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Abstract 

 
Abstract. In this work we establish some conditions for univalence and our 

results include starlikeness, convexity and close-to-convexity 
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1.0 Introduction 
 

Let C be the complex plane. Denote by A the class of normalized functions 
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which are analytic in the unit disk }1|:|{ <= zzE . Let 0>α  be real. Using binomial expansion, we can write 
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In [4], Opoola introduced and studied the class )(βα
nT  consisting of functions Af ∈  satisfying 
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where ,...})2,1,0{( 0 =∈ NnDn  is the Salagean derivative operator define as 
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with ).()(0 zfzfD =  

Note here that the geometric condition (1.3) slightly modifies the one given originally in [4] see [2]. 
The class )(βα

nT  is a very large family of analytic and univalent functions, which has as special cases, 

many other classes of functions which have attracted the attention of many authors. For instance, several results 
concerning the cases 
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can be found in the literatures [1,2, 3,4,6,7]. 
The main object of this paper is to derive certain conditions for univalency of analytic -functions in the unit 

disk. Our results contain condition for starlikeness, convexity and close- to-convexity of analytic functions in the 
unit disk. 
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In order to give our results we have to recall here the following lemma  
Lemma A. See [5] 

Let the (non-constant) function )(zw  be analytic in E  with 0)0( =w . If |)(| zw  attains its maximum value 

on the circle 1|| <= rz  at a point Ez ∈0 , then  

)()( 00 zcwzwz =′  where c  is real number and 1≥c . 

 
2.0 Main Results 

Theorem 2.1 
Let the function Af ∈  satisfies the inequality 
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then (i) 
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 and )(βα
nTf ∈  

Proof 
We begin by defining )(zw  by 
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Then clearly )(zw is analytic in E  with 0)0( =w . We also find from (2.2) that 
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Since the R.H.S of (2.3) is independent of n we can write (2.3) as 
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see [2]. 
Suppose now that there exists point Ez ∈0  such that 

||||,1|)(|1|)(| 00 zzwhenzwandzw <<=     (2.5) 

Then by applying Lemma A, we have 
),)(,1(),()( 0000 Rezwczcwzwz i ∈=≥=′ θθ   (2.6) 

Thus, we find from (2.4) and (2.6) that 
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which obviously contradict our hypothesis (2.1). It follows that ).(,1|)(| Ezzw ∈<  
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Corollary A. Let Af ∈  satisfies the inequality  
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Proof 
The proof is the immediate consequence of putting 10 == αandn  in Theorem 2.1. 

Corollary B 
Let the function Af ∈  satisfiy the inequality  
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Proof 

The proof is the immediate consequence of putting 11 == αandn  in Theorem 2.1 

 
Theorem 2.2 

Let the function Af ∈  satisfy the inequality  
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and )(βα
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Proof 

We begin by defining a function )(zw  by 
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Then, clearly, )(zw  is analytic in E  with 0)0( =w . We also find from (2.12) that 
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Suppose now that there exists a point Ez ∈0  such that 

Then, by applying Lemma A, thus we have from (2.12) and (2.6) that 
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which obviously contradicts our hypothesis (2.10). It follows that )(,1|)(| Ezzw ∈< .  That is, that 
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This evidently completes the proof of Theorem 2.2 
 
Corollary C 

Let the function Af ∈  satisfy the inequality 
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Proof 
Corollary C is the immediate consequence of putting 0=n  in Theorem 2.2  

Corollary D 
Let the function Af ∈  satisfy the inequality 
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Proof 
The proof of Corollary D is the immediate consequence of putting 10 == αandn   in Theorem 2.2 

 
Corollary E 

Let the function Af ∈  satisfying the inequality 
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Proof 

Putting 11 == αandn  in Theorem 2.2, the result follows. 

 
3.0 Conclusion 
 

In this work we are able to generalized the subclasses of analytic functions earlier mentioned on page one. 
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