H - -
o % || By Be QL=prosoni
B:,W

Figure 1: Specifying a qubit state in Q~GATE by meaf sliders.
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The sliders are coded in such a way that the ctisini imposed by the normalization condition
|a'|2 +|,6’|2 =1 is enforced. That way, the user can select a tanbjtrary’ state.

More to that, a user may choose to generate a @uacircuit which rotates a qubit in the computagibn
basis statd0) to the state|0)+ A1) specified by the user. This makes @ATE a useful tool for grasping the

fundamental concepts of building a quantum ciratiiich performs a particular transformation on aigjub
In obtaining the values of and ¢, Q~GATEemploys the well known Newton’s Method. The valaes

used to construct the phase-shift gates in equdgtid). Q-GATE then couples these phase shift gates with the
Hadamard gate as shown in the diagram. The usepftanurse, also use @ATE to verify that this network
indeed performs that transformation.

The method employed by @ATE in generating an equivalent circuit to perform pedfied
transformation on a single qubit is the following:

We can recast equation (6.5) as,|¢/) = e”(cos:9| 0)+e’ sim9|1>) . (6.6)
To build the circuit in equation (4.5) it is swifént to obtain® and ¢ . Since the specified statbp) will be in the
form  |¢)=al0)+ A1), with a =a, +aji,and S= 5, +fi, (6.7)
expanding equation (6.6) and equating the reakanplex parts of the coefficients of the basisestgields
a, =cos 8
a, =sindcosfd
B, =sin@cosfcosp-sin’ Gsing 6.8
B =sin” 8cosf +sinfcosdsing
In equation (6.8) we obtaifl easily from the value @f , 6= cos‘l(i \/?) (6.9)

From equation (3.1), we obtain two valueséhfone corresponding te\/z, and the other te- \/a_r. We can find

which of these values to select by trying theminwquation (29b). Thus we obt&in Next, we use the value &
in equation (6.6) to obtaif given the value of5. .

However, because of the implicit nature of the Iesy function of ¢ ie.
d(@) = B -sindcosfcosp+sin? Gsing, Newton's method is used to obtainto a fairly good degree of accuracy. Recall

that according to Newton’s method, if we make st fapproximationp= ¢, however bad, to the root (y((p), then
subsequent one® = @, @,, @;, @, ..., such that

g(e)
Ba =B~ (6.10)
' J(x)
after a number of iterations, we can obtain ayadcurateg, since each approximation is always better than th

preceding one. Q~GATE iterates this procedurgnammmatically (withg = Gadians) to give us the value ¢f.
The values of9 and ¢ are then used to construct the quantum circuih @gjuations (4.5) and (6.5)

7.0 Simulator Design

The simulator was designed with the Visual Basle irogramming language. One advantage of using
visual basic is that Any PC running an MS Windows &hd a VB500.DLL can run VB applications. Thig& %
of all the world’s PCs. | therefore found VB vewitable, especially with the aim of the QATEsimulator in mind
—reaching out to beginners in quantum computatigmks to the program files and source codes caadoessed
through_http://tunmise.4t.camhe screenshots of the simulator during desighran-time are shown below (Figures
3, 4).

Q~GATE takes an input of qubits specified by the user alflmvs the user to perform a simulation by
clicking on a gate. The result of the operatiosden immediately. There is also a status/log winddweh keeps
record of all operations carried out in a simulatsession, allowing the user to save this for Rireference.
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‘vs prijOgate_2 - Microsoft Visual Basic [design]

File Edit ¥iews Project Format Debug Bun Query Diagram Took Add-Ins Window Help
HB-n-8 | &8 » e i = o |
i

ate_2 - Maduled (Code)| I
[Generan ~| [meciarations) ﬂq SET
j =3 Module:
Ldeclaring 2 gqubit gates 2 Mo
Public gCnot(l, 1} ks cwplxno ' controlled-not o - - =

Public gSwapil, 1} Ais cwplxne 'controlled-swap |
Public gCz{l, 1) As cmpluzno =T olled Properties dibq

Public gCphase(l, 1 = | J—rrudﬁat i ﬂ

alphabetic } o=

=i priQgate_2 - frmUDefined (F..

Public gUD2 (1, 1] Ad B e

tdeclaring 3 gubhit Create from existing gates

(Name)
Public gToffoli(7, 'Returns the name
Public gFredkin(7, jused in code ta

supiin ovsaeer o o BN X = e e

== - HVI[$]

} -Figufé'S:_Q-GATE simulator (Visual Basic design)

File

Help
1Qublt Gates 2 Qubit Gates | 3 Qubit Gates

; finput Qubit: (-0, 707+0010> + (0. 7074001 >
-0.707 +0i Lt Qubit: (-
a0y« B|1y  [o ; LA
z gz _ =

where o + g 1 B 0.707 +0i

Set o, §
Gate

Hadamard Gate | _ Paul®_Gate Pauli Y Gate Paul Z Gate I:EI

R Measurs
UD-1
o
Phass Gate FlEGate | Phaseshftcate|  UDGatel

e e | }
Figure 4: Q-GATE simulator (Runtime)

8.0 Limitations of Q-GATE

In addition to the general limitations of quantuamputer simulators [18], GGATE

¢ does not include simulation of errors,

¢ cannot be used for carrying out simulations orrgelaumber of qubits.
These however help to keep QATEsimple, so as not to defeat its purpose.

9.0 Conclusions

Q~GATE gives a useful addition to the available rquen computer simulators. It increases our
appreciation for quantum logic and basic quantumpmatational operations in a unique way, providingaching
aid for introductory aspects of quantum computatibhe method employed in the generation of circuitéch
rotate qubits from a basis state to any specifibitrary state, can be generalised and may findiegdjon in the
modelling of quantum mechanical systems.
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Notations
The Bell state
[ Denotes the outer tensor product

Of course quantum logic gates are different fromirtclassical counterparts because theyctaateandperform operations on
superpositions
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which in this case, is the quantum computer
small pop-up balloons
A qubit is seen as a vector in Hilbspace
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