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Abstract

Parallel sorting techniques have become of practical interest with the
advent of new multiprocessor architectures. The decreasing cost of these processors
will probably in the future, make the solutions that are derived thereof to be more
appealing. Efficient algorithms for sorting scheme that are encountered in a
number of operations are considered for multi-user machines. A heuristic
framework for exploiting parallelism inherent in some of these schemes are worthy
of investigation and valid suggestions are given for adequate implementation by
associating processors in a multiprocessor platform. This exercise involves a closer
investigation of the associated savings in employing simultaneous sorting techniques
for, say ¥ processors. A deterministic o(log, N) time algorithm using Y,,n

processors will substantially reduce the run time for a sorting scheme and is
considered to be asymptatically optimal.

1.0 I ntroduction

Sorting is one of the most fundamental topics indbee areas of computing dealing with data structures
design and analysis of algorithm and computational adge&wrting problems often appear as sub problems of many
other problems. In this paper we consider important impfgable parallel sorting algorithms on a class of
processors.

Recent interest in developing alternative algorithms for thinggproblem for parallel computing systems
endear one to investigating possible implementable schermmesn@ivation in this study has been to seek feasible
parallel methods for sorting which exploit many aspectsaddlfelism which is implicit in the known algorithms for
Von Neumann systems. Methods that maintain balance imga@yistems have received considerable attention in
computer science literature. A plethora of materials abound thatesoted to problems and some even to single
sort algorithms. A good reason for this attention & Horting, along with searching and mathematical compogatio
is one of the many things that computers do better than hbeiags. Another reason is that sorting algorithms are
needed in solving many problems and are very sensitithetssues of size and complexity of the source material,
thus, no one algorithm can ever be best for all purposes.

First, the problem of sorting should be considered. &dati attention will be paid to those algorithms that lend
themselves to the exploitation of inherent parallelismmarily to see how limitations in implementing these
parallel schemes can inspire other forms of solving thelgmmob

Most of the existing algorithms work well with older, desophisticated computers (the Von-Neumann
machines) and poorly with modern computers (mostly nmoltigssing systems). We hold that this is not in the
sense of performance alone, but also in terms of the oppisuoffered by parallel machines. Research concern
has been on seeking implementable fast algorithms byngicki good strategies for result. The greater discovery is
that an existing algorithm can be speeded up greatly if mdogeetfmeans of introducing parallel structures to run
in high-speed computers are found. Also exposed is thehfaicsarting algorithms are good candidates for parallel
execution; each individual list could be kept on a separate poocassl many operations could proceed in parallel.

An emerging scheme, we present is hybrid in nature anthbgsotential to reduce the problem space to
less thanO(Nlog, N )time for uniprocessor performance. Optimized Bubble sortkaort, Merge sort, Insertion

sort, Heap sort, are good examples of implementable ungsmcschemes.
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Quicksort is highly favoured for the uniprocessod is regarded as somewhat close to the state ofrtheoding
method. Years of pious studies and closer examimatif sorting schemes have given researchers ttugise
solutions of problems of devising implementableesobs for parallel architectur

The heuristic framework is intended to provide ngeahpresentation. It comprises of formal definitiof a
sorting system yielding a more formal means of cating parallel systems and an informal method mdifig suct
parallelism in existing sorting kemes. An important part in presenting algoritheslayed by a heuristic princip
that can be regarded as metatheoretic analogime e¥el-known and successful sequential implementat

20 Problem Description

Given a list of N data eIement{xo,><1,~--,xn_1}, sorting rearranges the order of the elementbefarray
and the result of sorting the list is a sortechw{yo,yl,---,ynfl} such thaty, <y, foreveryO<i< j<n-1 hence

ylo]< yf--y[n-1]. (2.2)
The idea of ordering the list in this form is sublat a sorting operation is needed in solving treblem.
When the sorting operations are carried out seéalnthe number of ps-wise comparisons between elemerf
the list becomes too large. A general languagerieisn of the problem will look thus: Suppose thia¢ languag:
provides the notion of an indexable sequence efgirts, we use subscripts in the range, 0..Iength(X)—1 SO
that:
Sorted X) of [Jj
such thati < j <length (X)—L X, =X,
Sort &, V) if (2.2)
Image X,Y) and
Sorted Y)
provided that Y is the sorted image of a sequen
A heuristic framework distinguishes sequenbehaviour from nometerministic ones, and thus is m
discriminating than ordinary evaluation of sortischemes or structureWith ranking in the sort algorithms it ci
be shown that for the count for each elenx , the number of sorted elementength(x), is smaller than that f

X, . Thus the sorted array elements, ) =% . Consideration is only for arrays of unigelements. If we modif

the algorithms, then nomrique arrays eleents can be accounted for. It is, however, pertif@arus to quickly stat
that Iength(x) is unique over alD <i <n when all elements are unique.

We can briefly explain by stating a prove thwor any two elements <x, such the x =x +¢&,£>0,
with counts length(x ) and Iength(xi), it follows that Iength(xj)z length(x )+1 since X; is less thaX;. When

& =0then all elements less thagare also less thex; . This is clearly shown in éhfollowing program segme
for(i =0 < i ++)
{x =0;
for(j=0;j<mj++) (2.3)
if (x(i] - x[j])k + +;
ylk]=x{i]}

Building on the experience of Hoare [14,15], Kn{iB], Batcher[3], Bitton, et al [5], Tseng et al [34
Zen-Cheung et al [35] and others is a full scale fraowfor the analysis of associated complexity ahpatations
that provide support not only for this algorithnt lalso for other parallel implementations omputing algorithm:

There are many sorting algorithms of interest fequential machines as we noted earlier.
implementation for any style of presentation of afiyhese algorithms in parallel is a daunting taskthe level of
parallel computationssupport must be provided for the various stagesun algorithm like fast comparisor
interchanges and transitions to neighbourhood pesmre through merging. At different levels particubperation:
are expected to take place. This includes the s of broadcastingeady data for computation to the processor:
most parallel implementations the notion of compate is that the operations are data driven argliels are read
for computation as soon as they are availablewPsdrcomparison succeeds this exercise at differedes in the

processing graph (i.at the processor). Further effort is needed to esupgutomated comparison and intercha
where necessary. Iplace algorithms provide for this. Buffering as et pointer facilities help to overcome 1
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problem of automation. It is therefore highly desirabledwetbp a general theory of parallel-sorting computational
systems that isolate the good attributes of a wide rangmrtihg schemes so that much of the effort can be
expended once and for all on those aspects that will speeduptetionu

For a given algorithm and problem size, we derive the inhpeeatlelism as the ratio of the serial execution
time and the runtime of an ideal realization of a parallel rangleass machine (PRAM). An idealized model of a
parallel computer that satisfies all non conflicting memory actesse cycle and queues conflicting memory
accesses to be satisfied one after another, each requiring exchaiyeexclusive write (EREW) PRAM. For the
same algorithm and problem size, we then derive the maxspeedup attainable by a machine of any size with the
architecture of interest. Machine size is in terms of p, thebeuwf processors. The maximum speedup, specified as
a function of problem size, is called the asymptotic speedupeoérchitecture for the given algorithm. Thus the
inherent parallelism of the algorithm is its asymptotieestup on an ideal PRAM machine [25]. The criteria on
which the measurement of algorithm for parallel computatisrizased are the speedup and efficiency. They are
used to let one know how effective a parallel machine is heiad given an efficient algorithm.

The ability to solve instances of a problem within avadatgisources portends feasibility. Generally, if the
consumption of some resource grows exponentially to thelgrosize, then we can solve only small problem
instances. Thus, feasibility is provided when the groratle for the resource is bounded by a polynomial of the
problem size. This means that in tia(e): 0(1)or spacev(n) = 0(1) for a problem of siz&. In parallel

computations, a parallel algorithm is feasible if solutiamsize N problems are found im(n)=0(1)time using
o(n) = 0(1)processors. Parallel computing deals with the problem ahtgatocessors for speed. But hardware is a

qualitatively different resource than time, so the notiofeasibility needs to be refined. In some cases it is cheaper
to give more time for a problem to be solved than to iniresnore processors to solve the problem in a shorter
period of time. In some cases the cost of not having theti@olin a given period of time is greater than the cost of
additional processors. Weather forecasting, market predictior\amd drug design are examples of time limited
problems. If the solutions take too long to computentthere is little or no benefit. You agree to the fact that
adding new processors or memory to a system is notsysasaadding time. When a problem exhausts available
memory, we are inclined to find solutions to the probléat wse less memory (rather than just buying more
memory, which may not be possible in any case). Sipjladnsidering processor requirements in terms of problem
size allows us to examine the question of how big a probsrbe solved in a given time with a given number of
processors. Therefore, the goal of developing feasible paralteithlgs is expressed in terms of the speedup and
the equation is as follows:
best sequential time

number of processors
To obtain a sub-polynomial time algorithm, a polynomiainber of processors must be used. For example for a
sequential running tim'é(n): n and processor:p(n): lognthen:

< paralle time (2.4)

N — n —n%5® _
M=o = =yl (2.5)
is still a polynomial time.

Thus, when we refer to a system as highly parallel, we meait thgtires a number of processors roughly
equal to the best sequential time for the algorithm. Theredpeedup is generally a measure of the same program
on varying number of processors. The speedup is thenapseel time needed by the processor divided by the time
needed in p processors, such that (2.4) becomes

_T1@) (2.6)
O
The issue of efficiency in related to that of performands,tisually defined as
) 2.7
*= 5 (5" &0

Efficiency close to unity means that you are using youdware effectively and low efficiency means that the
algorithm is wasting resources [17], [13].

Gaustafson, J. et al [13] argue that users will increase phallem size to keep the elapsed time of a
parallel run constant. As the problem size grows, the fracifahe time spent executing serial code decreases,
leading us to predict a decrease in the measured serial time fraction.
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21 Algorithm

We present an algorithm to perform the parallel sorting operalihis algorithm is based on the merge
sort operation, so we proceed as follows:
Given a list ofN elements, the result of sorting the list is to arrahgestements of the list, s¥yso that
X(0)< x(1)<---< X(N-1) (2.8)
We then produce a set of elements such that the outpubegoimes active according to some natural
methods of processing input in parallel. The job of ordetive list is such that a sorting scheme is applied. When
this is carried out sequentially, the lower bound compleit®(N log, N ) is used. The algorithm is as follows:

Sepl. Present an input vector, denoted as (X3, Xz ..., Xp)-
Sep2.  Assign binary units of data termsto "/, processors.
Sep3.  Merge-Sort each group of items on the individual processorsinto
half the number of processors using your favourite sequential sort scheme.(2.9)
Sepd.  Repeat step 3 until all elements are listed in one single active output
unit, such that X (0)< X(1)<---< X(N -1)

22 Structure Representation

The basis for our representation is the parallel machine, wbit$ists of an interconnection of sequential
processes. Intuitively, parallel computing is concerned with imuch faster the parallel machine can be over the
sequential one. Our reasons for using parallel computingpareduce the running time of large problem space,
reduce the cost of achieving performance, increase reliabilityf @ connect multiple processors, it can be
cheaper than building a high-performance single processor; agphocessor fails, then the remaining processors
should be able to continue and share the workload.

Machine specific implementations will enable us compare reglolitg) these benchmarks. A primitive and
atomic process can be used to share single array that resmesdoessor into sized blocks and distributedpto

processors, which may be based onp unit elements. Then another primitive can be used to gdthee tdata

blocks and coalesced into larger blocks at each stage of the caomputat

However, for the algorithm of (2.8), the main strategytasuse the divide and conquer heuristics to
organise program and data in ways as to improve their ofgmocessing in parallel. Generally program tasks are
organised in order in which they are to execute and the bastuse is achieved using this strategy. Data is also
organised by decomposition and are routed into the p prosdasguch a way as to encourage parallel computation.
Geometric decomposition as suggested by [11] plays a protmolerhere as the problem space is decomposed into
discrete subspaces. Solution is how given by computing thiothe subspaces, with the solutions of each subspace
typically requiring data from small number of subspaces. Thieeesorting scheme is then defined in terms of
tracking links through a kind of recursive data structures Jiipporting substructures are easily provided as part of
the framework of reusable components which capture the igolutions to the sorting problems into parallel
solutions. A single program, multiple data (SPMD) maeHior example, achieves parallel execution by executing
the same program code with each operating on a differeot data.

The ideal distributed computer using distributed arraysessmt an exotic class of data structures that are
prevalent in scientific computing, namely arrays of vectorsraalii-dimensions that have been decomposed into
sub-arrays and distributed among processes or threadaplesaare the Cray, IBM and the Thinking Machine.

In, this vein, our sorting scheme, which has large lpralspace, can be heuristically represented by a tree
structure. The algorithm is based on this tree, but doesepatsent all the subtleties associated with the parallel
implementation. For some problem instances, upper/loweritims are developed that useigde and conquer
approach to recursively divide the problem into smaller soblems. The results of the sub-problems are then
combined to give the final output. Divide and conquer fgrmlamental approach for obtaining parallelism that is
very intuitive and hence subject to the policy of problsign architecture. Parallel processes that occur as sub
graphs to be parallel-sorted during the sorting exerciseegresented b{l/,-ary trees. The root of the tree is the
final active output unit and the children are the sub graphisare supposed to be merged to proditceut put
units. A sample graph, together with its assembly isrgivelow in Figure 1. Therefore, our sorting benchmark is
defined such that n and p=m are assumed for simplicitwibbut loss of generality to be powers of two so that w
set n/p elements at each of the firg2 processors to béog,n, all2n/p at the nextn/4 processors to bdi)g(g),

and so forth. The presentation model is as given in figjure
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Figure 1: Presentation M odel
3.0 Overview of Algorithm

Scalability of a given architecture is said to be the fraction of #malfelism inherent in a given algorithm
that can be exploited by any machine of that architecture asctofurof problem size. It is in this regard that
conceivable attempts are made to design algorithms to ex@dittierent parallelism in such systems.

In a sequential machine, the number of pairwise comparisongdretelements of the initial lists is equal
to the sum of the number of elements in all the lists aatl is O(N). To speedup the merging operation, the

compare operation is intuitively done using parallel procsssaich capable of comparing two input elements, and
identifying the smaller of the two. This goes to shoat t, neighbourhood processors may be used for lists each of
length 2, to compare respectively the first entries from ehtthed/, lists and this is done at a unit time in parallel.
By suitably employing this method at this stage the toomplexity is greatly reduced. Good message passing
techniques will feed the output of this first stage toséheond stage of the algorithm that involves merging.

Konrad [19], Horowitz [16], Mannila and Ukkonen [&]nd Pardo [9] have all tried to solve the problem of
merging using the in-place merging methods. Konrand'smath block rearrangements and internal buffering has
influenced the other works. Implementations have always beermproblem since the algorithmic schemes are
complicated. Bing-chao Huang et al [4] have their simple dlgorwhich merges in linear time and constant extra

space. The list to be sorted is bIocks(bNﬁ) , each of sizeO(\/ﬁ). This method involves rearranging blocks

before the merging is initiated and the internal buffer isgascross the list so as to minimize unnecessary record
movement. One interesting aspect of this scheme is thabuérall elapsed time is reduced for file processing
whenever the extra space can be utilized for more buffers to iacpaaallelism or larger buffers to reduce the
number of input/output transfers needed.

For algorithm (2.8) to work in ideal situation, we neg@fiters to partition the input data into p groups
indexed from 1 up to p such that every elementigrioup is less than or equal to each of the items in the
neighbourhood (i.d+1) ™ group, forl<i< p-1. So to perform the sorting task, each of the p groupbeanrned

over to the corresponding indexed processor, and then tha itedas will be arranged in sorted order.

The efficiency of such an algorithm depends on the proces$imgents that assign the data units to the
processor, the sorting method chosen and the message passinmg sadopted for the data transfer with implicit
merging mechanism. A radix sort algorithm and the merge agorithm can combine elegantly to solve the
problem. The general strategy is to decompose tasks and damaimégeable sub groups and route them via the p
processors to be computed in parallel. Our idea suggesigdibegy that can combine them as a composite scheme
to achieve fast and tractable computation. This is basicaltywhen you consider the dependencies that could be
identified through analysis of the problem at hand. Maoent multiprocessor machines with ideal status can be
used to implement the algorithm, but requires that exgerisrbe done using a variety of benchmarks.

For the uniprocessor architecture, the worst-case time comptéxiergesort and the average-case time
complexity of the quicksort are both G(nlogzn). However, with the p processors, the best that we could eigpect

O(IogZ n).
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4.0 Pr oof

We assume that the table of n elementX afenoted ax (0),x(1),---,X(n-1), on which a

linear order has been defined is given. It therefore holds thanfotwo elementX; and X;,
exactly one of the following cases must be tiye X, X, = X, or X, > X, . Sorting has the goal of

finding a permutatior{rr, 7z,---,77.,) such that: XX, s X,

(4.1)

The best complexity order for any sequential athani which is based on pairwise comparison of elgme
of size n, must be Q(NlogN). (4.2)

For a quick proof of the basis of our for the abewe recall that the asymptotic time complexity foe
uniprocessor scheme as O(Nlog, N) (4.3)
while for the parallel algorithm, an estimated ti'r!;eO(Iog2 N) with a speed up of

o(N) (4.4)
From (2.7), the efficiency of such an algorithm caionally be put ao(%j (4.5)
which gives O(y” jwhere P iS%es, N (4.6)
Togy N

We recall thatquicksoit parallelizes ovell processors to obtaiKD(N) parallel computational steps. It

generally selects a pivot for the elements in tiraya thereby ensuring that all elements in thayathat are less
than the pivot are put into a lower array and lgireents greater than the pivot are put into a highey. Using this
divide and conquer scheme, it then recursivelyiapghe scheme on the higher and lower arraysctgateof the

pivot is not too important for the sequential alfon however it is important for the parallel algom in order to

keep the tree of processes reasonably balanced.

Mergesort again proceeds from a single processor or prabessholds an array ofi = 2“ elements. The
divide-and-conquer approach is used to divide thayanto two halves and give one half to anothercpss. The
subdivision continues until at most eachmgbrocesses holds exactly one element. Then the ggesaise mergesort
to generate the sorted array. Assuming there @ren = 2“ processors. The first division phase of the mengeso
algorithm is essentially scattering the elementsrdihe processors. Each processor receives onemtierh the
array. The total number of parallel computatiorpstés k, at each step= 0L---,k—1, two lists of siz&' are
merged onto a single processor. It ték@s stdps in the worst case to merge two sorteddiath of N numbers.
The number of computational steps is then

25 (2 -1)=2 -k -2 which is O(N). 4.7)

The bitonic merge algorithm introduced in 1968 by Batcher [3] hatinae complexity of ®(log’ N )and

has formed the basis for sorting algorithms on #veodels of parallel computations. Fundamenttily method
is called compare-exchange because two numbers are routed into a comparafwgre they are exchanged, if
necessary, so that they are in proper order. Batghs able to prove that a list of= 2 unsorted elements can be
sorted by using a network a‘“zk(k +1) compactors in time O(log’N .)

(4.8)

The basis of the bitonic mergesort is the bitoquence, a list having specific properties that kgl
utilized in the sorting algorithm. A monotonic ieersing sequence is a sequence of increasing nundbeitnic
sequence has two sequences, one increasing andecreasing. Formally, a bitonic sequence is a seguef
numbers,x,, X -+, X, X, , , which monotonically increases in values, reaghesaximum, and then monotonically

decreases in valuex,<x <---X >x, >--->X_,>x_, for som&<i<n. A sequence is also bitonic if the
preceding can be achieved by shifting the numbelically (left or right).
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A bitonic sequence is transformed into a sortetdbljsthe Bitonic merge algorithm. This list is thgh of
as half a bitonic sequence of twice the length. bftonic sequence of lengthig sorted with ascending order, while
an adjacent sequence of lengttis2sorted into descending order, then after k ameyexchange steps the combined
sequence of length“2 is a bitonic sequence. Therefore a list of n eleseo be parallel-sorted can be viewed as a

set of an unsorted sequence of length 1 opasitonic sequence of length 2. Hence the algoritiam be used to
sort any sequence of elements by successfully mgigirger and larger bitonic sequences. Given2“ unsorted

elements with k phases numbered 1,2, ..., k, a nktwiih@ levels suffices. Each level contaiﬂgs= 2t
comparators. Hence the total number of comparéﬂ;tﬁ‘%zk(k +1). The parallel execution of each level requires
constant time. We note that Zklli = k(k2+1) = log, n(l(;gz n+ ) = O(Iog§ n). (4.9)

Hence the algorithm has <—:omplexi®(log2 N . Jhe speedup amprocessors is thu@(lognzn) and gives an
efficiency of roughly L_x100% (4.10)

Iogzn

The bitonic sequence has an interesting propedy ithwe compare and exchangé with x,,, for all

2
0<i<42a, we get two bitonic sequences, where the numbeménsequence are all less than the numbers in the
other sequence. For example befote: [6,38,45,42,8,20,28,25] and after 6,20,28,25,8382.
The second list is now two bitonic sequences, 8205 and 8,38,45,42. Using this property, withk 2
elements anch processors, aftde parallel steps it is clear that a given bitongt kan be sorted. This is called a
bitonic sort operation.

An improvement of the bitonic merge sort was gibgnStone [32], which takes a list of=2* unsorted
elements and sorted in tim®(log? N  with a network of2“(k(k—1)+1) comparators using the perfect shuffle

interconnection scheme exclusively.

Bitonic merge sort, therefore, seems unsuitabléniptementation in VLSI, because of the large nundie
path crossing. However, the efficiency of the mdthas made it a popular basis for algorithms orcgssor array
models.

Sorting methods on the SIMD machine models haverged from the earlier works on the bitonic merge
method, but this time the processing elements y@&nized into arrays. We assume that (xo,xl,-~-, Xn_l) is the

set ofn elements to be sorted and the arrdys (YO,Yl,---,Ynfl) and Z = (ZO,
Assume n is even and thatiall 0<i<n-1 processesp, contains array element, Y; andz;. The SIMD — MC
model sort require; iterations with each iteration having two phasdse odd-even exchange as it is called has

Zl,u-,ZM)contain temporary values.

the value X, in every odd number processor(except processar1) compared with the valug,, stored in even

numbered processot1l. An exchange is made if necessary, so that therltmumbered of the adjacent processors
contain the smaller value. The next phase calledetven-odd phase, exchanges values as in thepfieste if
necessary, so that the lower-numbered processtainsnthe smaller value. Aftex, iterations the values are sorted.
The time complexity of sorting n elements in théBl - MC mode with n processors using odd-even
transposition iS9(N ) The proof of correctness of the method is bageah the fact that after iterations of the outer

loop, no element can be further thas®i positions away from its final, sorted position. ride?; iterations are

sufficient to sort the elements, and the time canxipy of the parallel algorithm i€(N), given n processing

elements.

Another sorting method on the SIMD-M@odel assumes that n x n elements are to be seketents
distributed evenly, one element per processing ehtnThe algorithms assume also that simultaneatssrdutings
must be in the same direction (east, west, nortkoath). In this case a lower bound on any sordilggrithm is
Q(n) . This method is proved to have a lower bound emilimber of data routings needed, in the worst aaggn-

). This algorithm to sorthelements on the SIMD — MGnodel has time complexi@(n), which implies a lower

bound onQ(\/ﬁ) to sort n elements.
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Thompson and Kung [33] in their own algorithm hayimssumptions identical to the SIMD-M@odel
above were able to establish the fact that toNerin? = 2* elements on the SIMD-MQmodel you need a time
complexity on(\/ﬁ). This algorithm was demonstrated using the bitomézge sort on the element on a 4 x 4 mesh
by Knuth [17] to prove the point meant by the aitjon. In general, to sort th&l = n* =2 elements by using the
algorithm requireslogN phases. The total number of routing steps performeﬁ."’gnzii:lz[%] which |sQ(\/ﬁ)

i=1

ogn
31

bitonic merge on the SIMD-Mmodel is Q(\/ﬁ)

(4.12)
making it an optimal algorithm for this model.

Nassimi and Sahni [24] working on the SIMD-K@odel machine again developed the random access
read and random access write which can begin gamticords by destinations which can be complete(d/ﬁ) time

The total number of comparison steps which is@(log’ N ). Proving that the worst case time complexity of

on SIMD-MC* model with vn x/n processing elements. Sorting on the SIMDAM@del sorts n elements when
+

n=2" for some positive integem is G)(mz)= (a(log2 n) time. Sorting on the SIMD-CC module requirgér;—l)

compare-exchange stepﬂ(m—l) shuffle steps of the vectef, and 2m- khuffles of the vectors! andR.

From Stone [32] uses a make vedtbrcan be used to indicate the kind of sort to beedopna particular
processing element. So if we assume=log, , then, the time complexity of this algorithm @(Iog2 n) with n

processors. Hence for the p processors on the pmhrallel machine the sorting method has an asytoptione
complexity ofO(IogZ n). So that the compare-exchange steps required rdiesxceed the number of processing
elements involved which ig logarithmic time complexity ot‘)(log2 n) steps.

A further proof can be given by comparing each nemhbgainstn— bther numbers requires- 1
computation steps. There anelements so there arra(n—l) computational steps in total. Forprocessors, each
computing the index of an element in parallel, ingrican be accomplished i@(N)computationaI steps. Each
processor needs access to the entire array of marahd so this is convenient for shared memoryitatiares. The
efficiency is199: N , 1000, . Consider the use af processors. Each procesgpr comparesx with x; . (processors

n

p,; are not actually required.)

Comparison require@(l) computational steps. Using a reduction aciigsgrocessorsp, ; can compute the
index, y,, of elementiin O(IogZ n)computational steps. In a fina(D(l) computational step, the elementis

written to indexy,. The sorting is accomplishedﬁ)wilog2 n) steps. However the efficiency s« 1909, . Using a
n

concurrent read and concurrent write memory archite with concurrent writes being handled as &mltht the
reduction operation can be accomplished Cn(fl)steps. Thus the sorting is accomplished Ch(il)steps. The

efficiency is nowo9 . , 15594 -
n

On the basis of our framework, it is assumed thatriumber of elements presentechisAnd usually the
number of element$), is much greater than the number of processprsSo, in this case, there is the need to

partition the elements into clusters of size" . For the ideal sorting this means that each psmesust find the
p
index for k different elements and through message passingeipita units of the neighbourhood processor using
the best strategies.
For example, a good sorting mechanism in an idesthine for 8 objects used above, will proceed as
follows
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P1 P2 P3 P4

6 38 45 42 8 20 28 25
sort sort sor )
merge merge
Pl 6 38 42 45 % 20 25 28
merge
P1

6 8 20 25 28 38 42 45
Figure 2: Sample Paralld Sort

50 Conclusion

Considering the efficient implementations of saytimethods as provided by the hypercube we note that
the bitonic merge sort provided the basis for npastllel sorting schemes. However, we can definisaly that
sorting an unsorted list of numbers requires bagdbitonic lists and then sorting the bitonic lis¢squite an

enormous task. It requires = 2“ elements, andk phases numbered?2,---,k , each requiring a bitonic sorting
operation (the first phase is simply sorting singllements) ofk steps. But for the ideal machine this exerciseiis f
from optimal as demonstrated by (4.7).

For ideal machine architecture, @igog, N timie complexity proves adequate, functional andizable
given the nature of the problem space. All the paihthe new parallel machines are no longer trafsthe
exhaustive sequential sorting systems, and thereédr mos% graph-theoretic graphs path length may be
constructed for k clustered objects. Since the @eyexchange merge-sort is the most time consupangof the
algorithm and o(log, N )s the time bound of the entire sort, the existeote finite scheme for this exotic

algorithm enables us to prove the parallel somb rigorously.
The prospect of demonstrating the reality of sumtioig the problems is quite promising since théestsd-
the-art machines now possess large processing ieietoecope with the problem.
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