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Abstract 

 
Parallel sorting techniques have become of practical interest with the 

advent of new multiprocessor architectures. The decreasing cost of these processors 
will probably in the future, make the solutions that are derived thereof to be more 
appealing.  Efficient algorithms for sorting scheme that are encountered in a 
number of operations are considered for multi-user machines. A heuristic 
framework for exploiting parallelism inherent in some of these schemes are worthy 
of investigation and valid suggestions are given for adequate implementation by 
associating processors in a multiprocessor platform. This exercise involves a closer 
investigation of the associated savings in employing simultaneous sorting techniques 
for, say 2

N processors. A deterministic )(log2 Nο time algorithm using N
N

2log

processors will substantially reduce the run time for a sorting scheme and is 
considered to be asymptotically optimal. 

 
    

1.0 Introduction 

Sorting is one of the most fundamental topics in the core areas of computing dealing with data structures 
design and analysis of algorithm and computational algebra. Sorting problems often appear as sub problems of many 
other problems. In this paper we consider important implementable parallel sorting algorithms on a class of 
processors. 

Recent interest in developing alternative algorithms for the sorting problem for parallel computing systems 
endear one to investigating possible implementable schemes. Our motivation in this study has been to seek feasible 
parallel methods for sorting which exploit many aspects of parallelism which is implicit in the known algorithms for 
Von Neumann systems. Methods that maintain balance in sorting systems have received considerable attention in 
computer science literature. A plethora of materials abound that are devoted to problems and some even to single 
sort algorithms. A good reason for this attention is that sorting, along with searching and mathematical computations 
is one of the many things that computers do better than human beings. Another reason is that sorting algorithms are 
needed in solving many problems and are very sensitive to the issues of size and complexity of the source material; 
thus, no one algorithm can ever be best for all purposes. 
First, the problem of sorting should be considered. Particular attention will be paid to those algorithms that lend 
themselves to the exploitation of inherent parallelism, primarily to see how limitations in implementing these 
parallel schemes can inspire other forms of solving the problem. 

Most of the existing algorithms work well with older, less sophisticated computers (the Von-Neumann 
machines) and poorly with modern computers (mostly multiprocessing systems). We hold that this is not in the 
sense of performance alone, but also in terms of the opportunities offered by parallel machines.  Research concern 
has been on seeking implementable fast algorithms by picking on good strategies for result. The greater discovery is 
that an existing algorithm can be speeded up greatly if more efficient means of introducing parallel structures to run 
in high-speed computers are found. Also exposed is the fact that sorting algorithms are good candidates for parallel 
execution; each individual list could be kept on a separate processor, and many operations could proceed in parallel. 

An emerging scheme, we present is hybrid in nature and has the potential to reduce the problem space to 
less than )log( 2 NNΟ  time for uniprocessor performance. Optimized Bubble sort, Quick sort, Merge sort, Insertion 

sort, Heap sort, are good examples of implementable uniprocessor schemes.  
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Quicksort is highly favoured for the uniprocessor and
method. Years of pious studies and closer examination of sorting schemes have given researchers clues to the 
solutions of problems of devising implementable schemes for parallel architectures.

The heuristic framework is intended to provide means of presentation. It comprises of formal definition of a 
sorting system yielding a more formal means of computing parallel systems and an informal method of finding such 
parallelism in existing sorting schemes. An important part in presenting algorithms is played by a heuristic principle 
that can be regarded as metatheoretic analogue of the well

 
2.0 Problem Description 

 
Given a list of n  data elements,

and the result of sorting the list  is a sorted array, 

 [ ] [ ] [ ]110 −≤ nyyy L .  

The idea of ordering the list in this form is such that a sorting operation is needed in solving the problem. 
When the sorting operations are carried out sequentially, the number of pair
the list becomes too large. A general language description of the problem will look thus: Suppose that the language 
provides the notion of an indexable sequence of integers, we use subscripts in the range, say, 

that: 
  Sorted (X) of j∀  

such that ≤≤ ji length 

  Sort (X, Y) if  
   Image (X,Y) and 
  Sorted (Y) 

provided that Y is the sorted image of a sequence X.
A heuristic framework distinguishes sequential 

discriminating than ordinary evaluation of sorting schemes or structures. 
be shown that for the count for each element,

jx . Thus the sorted array elementslenghty

the algorithms, then non-unique arrays elem
that ( )ixlength  is unique over all i <≤0

We can briefly explain by stating a prove thus: f

with counts ( )ixlength  and ( )jxlength

0=ε then all elements less than ix are also less then 

  for ( = ii ;0 p

      { ;0=x  

      for( =j ;0

   if (x
       [ ] [ixky =
Building on the experience of Hoare [14,15], Knuth [18], Batcher 

Zen-Cheung et al [35] and others is a full scale framework for the analysis of associated complexity of computations 
that provide support not only for this algorithm but also for other parallel implementations of c

There are many sorting algorithms of interest for sequential machines as we noted earlier. An 
implementation for any style of presentation of any of these algorithms in parallel is a daunting task. At the level of 
parallel computations, support must be provided for the various stages of our algorithm like fast comparisons, 
interchanges and transitions to neighbourhood processors through merging. At different levels particular operations 
are expected to take place. This includes the mean
most parallel implementations the notion of computations is that the operations are data driven and as such are ready 
for computation as soon as they are available. Pairwise comparison succeeds this exercise at different nodes in the 
processing graph (i.e. at the processor). Further effort is needed to support automated comparison and interchange 
where necessary. In-place algorithms provide for this. Buffering as well as pointer facilities help to overcome the 
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Quicksort is highly favoured for the uniprocessor and is regarded as somewhat close to the state of the art sorting 
method. Years of pious studies and closer examination of sorting schemes have given researchers clues to the 
solutions of problems of devising implementable schemes for parallel architectures. 

The heuristic framework is intended to provide means of presentation. It comprises of formal definition of a 
sorting system yielding a more formal means of computing parallel systems and an informal method of finding such 

hemes. An important part in presenting algorithms is played by a heuristic principle 
that can be regarded as metatheoretic analogue of the well-known and successful sequential implementations.

data elements,{ }110 ,,, −nxxx L , sorting rearranges the order of  the elements of the array, 

and the result of sorting the list  is a sorted array, { }110 ,,, −nyyy L  such that ji yy ≤  for every 0 ≤
  (2.1) 

The idea of ordering the list in this form is such that a sorting operation is needed in solving the problem. 
When the sorting operations are carried out sequentially, the number of pair-wise comparisons between elements o
the list becomes too large. A general language description of the problem will look thus: Suppose that the language 
provides the notion of an indexable sequence of integers, we use subscripts in the range, say, 

length ( ) 1,1 +≤− jj XXX  

     (2.2) 
) and  

provided that Y is the sorted image of a sequence X. 
A heuristic framework distinguishes sequential behaviour from non-deterministic ones, and thus is more 

discriminating than ordinary evaluation of sorting schemes or structures. With ranking in the sort algorithms it can 
be shown that for the count for each element,ix , the number of sorted elements, ( )ixlength , is smaller than that for

( ) iixlenght x= . Consideration is only for arrays of unique elements. If we modify 

unique arrays elements can be accounted for. It is, however, pertinent for us to quickly state 
n<  when all elements are unique.  

We can briefly explain by stating a prove thus: for any two elements ji xx <  such that

) , it follows that ( ) ( ) 1+≥ ij xlengthxlength  since ix  is less than

are also less then jx . This is clearly shown in the following program segment:

)++in;p  

)++jnj ;; p      (2.3) 

[ ] [ ]) ;++kjxix f  

[ ] };i  

Building on the experience of Hoare [14,15], Knuth [18], Batcher [3], Bitton, et al [5], Tseng et al [34], 
Cheung et al [35] and others is a full scale framework for the analysis of associated complexity of computations 

that provide support not only for this algorithm but also for other parallel implementations of computing algorithms.
There are many sorting algorithms of interest for sequential machines as we noted earlier. An 

implementation for any style of presentation of any of these algorithms in parallel is a daunting task. At the level of 
, support must be provided for the various stages of our algorithm like fast comparisons, 

interchanges and transitions to neighbourhood processors through merging. At different levels particular operations 
are expected to take place. This includes the means of broadcasting ready data for computation to the processors. In 
most parallel implementations the notion of computations is that the operations are data driven and as such are ready 
for computation as soon as they are available. Pairwise comparison succeeds this exercise at different nodes in the 

at the processor). Further effort is needed to support automated comparison and interchange 
place algorithms provide for this. Buffering as well as pointer facilities help to overcome the 
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place algorithms provide for this. Buffering as well as pointer facilities help to overcome the 
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problem of automation. It is therefore highly desirable to develop a general theory of parallel-sorting computational 
systems that isolate the good attributes of a wide range of sorting schemes so that much of the effort can be 
expended once and for all on those aspects that will speedup computation. 

For a given algorithm and problem size, we derive the inherent parallelism as the ratio of the serial execution 
time and the runtime of an ideal realization of a parallel random access machine (PRAM). An idealized model of a 
parallel computer that satisfies all non conflicting memory access in one cycle and queues conflicting memory 
accesses to be satisfied one after another, each requiring exclusive read, exclusive write (EREW) PRAM. For the 
same algorithm and problem size, we then derive the maximum speedup attainable by a machine of any size with the 
architecture of interest. Machine size is in terms of p, the number of processors. The maximum speedup, specified as 
a function of problem size, is called the asymptotic speedup of the architecture for the given algorithm. Thus the 
inherent parallelism of the algorithm is its asymptotic speedup on an ideal PRAM machine [25]. The criteria on 
which the measurement of algorithm for parallel computations is based are the speedup and efficiency. They are 
used to let one know how effective a parallel machine is being used given an efficient algorithm. 

The ability to solve instances of a problem within available resources portends feasibility. Generally, if the 
consumption of some resource grows exponentially to the problem size, then we can solve only small problem 
instances. Thus, feasibility is provided when the growth rate for the resource is bounded by a polynomial of the 
problem size. This means that in time( ) ( )1οο =n or space ( ) ( )1οο =n for a problem of sizen . In parallel 

computations, a parallel algorithm is feasible if solutions to size n  problems are found in ( ) ( )1οο =n time using 

( ) ( )1οο =n processors. Parallel computing deals with the problem of trading processors for speed. But hardware is a 

qualitatively different resource than time, so the notion of feasibility needs to be refined. In some cases it is cheaper 
to give more time for a problem to be solved than to invest in more processors to solve the problem in a shorter 
period of time. In some cases the cost of not having the solution in a given period of time is greater than the cost of 
additional processors. Weather forecasting, market prediction and even drug design are examples of time limited 
problems. If the solutions take too long to compute, then there is little or no benefit. You agree to the fact that 
adding new processors or memory to a system is not as easy as adding time. When a problem exhausts available 
memory, we are inclined to find solutions to the problem that use less memory (rather than just buying more 
memory, which may not be possible in any case). Similarly, considering processor requirements in terms of problem 
size allows us to examine the question of how big a problem can be solved in a given time with a given number of 
processors. Therefore, the goal of developing feasible parallel algorithms is expressed in terms of the speedup and 
the equation is as follows:  

timeparallel
processorsofnumber

timesequentialbest ≤     (2.4) 

To obtain a sub-polynomial time algorithm, a polynomial number of processors must be used. For example for a 
sequential running time( ) nnT =  and processors ( ) nnp log= then:  

( )
( ) n

nn
n

n
np
nT

log

5.05.0

log == > 
( )15.0 οnn =         (2.5) 

is still a polynomial time.  
Thus, when we refer to a system as highly parallel, we mean that it requires a number of processors roughly 

equal to the best sequential time for the algorithm. Therefore, speedup is generally a measure of the same program 
on varying number of processors. The speedup is then the elapsed time needed by the processor divided by the time 
needed in p processors, such that (2.4) becomes 

( )
( )pT

T
S

1=        (2.6) 

The issue of efficiency in related to that of performance, it is usually defined as 
( )
( ) p

S
ppT

T
e == 1     (2.7) 

 
Efficiency close to unity means that you are using your hardware effectively and low efficiency means that the 
algorithm is wasting resources [17], [13].  

Gaustafson, J. et al [13] argue that users will increase their problem size to keep the elapsed time of a 
parallel run constant. As the problem size grows, the fraction of the time spent executing serial code decreases, 
leading us to predict a decrease in the measured serial time fraction. 
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2.1 Algorithm 
 

We present an algorithm to perform the parallel sorting operation. This algorithm is based on the merge 
sort operation, so we proceed as follows:  

Given a list of N elements, the result of sorting the list is to arrange the elements of the list, say X so that 
  ( ) ( ) ( )110 −≤≤≤ NXXX L      (2.8) 

We then produce a set of elements such that the output unit becomes active according to some natural 
methods of processing input in parallel. The job of ordering the list is such that a sorting scheme is applied. When 
this is carried out sequentially, the lower bound complexity of NN 2log(Ο ) is used. The algorithm is as follows: 

Step1. Present an input vector, denoted as (X1, X2 ,..., Xn).  
Step2. Assign binary units of data terms to N/2 processors. 
Step3. Merge-Sort each group of items on the individual processors into  

half the number of processors using your favourite sequential sort scheme.(2.9) 
Step4. Repeat step 3 until all elements are listed in one single active output 

 unit, such that ( ) ( ) ( )110 −≤≤≤ NXXX L  

 
2.2 Structure Representation 
 

The basis for our representation is the parallel machine, which consists of an interconnection of sequential 
processes. Intuitively, parallel computing is concerned with how much faster the parallel machine can be over the 
sequential one. Our reasons for using parallel computing are to: reduce the running time of large problem space, 
reduce the cost of achieving performance, increase reliability. So if we connect multiple processors, it can be 
cheaper than building a high-performance single processor; again, a processor fails, then the remaining processors 
should be able to continue and share the workload. 

Machine specific implementations will enable us compare results along these benchmarks. A primitive and 
atomic process can be used to share single array that resides in a processor into sized blocks and distributed to p

processors, which may be based on pn / unit elements. Then another primitive can be used to gather these data 

blocks and coalesced into larger blocks at each stage of the computation. 
However, for the algorithm of (2.8), the main strategy is to use the divide and conquer heuristics to 

organise program and data in ways as to improve their order of processing in parallel. Generally program tasks are 
organised in order in which they are to execute and the best structure is achieved using this strategy. Data is also 
organised by decomposition and are routed into the p processors in such a way as to encourage parallel computation. 
Geometric decomposition as suggested by [11] plays a prominent role here as the problem space is decomposed into 
discrete subspaces. Solution is now given by computing those of the subspaces, with the solutions of each subspace 
typically requiring data from small number of subspaces. The entire sorting scheme is then defined in terms of 
tracking links through a kind of recursive data structure. The supporting substructures are easily provided as part of 
the framework of reusable components which capture the recurring solutions to the sorting problems into parallel 
solutions. A single program, multiple data (SPMD) machine for example, achieves parallel execution by executing 
the same program code with each operating on a different set of data. 

The ideal distributed computer using distributed arrays represent an exotic class of data structures that are 
prevalent in scientific computing, namely arrays of vectors and multi-dimensions that have been decomposed into 
sub-arrays and distributed among processes or threads. Examples are the Cray, IBM and the Thinking Machine. 

In, this vein, our sorting scheme, which has large problem space, can be heuristically represented by a tree 
structure. The algorithm is based on this tree, but does not represent all the subtleties associated with the parallel 
implementation. For some problem instances, upper/lower algorithms are developed that use a divide and conquer 
approach to recursively divide the problem into smaller sub-problems. The results of the sub-problems are then 
combined to give the final output. Divide and conquer is a fundamental approach for obtaining parallelism that is 
very intuitive and hence subject to the policy of problem design architecture. Parallel processes that occur as sub 
graphs to be parallel-sorted during the sorting exercise are represented by N/2-ary trees. The root of the tree is the 
final active output unit and the children are the sub graphs that are supposed to be merged to produce N/2 out put 
units. A sample graph, together with its assembly is given below in Figure 1. Therefore, our sorting benchmark is 
defined such that n and p=m are assumed for simplicity but without loss of generality to be powers of two so that we 
set pn  elements at each of the first2n processors to be n2log , all pn2 at the next 4n processors to be ( )2log n , 

and so forth. The presentation model is as given in figure 1.  
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Figure 1: Presentation Model 

 
3.0 Overview of Algorithm 

 
Scalability of a given architecture is said to be the fraction of the parallelism inherent in a given algorithm 

that can be exploited by any machine of that architecture as a function of problem size. It is in this regard that 
conceivable attempts are made to design algorithms to exploit the inherent parallelism in such systems. 

In a sequential machine, the number of pairwise comparisons between elements of the initial lists is equal 
to the sum of the number of elements in all the lists and that is ( )NΟ . To speedup the merging operation, the 

compare operation is intuitively done using parallel processors, each capable of comparing two input elements, and 
identifying the smaller of the two. This goes to show that N/2 neighbourhood processors may be used for lists each of 
length 2, to compare respectively the first entries from each of the N/2 lists and this is done at a unit time in parallel. 
By suitably employing this method at this stage the time complexity is greatly reduced. Good message passing 
techniques will feed the output of this first stage to the second stage of the algorithm that involves merging. 

Konrad [19], Horowitz [16], Mannila and Ukkonen [8], and Pardo [9] have all tried to solve the problem of 
merging using the in-place merging methods. Konrand's notion on block rearrangements and internal buffering has 
influenced the other works. Implementations have always been the problem since the algorithmic schemes are 
complicated. Bing-chao Huang et al [4] have their simple algorithm which merges in linear time and constant extra 

space. The list to be sorted is blocks of )( nΟ , each of size )( nΟ . This method involves rearranging blocks 

before the merging is initiated and the internal buffer is passed across the list so as to minimize unnecessary record 
movement. One interesting aspect of this scheme is that the overall elapsed time is reduced for file processing 
whenever the extra space can be utilized for more buffers to increase parallelism or larger buffers to reduce the 
number of input/output transfers needed.  

For algorithm (2.8) to work in ideal situation, we need splitters to partition the input data into p groups 
indexed from 1 up to p such that every element in ith group is less than or equal to each of the items in the 
neighbourhood (i.e. i+1) th group, for 11 −≤≤ pi . So to perform the sorting task, each of the p groups can be turned 

over to the corresponding indexed processor, and then the n data items will be arranged in sorted order. 
The efficiency of such an algorithm depends on the processing elements that assign the data units to the 

processor, the sorting method chosen and the message passing scheme adopted for the data transfer with implicit 
merging mechanism. A radix sort algorithm and the merge sort algorithm can combine elegantly to solve the 
problem. The general strategy is to decompose tasks and data into manageable sub groups and route them via the p 
processors to be computed in parallel. Our idea suggests the strategy that can combine them as a composite scheme 
to achieve fast and tractable computation. This is basically true when you consider the dependencies that could be 
identified through analysis of the problem at hand. Many recent multiprocessor machines with ideal status can be 
used to implement the algorithm, but requires that experiments be done using a variety of benchmarks. 

For the uniprocessor architecture, the worst-case time complexity of mergesort and the average-case time 
complexity of the quicksort are both of ( )nn 2logΟ . However, with the p processors, the best that we could expect is 

( )n2logΟ . 
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4.0  Proof 

 
We assume that the table of n elements of X denoted as ( ) ( ) ( )1,,1,0 −nXXX L , on which a 

linear order has been defined is given. It therefore holds that for any two elements Xi and Xj, 
exactly one of the following cases must be true jijiji XXorXXXX >=< , . Sorting has the goal of 

finding a permutation ( )110 ,,, −nπππ L such that:  110 −
≤≤

n
XXX πππ L    

 (4.1) 
The best complexity order for any sequential algorithm, which is based on pairwise comparison of elements 

of size n, must be  )log( NNΩ .     (4.2) 

For a quick proof of the basis of our for the above we recall that the asymptotic time complexity for the 

uniprocessor scheme as  )log( 2 NNΟ     (4.3) 

while for the parallel algorithm, an estimated time is ( )N2logΟ  with a speed up of  

( )NΟ       (4.4) 

From (2.7), the efficiency of such an algorithm can notionally be put at 







Ο

p

N
  (4.5) 

which gives     






Ο
N

N
N

2log

where p is NN
2log   (4.6) 

We recall that quicksort parallelizes overn  processors to obtain ( )NΟ  parallel computational steps. It 

generally selects a pivot for the elements in the array, thereby ensuring that all elements in the array that are less 
than the pivot are put into a lower array and all elements greater than the pivot are put into a higher array. Using this 
divide and conquer scheme, it then recursively applies the scheme on the higher and lower arrays. Selection of the 
pivot is not too important for the sequential algorithm however it is important for the parallel algorithm in order to 
keep the tree of processes reasonably balanced.  

Mergesort, again proceeds from a single processor or process that holds an array of kn 2= elements. The 
divide-and-conquer approach is used to divide the array into two halves and give one half to another process. The 
subdivision continues until at most each of n processes holds exactly one element. Then the processes use mergesort 

to generate the sorted array. Assuming there are knp 2== processors. The first division phase of the mergesort 

algorithm is essentially scattering the elements over the processors. Each processor receives one element of the 
array. The total number of parallel computation steps is k , at each step, 1,,1,0 −= ki L , two lists of size i2  are 
merged onto a single processor. It takes 12 −n  steps in the worst case to merge two sorted lists each of n numbers. 
The number of computational steps is then  

 

2 ( )∑
−

=
−−=−

1

0
2
1 222

k

i

ki k  which is ( )NΟ .   (4.7) 

The bitonic merge algorithm introduced in 1968 by Batcher [3] has a time complexity of )(log2 NΘ  and 

has formed the basis for sorting algorithms on several models of parallel computations. Fundamentally this method 
is called compare-exchange because two numbers are routed into a comparator, where they are exchanged, if 
necessary, so that they are in proper order. Batcher was able to prove that a list of n = 2 unsorted elements can be 
sorted by using a network of ( )12 2 +− kkk  compactors in time     )(log2 NΘ .  

   (4.8) 
The basis of the bitonic mergesort is the bitonic sequence, a list having specific properties that will be 

utilized in the sorting algorithm. A monotonic increasing sequence is a sequence of increasing numbers. A bitonic 
sequence has two sequences, one increasing and one decreasing. Formally, a bitonic sequence is a sequence of 
numbers, 1210 ,,,, −− nn xxxx L , which monotonically increases in values, reaches a maximum, and then monotonically 

decreases in value: 12110 −−+ >>>><< nnii xxxxxx LL  for some ni <≤0 . A sequence is also bitonic if the 

preceding can be achieved by shifting the number cyclically (left or right).  
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A bitonic sequence is transformed into a sorted list by the Bitonic merge algorithm. This list is thought of 
as half a bitonic sequence of twice the length. If a bitonic sequence of length 2k is sorted with ascending order, while 
an adjacent sequence of length 2k is sorted into descending order, then after k compare-exchange steps the combined 
sequence of length 2k+1 is a bitonic sequence. Therefore a list of n elements to be parallel-sorted can be viewed as a 
set of an unsorted sequence of length 1 or as 2

n  bitonic sequence of length 2. Hence the algorithm can be used to 

sort any sequence of elements by successfully merging larger and larger bitonic sequences. Given kn 2= unsorted 

elements with k phases numbered 1,2, …, k, a network with
( )

2

1+kk
 levels suffices. Each level contains 12

2
−= kn

 

comparators. Hence the total number of comparators is ( )12 2 +− kkk . The parallel execution of each level requires 

constant time. We note that 
( ) ( ) ( )n

nnkk
i

k

i

2

2
1

22 log
2

1loglog

2

1 Ο=+=+=∑
=

. (4.9) 

Hence the algorithm has complexity )(log2 NΘ .  The speedup on n processors is thus ( )
n

n
2log

Ο  and gives an 

efficiency of roughly   %1002log

1 ×
n

     (4.10)  

The bitonic sequence has an interesting property that if we compare and exchange ix with
2

nix +  for all

,0 2
ni <≤  we get two bitonic sequences, where the numbers in one sequence are all less than the numbers in the 

other sequence. For example before: X = [6,38,45,42,8,20,28,25] and after 6,20,28,25,8,38,45,42. 
The second list is now two bitonic sequences, 6,20,28,25 and 8,38,45,42. Using this property, with kn 2=

elements and n processors, after k parallel steps it is clear that a given bitonic list can be sorted. This is called a 
bitonic sort operation. 

An improvement of the bitonic merge sort was given by Stone [32], which takes a list of kn 2=  unsorted 
elements and sorted in time )(log2 NΘ  with a network of ( )( )112 1 +−− kkk  comparators using the perfect shuffle 

interconnection scheme exclusively. 
Bitonic merge sort, therefore, seems unsuitable for implementation in VLSI, because of the large number of 

path crossing. However, the efficiency of the method has made it a popular basis for algorithms on processor array 
models. 

 Sorting methods on the SIMD machine models have emerged from the earlier works on the bitonic merge 
method, but this time the processing elements are organized into arrays. We assume that ( )110 ,,, −= nXXXX L  is the 

set of n elements to be sorted and the arrays ( )110 ,,, −= nYYYY L and ( )110 ,,, −= nZZZZ L contain temporary values. 

Assume n is even and that all,i 10 −<≤ ni  processes ip contains array elements Xi, Yi and Zi. The SIMD – MC1 

model sort requires 2n  iterations with each iteration having two phases. The odd-even exchange as it is called has 

the value ix  in every odd number processor i  (except processor n-1) compared with the value Xi+1 stored in even 

numbered processor i+1. An exchange is made if necessary, so that the lower-numbered of the adjacent processors 
contain the smaller value. The next phase called the even-odd phase, exchanges values as in the first phase if 
necessary, so that the lower-numbered processor contains the smaller value. After 2n  iterations the values are sorted. 

The time complexity of sorting n elements in the SIMD - MC mode with n processors using odd-even 
transposition is )(NΘ . The proof of correctness of the method is based upon the fact that after iterations of the outer 

loop, no element can be further than n-2i positions away from its final, sorted position. Hence 2
n iterations are 

sufficient to sort the elements, and the time complexity of the parallel algorithm is )(NΘ , given n processing 

elements. 
Another sorting method on the SIMD-MC2 model assumes that n x n elements are to be sorted elements 

distributed evenly, one element per processing element. The algorithms assume also that simultaneous data routings 
must be in the same direction (east, west, north or south). In this case a lower bound on any sorting algorithm is 

( )nΩ . This method is proved to have a lower bound on the number of data routings needed, in the worst case as 4(n-

l). This algorithm to sort n2 elements on the SIMD – MC2 model has time complexity ( )nΩ , which implies a lower 

bound on ( )nΩ  to sort n elements.  
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Thompson and Kung [33] in their own algorithm having assumptions identical to the SIMD-MC2 model 
above were able to establish the fact that to sort knN 22 ==  elements on the SIMD-MC2 model you need a time 

complexity of ( )nΩ . This algorithm was demonstrated using the bitonic merge sort on the element on a 4 x 4 mesh 

by Knuth [17] to prove the point meant by the algorithm. In general, to sort the knN 22 ==  elements by using the 

algorithm requires Nlog  phases. The total number of routing steps performed is [ ]∑ ∑= =
−n

i

i

j

jlog

1 1 2
12  which is ( )nΩ . 

The total number of comparison steps is, ∑ =
n

i

log

1 which is )(log2 NΘ . Proving that the worst case time complexity of 

bitonic merge on the SIMD-MC2 model is      ( )nΩ    

 (4.11) 
making it an optimal algorithm for this model. 

Nassimi and Sahni [24] working on the SIMD-MC2 model machine again developed the random access 

read and random access write which can begin sorting records by destinations which can be completed in ( )N  time 

on SIMD-MC2 model with nn × processing elements.  Sorting on the SIMD-MC2 model sorts n elements when 

mn 2=  for some positive integer m  is ( ) ( )nm 22 logΘ=Θ  time. Sorting on the SIMD-CC module requires 
( )

2

1+mm
 

compare-exchange steps, ( )1−mm  shuffle steps of the vector X, and 12 −m shuffles of the vectors M and R.  

From Stone [32] uses a make vector M can be used to indicate the kind of sort to be done by a particular 
processing element. So if we assume nm log= , then, the time complexity of this algorithm is ( )n2logΟ  with n 

processors. Hence for the p processors on the ideal parallel machine the sorting method has an asymptotic time 
complexity of ( )n2logΟ . So that the compare-exchange steps required does not exceed the number of processing 

elements involved which is 2
N logarithmic time complexity of ( )n2logΟ steps. 

A further proof can be given by comparing each number against 1−n other numbers requires 1−n  
computation steps. There are n elements so there are ( )1−nn  computational steps in total. For n processors, each 

computing the index of an element in parallel, sorting can be accomplished in ( )NΟ computational steps. Each 

processor needs access to the entire array of numbers and so this is convenient for shared memory architectures. The 

efficiency is %100
log 2 ×

n

n . Consider the use of 2n processors. Each processorjip ,  compares ix with jx . (processors 

iip , are not actually required.)  

 
Comparison requires( )1Ο  computational steps. Using a reduction across i , processors jip , can compute the 

index, iy , of element i in ( )n2logΟ computational steps. In a final ( )1Ο  computational step, the element ix is 

written to index iy . The sorting is accomplished in( )n2logΟ  steps. However the efficiency is %100
1 ×
n

. Using a 

concurrent read and concurrent write memory architecture with concurrent writes being handled as additions, the 
reduction operation can be accomplished in ( )1Ο steps. Thus the sorting is accomplished in ( )1Ο steps. The 

efficiency is now %100
log 2 ×

n

n .  

On the basis of our framework, it is assumed that the number of elements presented is n . And usually the 
number of elements,n , is much greater than the number of processors, p . So, in this case, there is the need to 

partition the elements into clusters of size
p

n
k = . For the ideal sorting this means that each processor must find the 

index for k different elements and through message passing update the units of the neighbourhood processor using 
the best strategies. 

For example, a good sorting mechanism in an ideal machine for 8 objects used above, will proceed as 
follows 
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merge 

merge merge 

8 20 28 25 6 38 45 42 

6 38 42 45 

6 8 20 25 28 38 42 45 

8 20 25 28 

P1     P2        P3           P4 
  
 
          sort            sort   sort       sort 
 
 
                  P1               P3 
 
 
 
 
        P1  
 
    Figure 2: Sample Parallel Sort 
 
5.0 Conclusion 

 
Considering the efficient implementations of sorting methods as provided by the hypercube we note that 

the bitonic merge sort provided the basis for most parallel sorting schemes. However, we can definitely say  that 
sorting an unsorted list of numbers requires building bitonic lists and then sorting the bitonic lists is quite an 
enormous task. It requires kn 2= elements, and k  phases numbered k,,2,1 L , each requiring a bitonic sorting 

operation (the first phase is simply sorting single elements) of k steps. But for the ideal machine this exercise is far 
from optimal as demonstrated by (4.7).  

For ideal machine architecture, the )(log2 Nο time complexity proves adequate, functional and realizable 

given the nature of the problem space. All the paths of the new parallel machines are no longer those of the 

exhaustive sequential sorting systems, and therefore at most2
N graph-theoretic graphs path length may be 

constructed for k clustered objects. Since the compare-exchange merge-sort is the most time consuming part of the 
algorithm and )(log2 Nο is the time bound of the entire sort, the existence of a finite scheme for this exotic 

algorithm enables us to prove the parallel sort theorem rigorously. 
The prospect of demonstrating the reality of surmounting the problems is quite promising since the state-of-

the-art machines now possess large processing elements to cope with the problem.  
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