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Abstract 
 

In Omokaro 2003[12], we extended the RSA Congruence to a finite 
number of primes. The extended RSA Cryptosystem was later obtained in Omokaro 
2004[13] as an analogue of the RSA Cryptosystem to obtain the extended RSA 
Cryptosystem. In this work we provide a software for the enciphering of data in 
RSA cryptosystem 

    
 
 

1.0 Introduction 
 

As explained in [12] so many times we are faced with a problem of sending information in such a way that 
if seen by unauthorized persons they will not be able to understand it. The way of sending information under some 
degree of protection is called Cryptology. 
The RSA Congruence, as mentioned in [12], [6] is a cryptosystem, which was developed by Rivest, Shamir and 
Adleman. It states that: if p and q are primes and e and d are positive integers such that  

ed ≡ 1 mod (p – 1)(q – 1) 
then for any positive integer m < pq, 

med ≡ m mod pq. [8], [9], [12].  
Its security is based on the difficulty of factorizing large primes. In the RSA Cryptosystem there are two keys 
namely the enciphering key Sk and the deciphering key pk. As explained in [13] the keys Sk  and Pk are obtained by 
solving a congruence modulo Euler-phi function of a product primes. Let us take a brief look at it before we move 
on to develop the software which is the target of this paper in the next section. 
Let Sk  = e and Pk = d respectively and let n = pq, a product of primes p and q be the modulus of the congruence. The 
encoded message is obtained by applying: 

E(M)  = C = Me Mod n … [  ] 
where M is the numerical equivalent of the message. 
The original message is obtained from the Cipher text by applying, D(C) = Cd  mod n, clearly, this is possible as 
shown in [7], [8], [9], [13].   We know that once one of the factors p or q of n is known, ∅(n) can be obtained and so 
the private key can be determined thereby allowing the breaking of the security of the cryptosystem. Where ø 
denotes the Euler-phi function. Also as stated in [12], [13] the keys must satisfy: ed ≡ 1 mod (p - 1)(q - 1).  So that if 
p is known q can be calculated and hence e can be found. Let us take a look at a practical example of the RSA key 
generation and an RSA-based cryptographic exchange. 
 
1. Generating primes to obtain modulus let p = 17, q = 13  

∴ n = pq = 17×13 = 221 
2. Public key Calculation 

Ф(n) = (p - 1)(q - 1) = (17 -1)(13 -1) = 16  x 12 = 192   
Let e = 23, clearly (e, ø(n)) = (23, 192) = 1  

3. Private key Calculation: 
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Now ed ≡ 1 mod ø(n) ⇒ 23d ≡ 1 mod 192  i.e. 23d -1 = 192k for some positive integer k. this yield d = 
167.   
 

4. To obtain our cipher text given a message data block of numeric equivalent M we use  
C = Me mod n 
 i.e. C = M23 mod n in this illustration.  

5. Cipher text deciphered with private key to obtain the original data block 
Recall M = Cd mod n , so we now use  

M = C167 mod n.  
 
2.0 RSA Analysis 
2.1 Enciphering 
 

Let us illustrate the RSA enciphering with the following example:  First we make the following 
substitution: 

Symbol Space A B C D . . . . X Y Z 
Number 00 01 02 03 04 . . . . 24 25 26 

 
and then consider sending the message: “SEND MONEY” as an example.  First we obtain the numerical equivalent 
of the letters and hence the words as follows: 

19  05  14  04  00  13  15  14  05  25       (α) 
let us choose our primes as follows: 

p = 29, q = 41 so that M = pq = 29 × 41 = 1189, e = 3 
since M has 4 digits we break the message in (α) into groups of 3 digits. 

190  514  040  013  151  405  250     (β) 
let us label the integers in (β) as follows: p1 = 190,  p2 = 514, … 

It is interesting to note that anyone can decipher the sequence at this stage because this method of 
transforming the message into a sequence of numbers is agreed upon before hand. The enciphered message is now 
the sequence c1, c2,c3, … , where ci is defined as: 

Ci = Pe mod m. e is chosen such that (e,z) = 1 say e = 3. 
Then C1 = 1903 mod 1189 = 848 

  C2 = 5143 mod 1189 = 1054 
Continuing in this manner we obtain 
   C3 = 695, C4 = 1008, C5 = 796, C6 = 695, C7 = 351  (γ) 
 
2.1 Deciphering 
 

Let us now obtain the plaintext from (γ). First we obtain the private key as follows :(d.e) mod m = 1, i.e. 
(d.3) mod 1189 = 393, then for ei i = 2,3,…,7 we compute the pi

’’  using pi ≡ Ci
d  mod n 

Remark 2.1 
The computation above is very cumbersome if we are to encipher and decipher a very large amount of 

message for example a textbook of several pages. If we attempt to do this manually the effort may end up in fiasco. 
So we need to make use of the computer; the following program has been designed using C++ [4] to take care of this 
problem. 
 
3.0 Program design for RSA 
 

Design has to do with transforming the algorithm into data structures; how the system modules will interact 
with one another; and the overall architecture of the system. 
 The program design for the gcd algorithms and its area of application (RSA Cryptography) is made up of 
the following modules in the design model: 

(a) Main() module � main program 
(b) Gcd() module � function that calculate gcd (a,b) 
(c) Euclid() module � function that return gcd (a,b) and integers x and y such that  

   ax + by = gcd (a,b) 
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(d) rsa() module �function that return the public andprivate keys for data encryption and  
decryption using RSA cryptographic algorithm. 

(e) Matmult() module � function that multiplies 2×2 matrix together. 
(f) Isprime() module � function that determines if a number is prime (return 1 if a number  

is prime otherwise return o).  
The main () function accesses the gcd() function, euclid() function, and the rsa() function through its main 

menu options. The euclid() function  invokes the matmult() function when called. The rsa() function also 
invokes the isprime() funtion and when called. The overall program design and its sub modules are here presented. 
 
# include <iostream.h> 
# include <iomanip.h> 
# include <math.h> 
# include <stdlib.h> 
# include <ctype.h> 
int gcd( int , int ); 
void euclid(int , int , int& , int& , int& ); 
void matmult( int[2][2] , int[2][2] , int[2][2] ); 
int isprime( int ); 
void rsa (void ); 
main() 
 { 
 char flag; 
cout<<"\n\n\n\n\n\t\t\t**************************** *********" 
    <<"\n\t\t\t THE GREATEST COMMON DIVISOR PROBLEM" 
    <<"\n\t\t\t************************************ *" 
  <<"\n\n\n\t--------------------------------------------------------------------" 

<<"\n\ \t This application compute the greatest common divisor of two integers" 
     <<"\n\tand also apply the greatest common   divisor to generate a public key" 
  <<" \n\tand its private key using RSA cryptographic algorithm ." 
<<"\n\t---------------------------------------------------------------------"; 
loop:cout<<"\n\n\t\tDo you wish to continue(yes/No)?:press(Y/N OR y/n)\t"; 
again: cin >> flag; 
   if ( flag == 'Y' || flag == 'y' ) 
   { 
  menu:   cout <<"\n\n\t\t\tMAINMENU"<<"\n\t\t\t==========" 
      <<"\n\t\tSELECT CODE 1 TO 4 FOR OPERATION"<<"\n\t\t------------------------------------" 
<<"\n\t\t1 - \tCalculate gcd \n\t\t2 - \tExtended Euclidean Algorithm" 
     <<"\n \t\t3 - \tApplication of gcd " << "\n\t\t4 - \tExit\n\t\t\t " ; 
   } 
 else 
  if ( flag == 'N' || flag ==  'n' ) 
  { 
   cout<<"\n\tclick the close button [x] at the top left corner of this window"; 
   return 0 ; 
  } 
  else 
   { 
   cout << "\n\t\tpress ( yes/no ): (Y/N OR y/n )\t" ; 
   goto again ; 
   } 
 char opcode[10] ; 
 cin >> opcode ; 
 int op  = atoi( opcode ); 
 switch (op) 
  { 
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   case 1: 
   char a[10] , b[10] ; 
   int temp1 ,  temp2 ; 
again_1:cout<<"\n\t\t------------------------------------" 
     <<"\n\t\tCalculating the gcd of two integers” 
     <<"\n\t\t------------------------------------ " 
   <<" \n\n\t\tEnter the first number\t "; 
   cin >> a ; 
    temp1 = atoi(a) ; 
   cout << " \n\t\tEnter the second number\t "; 
   cin >> b; 
    temp2 = atoi(b); 
      cout <<"\n\t\t----------------------------------------------------------" 
  << "\n\t\tgcd("<<a<<","<<b<<") = "<<gcd(temp1,temp2) 
 <<"\n\t\t----------------------------------------------------------"; 
    char tag ; 
  cout<<"\n\n\t\tAny other gcd calculation(YES/NO):PRESS(Y/N OR y/n)"; 
    cin>>tag; 
    if ( tag == 'Y' || tag == 'y' ) 
   goto again_1 ; 
    else 
   goto loop ; 
  case 2 : 
   char numb1[10], numb2[10] ; 
   int g_c_d ,  x , y  ; 
again_2:cout<<"\n\n\t\t------------------------------------" 
    <<"\n\t\tExtended Euclidean algorithm " 
    <<"\n\t\t------------------------------------"; 
   cout << "\n\t\tenter the first number\t" ; 
   cin >> numb1 ; 
   temp1 = atoi(numb1); 
   cout << " \n\t\tenter the second number\t" ; 
   cin >> numb2 ; 
   temp2 = atoi(numb2); 
   euclid(temp1,temp2,g_c_d , x , y ) ; 
cout <<"\n\t\t-----------------------------------------------------------" 
<<" \n\t\tgcd("<<numb1<<","<<numb2<<") = "<<g_c_d    <<",\tx = "<<x <<",\ty  = " << y 
  <<"\n\t\t-----------------------------------------------------------"; 
cout<<"\n\n\t\tAny other calculations on Extended Euclidean algorithm" 
  <<"\n\t\t(YES/NO):Press(Y/N OR y/n)\t"; 
    char tag1 ; 
    cin>>tag1; 
    if ( tag1 == 'Y' || tag1 == 'y' ) 
   goto again_2 ; 
    else 
   goto loop ; 
   case 3 : 
   char tag4 ; 
 opcode3: cout <<"\n\n\t*************************** ***************************************" 
<<"\n\tGenerating public and private key via RSA cryptographic algorithm " 
<<"\n\t******************************************** ***********************"; 
rsa() ; 
cout <<"\n\n\tAny more key generation(YES/NO)?:press(Y/N OR y/n )\t" ; 
  cin >> tag4 ; 
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   if ( tag4 == 'Y' || tag4 == 'y' ) 
    goto   opcode3 ; 
   else 
    goto loop ; 
 case 4: 
   cout<<"\n\n\tAre you sure you want to exit(YES/NO)?:" 
     <<" Press(Y/N OR y/n)"; 
   char tag_3   ; 
   cin>> tag_3 ; 
   if ( tag_3 == 'Y' || tag_3 == 'y') 
    { 
    cout<<"\n\tClick the the left button [x] on the top left corner of this window"; 
    break ; 
   } 
  else 
   goto loop ; 
  default: 
   cout<<"\n\n\t\tSelect the right code for operation "; 
   goto menu ; 
 } 
 return 0 ; 
 } 
 //this function  evaluate gcd of two integers 
int gcd( int a , int b ) 
  { 
  if (a < b ) 
   { 
   int temp = a ; 
   a = b ; 
   b = temp ; 
   } 
  if ( b == 0 ) 
  return( abs( a )); 
  else 
   return(gcd( b , a % b )); 
  } 
 //  this function computes d = gcd( u, v ) and integers a , b such that au + bv = d 
 void euclid( int u , int v , int& d , int& a , int& b ) 
  { 
  // int const index = 2 ; 
 int m[2][2] = {{ 1,0 }, {0,1} }, prod[2][2], quotient[2][2]; 
 int n = 0 , q , i , j  , temp; 
 while( v != 0 ) 
   { 
   q = u/v ; 
   quotient[0][0] = q ; 
   quotient[0][1] = 1 ; 
   quotient[1][0] = 1 ; 
   quotient[1][1] = 0 ; 
   matmult( m, quotient , prod ); 
   for( i = 0 ; i < 2 ; i++ ) 
   { 
     for( j = 0 ; j < 2 ; j++ ) 
     m[i][j] = prod[i][j] ; 
    } 
  temp = u ; 
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  u = v ; 
  v = temp - (q * v ) ; 
  n++ ; 
   } 
 d = u ; 
 a = pow( -1 , n ) *  m[1][1] ; 
 b = pow(-1 , ++n) *  m[0][1] ; 
 return ; 
  } 
//matrix multiplication function 
  void matmult( int a[2][2] , int b[2][2] , int c[2][2] ) 
   { 
   int i , j , k ; 
   for( i = 0 ; i < 2 ; i++ ) 
   { 
    for ( j = 0 ; j < 2 ; j++ ) 
     { 
     c[i][j] = 0 ; 
     for( k = 0 ; k < 2 ;  k++ ) 
       c[i][j] = c[i][j] + a[i][k] * b[k][j] ; 
     } 
    } 
    return ; 
  } 
 // isprime() return 1 if a number is a prime else return 0 
 int isprime(int prime) 
 { 
 int sum = 0  , q , r  ; 
 for (int i = 1 ; i <= prime ; i++ ) 
  { 
   q  =  prime / i ; 
   r  =  prime - q * i ; 
   if( r == 0 ) sum  =  sum  + 1 ; 
  } 
 if ( sum == 2 ) 
   return  1 ; 
 else 
 return 0 ; 
  } 
  // key_rsa()function calculate public and private key 
  void rsa ( void ) 
  { 
  int pp , qq , mx , ee , d,  f , g , temp1 , temp2, b ; 
  char p[12] , q[12]   , e[12] ; 
 // begin keys generation 
  p1:  cout <<"\n\n\tenter a prime number,p :\t " ; 
  cin >> p ; 
  pp = atoi( p ) ; 
  if ( isprime( pp ) ) 
   temp1 = pp - 1 ;  // calcu;ate Euler phi function of p ; 
  else 
  { 
   cout << "\n\t"<<p<<" is not a prime number try, again." ; 
   goto p1  ; 
  } 
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  p2:  cout <<"\n\tenter a prime number,q :\t " ; 
  cin >> q ; 
  qq = atoi(q ); 
  if ( isprime( qq ) ) 
   temp2 = qq - 1 ;  // calcu;ate Euler phi function of q ; 
  else 
  { 
   cout << "\n\t"<<q<<" is not a prime number try, again." ; 
   goto p2  ; 
   } 
  int n = pp * qq   ; 
  mx = temp1 * temp2 ; //  (p - 1 )( q - 1 ) 
         b = (temp1 * temp2)/gcd(temp1, temp2) ; 
  cout <<"\n\n\tthe product p * q \t :\t"<< n; 
  cout <<"\n\n\tthe product (p -1)(q -1):\t"<< mx; 
 pub : cout <<"\n\n\tenter a public key,e     :\t" ; 
 cin >> e  ; 
 ee = atoi( e ); 
 if ( gcd( ee , mx ) == 1  ) 
  cout <<"\n\n\tcorrect!  "<< e <<" is the public key for encryption " ; 
 else 
  { 
  cout << " \n\n\tthe public key("<< e <<") you chose is not a coprime of " 
     <<"\n\n\t"<< mx <<"  please try again " ; 
  goto pub ; 
  } 
  //calculate private key 
  euclid( ee,mx,d, f,g ); 
         t = 0 ; 
         while(f <= 0) f = f + (b * ++t) ; 
  cout << " \n\n\tthe required private key for decryption is\t" << f ; 
 return ; 
  } 
 
3.0 Requirements 
 

For implementation we need to two types of requirements namely: 
• Hardware requirement  • Software requirement 
 

4.1 Hardware requirement 
• Personal computer (PC) (Pentium III system or higher) 
• RAM size of at least 128 MB 
• Hard disk type of at least 20GB 
• Keyboard 
• Mouse 
• Stabilizer 
• Uninterrupted Power Supply (UPS) 
 

4.2 Software Requirement: 
• Windows Operating System (version 98 or later version) 
• Turbo C++ compiler. 

 
5.0 Getting started 
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This section provides a user guide as to how to execute the implemented design. For simplicity  
 
reasons, it has been presented in steps: 
 

Step 1  
How to Start the Program 

 • Switch on the PC 
 • Allow the PC to boot to the window desktop 

• Double click the Turbo C++ icon on the desktop to take you to Integrate Development  
Environment (IDE) 

• Click the FILE menu option or the menu bar, select OPEN from the dropdown list. 
• Select the program name gcd_pro in a dialog box that appear and click the OPEN tab 
• The source program will be displayed on the IDE 
 

Step 2 
How to Compile the Program 
• In the C++ IDE click PROJECT on the menu bar, on the PROJECT dropdown list, click compile. 
• Alternatively press Alt + F7 for short cut on the keyboard. 
 

Step 3 
How to Run the Program 
• Click debug on the menu bar, on the debug dropdown list select RUN 
• Alternatively press CTRL + F9 for short cut on the keyboard 

Step 4 How to Exit the Program 
 • Click FILE option on the menu bar 
 • Click EXIT from the dropdown list 
 
Note 

If you install the gcd_pro CD in your system you do not need to pass through the C++ IDE to compile and 
run the program. All you need to do is to double click on the gcd_pro icon on the desktop after booting the system 
(or click on the start tab on the desktop, select program, and then click on the gcd_pro in the dropdown list) and the 
program starts execution. 
 
6.0 System/user response at run-time 
 

The system is a console based application. It is very interactive and user-friendly. It has been validated not 
to crash on any bad or invalid inputs. 
When the program is running, the system will prompt you to enter the figures, character, strings and so on input any 
of these appropriately and press the ENTER key. If you mistakenly enter an invalid data the system will prompt you 
to enter the data again. 
 
6.1 Menu options and their functions 
6.1.1 Calculate gcd [5], [10] 

 
Selecting this option enable you to calculate the gcd of two integers and display the result. 
 

Example 
 [SYSTEM RESPONSE]    [USER RESPONSE] 
 Enter the first number    21 press enter key 
 Enter the second number    6 press enter key 
 Output: gcd(u,v)     3 
 
6.1.2 Extended Euclidean Algorithm [1], [2], [3] 

This option enables us to calculate the gcd of two integers say u and v, and integer coefficients x and y such 
that    gcd(u,v) = ux + vy 
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Example 
 
 [SYSTEM RESPONSE]    [USER RESPONSE] 
 Enter the first number    45 press enter key 
 Enter the second number    35 press enter key 
 Output: gcd(45,35) = 5, x = -3, y = 4 i.e. 5 = 45x + 35y    
 
6.1.3 Application of gcd Algorithm 
 Selecting this option allow you to generate public and private keys for data encryption and decryption using 
the RSA Cryptographic algorithm. 
 
6.1.4 Exit 
 This option when selected terminates program execution and you can then exit from the program. 
 
7.0 Conclusion 
 
As mentioned in section.2 of this paper the use of this software enhances accuracy, speed and optimal utilization of 
computer resources. 
 
8.0 Recommendations 
 

Numerous methods and algorithms were presented in this research for calculating the greatest common 
divisor. These methods yield the same if applied accurately. However, in terms of computer implementations some 
are not very good i.e. they might be inefficient and also waste the system resources. We recommend that the binary 
gcd algorithm should be used for computer implementation, because it only involves division by 2 and no modular 
operation is needed. This makes it faster for bit-wise operation, unlike the Euclidean algorithm and the prime 
factorization algorithms which are recursive and involve modular operations. This tends to waste more system 
resources and slow down processing. 
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