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Abstract 

In this paper we extend the work of Bello [4] where he considered the 
periodic solutions of certain dynamical systems inside a cylindrical phase space with 
differential equations of the form 
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with the property that there is a 0>w  and a natural number K such that  
 ( ) ( ) tktywty    , ∀+=+     (**) 

with necessary and sufficient condition that the  
fundamental matrix ( )λφ  of the characteristic equation 
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of (*) have negative real parts (See [1], [7]), ( )λφ  is stable asymptotically. The 

extension considered the periodic solutions of the differential equations of the type  
( ) ( ) ( ) 0=+′+′′′+′ yfyybyyy λ      (****)  

with the property (**). The periodic solutions and the asymptotic behaviour of the 
solutions were investigated and analysed. Some theorems were proved and examples 
given to illustrate certain properties of the solutions. 
 

 
 
1.0 Introduction 
 

Many authors (See [3], [4] and [5]) considered the periodic solutions of differential equations of the type  
   ( ) ( ) 0=+′+′′′+′′′ yfybyyay    (1.1) 

 where 0, >ba  and f is a class function C′  and of period 1 with the property 

     ( ) ( ) ttywty    ,1 ∀+=+     (1.2) 

for every 0>w . 
In their methods of approach, they proved some theorems to illustrate certain properties of the solution 

which included Schauder’s Fixed Theorem and an alternative method (See [5]) as used in Laser. 
The existence of periodic solutions which are even or odd functions was also discussed (See [5]).  This work also 
served as the generalisation of the results of Bello [4], Chang [5] and Nazarov [9]. Some Lemmas were stated and 
theorems proved. 
 
2.0 Preliminaries 
 

We considered the existence of periodic solutions of the differential equation of the type  
( ) ( ) ( ) 0=+′+′+′ yfyybyay    (2.1) 

(See [5]) and established the property (1.2) with additional provision that k is now substituted for 1.  



Journal of the Nigerian Association of Mathematical Physics Volume 10 (November 2006), 391 - 398 
Period differential equations   F. A. J. Bello   J of NAMP 

The analytic solution (2.1) was given and a numerical example used as illustration. 
 
 
 
3.0 Periodic Solutions of Differential Equations in the Cylindrical Space 
 

It has been proved by Bello [4] that if the function f defined on the real line R is negative, continuous and 
periodic and if the polynomial  

( ) 12

1

1 ...  −−− +++= nnn αλαλλφ     (3.1) 

 of the differential equation  
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has all the roots with negative real parts, the equation (3.2) admits at least one solution ( )tyy =  having the 

property that there is a 0>t , such that  
( ) ( ) Rtktywty ∈+=+ for   , .    (3.3) 

It will be shown in this paper that this result holds true under the assumption that (3.1) has roots with negative real 
parts. 

The existence of a solution with a property (3.3) will be proved for the equation 
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Let ( )tx  be the ( )1−n –vector with components ( ) ( ) ( ) ( )( )tytyty n 1,,, −′′′ K  as a solution of the equation (3.2). 

It is clear that this is equivalent to the property which is such that there is 0>w  with  
( ) ( )txwtx =+ ,  ( ) ( ) ttywty     1 ∀+=+      (3.5) 

 
Theorem 3.1 

Let n

cR  denote the set obtained from the n-dimensional Euclidean space R by the identification of pairs 

( )uxx n ,,, 11 −K , ( )vxx n ,,, 11 −K  with integer vu − , the “cylindrical space” (See [14]) then implies that the map 

( ) ( )( )tytxt ,→  of R into n

cR  is periodic with period w. 

 Write (3.4) as a system (See [3]) 

( )
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


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=′
=′

1

,

xy

yxPx
      (3.6) 

in which ( )11 ,, −nxx K  and nn RRRP →×−1:  is continuous and periodic in y with period 1. 

It will be shown under the assumption of the two theorems later in this paper that the system (3.4) admits a 
solution satisfying the property (3.5) 

The following Lemma will be used in proving the required theorems. 
 
Lemma 3.1  
 Assume that for an arbitrary ( ) Ryx oo ∈, , the initial value problem (3.6) ( ) oxx =0 ,  ( ) oyy =0  has a unique 

solution ( )oo yxtxx ,,= , ( )oo yxtyy ,,= which exists for all 0>t .  

 Let the map RRn →−1  be continuous and denote by 1,SSo  the sets  

( ) ( ){ }1  ,  :, −∈== n

o RxxhyyxS ,      (3.7) 

( ) ( ){ }1

1   ,1  :, −∈+== nRxxhyyxS ,      (3.8) 

For any 1

0

−∈ nRx , there is a unique number ( )0xt  such that  

( ) ( )( ) ( ) ( )( )( ) 1000000  ,;  ,,; Sxhxxtyxhxxtx ∈      (3.9) 

Then, the system (3.6) has a solution satisfying (3.5) if and only if map RRU →:  defined by  
( ) ( ) ( )( )0000 ,; xhxxtxxU =        (3.10) 

has a fixed point. 
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As usual, the following rotation will be used: If A is an n x m-matrix, then TAA   ,  denote respectively the 

norm and the matrix transpose of A. FrB, (C,B) denotes the boundary (closure) of the set B. 
 

 

For a real-valued function ( )yxW , , ( )RyRx n ∈∈ − ,1
 denotes its derivatives with respect to the solutions of 

(3.6) i.e     ( ) ( ) ( )( )tytx
dt

dw
yxW ,, =′   

where ( )tx , ( )ty  is a solution of the system (3.6). 

      
Theorem 3.2 

Let a map ( )0,: ∞−→Rf be continuous and let  

( ) ( )yfyf =+1  for Ry∈      (3.11) 

If the polynomial (3.1) has no pure imaginary roots then the equation (3.2) admits, at least one solution ( )tyy =  

having the property that there is a 0>w  such that the property (3.3) holds 
 
Proof: 

Let the system (1.2) be in the form  
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Let 0S and 1S be defined as in the Lemma 3.1, with ( ) ( ) xdxh T

n

1

1

−
−−= α , that is  

( ) xdy T
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1

1

−
−−= α      (3.13) 

( ) 1+= xhy       (3.14) 

and with   [ ]1,,, 12 αα K−= n

Td      (3.15) 

we obtain, 
( ) xdyyxW T

n += −1, α      (3.16) 

Since f is continuous, f is bounded [9] and this implies that the solutions of the system (3.12) exists for all t because 

of (3.1).  Since ( ) ( ) xdxh T

n

1

1

−
−−= α  then by (3.13), (3.14) becomes  
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By (3.17) and the equation (3.18), the equation 
( )( ) ( )( )( ) 10000  ,;  ,,; −= nxhxtyxhxtxW α     (3.20) 

has a unique solution ( )0xt  for every Rx ∈0 , thus (3.9) holds. 

Assume additionally that the system (3.12) has the property of uniqueness. Thus the Lemma 3.1 is applicable and 
the proof reduces to showing that the mapping U has a fixed point. (See [5], [6], [12]). 
Let the map U be defined by the formula 

( ) ( ) ( )0000 xbxxPxU +=        (3.21) 

where ( ) ( )( )00 xtxP =  and  

( ) ( )( ) ( )( )( )( )
dsxhxsybfsxtxxb

xt

∫ −= 0

0 0000 ,,  (See [9] and [12])    (3.22) 
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Here ( )tx  denotes the fundamental matrix of Axx =′ which implies that ( )0xU  is the solution of the system 

(3.12).  Since A has no eigenvalues on the imaginary axis, ( ) 10 −xP  is non-singular.  We now show that ( ) 0=xb  

as ∞→x . From the integral  ( ) ( )( ) ( )( )( )( )
dsxhxsybfsxtxxb

xt

∫ −= 0

0 0000 ,,   we have 

( ) ( )( ) ( )( )( )( )
dsxhxsybfsxtxxb

xt

∫ −= 0

0 0000 ,,  ≤  ( )( )( ) ( )( )( )( )
dsxhxsyfbsxtx

xtxt

∫∫ − 0

0 00

0

0 0 ,,  ( ) ( )y bftx≤  
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Hence,  
( ) ( ) ( )yftxxb  ≤      (3.24) 

because of the boundedness of ( )yf . 

But ( ) 0→xU  as ∞→x  and so we obtained 

( )( ) 0lim
1 =• −

∞→
xxb

x
, ( ) 0≤yf    (3.25) 

Since ( )xt  is a unique solution of (3.21) then ( )xt  is also bounded, as ( )yf  and with boundedness of ( )xt  and 

( )yf , and by the finite-dimensional theorem (see [8] and [12]), the map 11: −− → nn RRU  is one to one, hence U has 

a fixed point and we complete the proof of Theorem 3.2. 

In the general case, we observe that the boundedness of ( ) 1−xP  and ( )xb led to the fact thus,  

( ){ }xxURx n =∈ − :1       { }kxRx <∈ :    (3.26) 

where a constant K>0 depends on the matrix A and estimates f. This permits us to approximate with the uniqueness 
property such that the corresponding sets of fixed points are in the ball. 

{ }kxx <:  (See [4])     (3.27) 

By the standard limiting argument Theorem [7], we can conclude that the Theorem 3.1 holds without assumption 
that the solution is unique. 
 
4.0 Basic Theorem 
 

The following theorem will also be proved in this section, the assumption of which we would use to show 
that the system (3.6) admits a solution satisfying the property (3.8) 

 
Theorem 4.1 

Let f: ( )0,∞−→R  be continuous and let the property (3.5) hold. Let the function RRa →: , RRb →:  be 

continuous and satisfy 
( ) 0≥ya   for Ry∈ ,        (4.1) 

( ) ( )ybyb =+1  for Ry∈      (4.2) 

Let the solutions of the equation (3.4) be uniquely determined by initial conditions and exist for all t > 0. Then the 
equation (3.4) has a solution having property (3.5) 
 
Proof: 
 Let the system (3.4) be written as  
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And let ( )xa ,  ( )xb be positive, put 

( ) ( ) ( )yBxAxyxW ++= 12,       (4.4) 

and  ( ) ( )( )12
1 xAxBxh −−= −         (4.5) 

Then from (3.18) and (4.4) we obtain ( )( ) ( )12 xAxxhB −−=  

where ( )21, xxx = , ( ) ( )dssazA
z

∫=
0

, ( ) ( )dssbzB
z

∫=
0

    

By the Theorem 3.1 and the system (4.4) we have from (4.6) and (4.7) 
 
 

( ) ( )dssazA
z

∫=
0

  2/2
20 2 xdxx

x == ∫     (4.8) 

and  

( ) =zB ( ) ( )( )∫∫ −−= zz
dxxAxdssb

0 120
( )∫ −−=−−= x

xxdxxx
0

3
23

12
22

12
22 2/    (4.9) 

It follows from (4.4) that, 

( ) 33
23

12
22

12
22

1
2 ), xxdxxxyxW −−=−=     (4.10) 

Since a is even and is continuous for all x, ([6] & [8] referred) and for the fact that there exists a number 00 >x  

such that ( ) 0<xA  for 00 xx <<  and ( ) 0>xA  and monotonically increasing for 0xx > , and furthermore, since 

( ) ∞→xA  as ∞→x , we see that the equation (3.4) possesses an essential unique non-trivial solution by the 

Theorem 3.1. (See also [3]) 
Also we see that ( )xb  is odd, has a continuous derivative for all x and ( ) ∞→xB  thus the equation (3.4) has a 

periodic solution. 
Now let ( )00 ,: yxtx , ( )00 ,, yxty  and U be defined as in the Lemma 2.1, we observed that, 

( ) ( ){ }0     ,:,0 == yxWyxS      (4.11) 

( ) ( ) ( ){ }1    ,:,1 ByxWyxS =      (4.12) 

Since 1−∈ nRx  and Ry∈ and because ( ) 1+− xhy , ( )( ) ( )12 xAxxhB −−= .   

But ( ) 2

3
2

2

2
2 321, xxyxW −−=′ 2

221 xx −−=  

  ( ) 0>≥−= αyf        (4.13) 

That is, ( ) 0>≥−=′ αyfW  by (3.19) 

This implies that for any Rx ∈0  there is a ( ) 00 >xt  satisfying (3.9). This shows that U is defined for all 0x . 

Furthermore, U is a homomorphism (See [7]), Preserving the orientation of 2R .  
Since ( ) ( )yfyf =+1  for any 2

0 Rx ∈ , then the points ( ) ... ,1,0    1 ==+ uxux ii  belong to the set 

( )( ){ }0   ,,;: 00
2 ≥=∈ txhxtxxRx     (4.14) 

Let D(C) be the “half-cylinder” (See [3]) then  
( ) ( ){ }0,    ,:, 2 ≥<×∈ yxWCxVRRyx    (4.15) 

where ( ) ( ) ( )( ) 21

2

2

2

12
1 xexxxxV −+=  and e is a constant such that 10 << e . 

Replacing e by a smaller number of necessary then from (4.16) we obtain 
( ) ( ) ( )( ){ } ( ) ( ){ }'''2'2 122122112

1 xxxxexxxxxV +−+=′ = ( ) ( )( ) ( ) ( ){ }'''' 12212211 xxxxexxxx +−+  

( ) ( ) ( )yfxybxxaxxx −−−+= 12121 ( ) ( ) ( )[ ] 221212 xexyfxybxxaex −−−−−  

( ) ( ) ( ) ( ) 21221

2

2121 xxeayfxxxybxaxxxx −−−−+= ( )( ) ( ) ( )2

21

2

1 xeyfexxyeb −++  

From there we obtained  

( ) ( ) ( )( ) ( ) ( )2

21211221 xexybxxaexxxxxV −−−−+=′     (4.17) 

Then by (4.15) and (4.17) we got 

( ) 00  ,2' >± CV , ( ) 02   ,0' <± CV  

for sufficiently large C. 
By inequality (4.18) the set  
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( ) ( ) ( ) ( )( ) ( ){ }CCLDyxtyyxtxCFrDyxE ∈∈= ,,;,,;:,      (4.19) 

is nonempty for all small 0>t  and has at least two components (See [3] and  [5]). If Di is any component of E, then 
the set  

( ) ( ) ( )
( ) 








∈
∩∈

=
100

000

,;

,,;:,

Dyxsy

yxsSCDyx
K i     (4.20) 

for  some s > 0 and{x(t;x,y), y(t;x,y)є D(C) for t є [0,s] } as can be seen is open in S (See [6]). 
 
 
5.0 Example 
 

Consider the differential equations  
( ) 0=+′′ ytpy        (5.1) 

where ( )tp  is a real-valued continuous function of period w,  

 Let ( ) φεδ 2cos2 +=tp  and write (5.1) in the form  

   ( ) 02cos2 =++′′ yy φεδ      (5.2) 

in which the periodic coefficient is a simple harmonic function of the independent variable t, δ and ε  are real 
constants. 

We will now indicate some of the properties, particularly the stability of the solution of 5.1. 
We know from Theorem 3.1 that all the solutions of 5.1 are stable since ( ) Mt ≤φ ; therefore we shall  

investigate the conditions on ( )tp  under which all the solutions of (5.1) are bounded as ∞→t . 

To do this, we construct two linearly independent solutions ( )ty1   and ( )ty2 of (5.6) with the initial condition 

( ) 101 =y , ( ) 00''1 =y   and ( ) 002 =y , ( ) 10"2 =y  respectively. (See [6]) 

In particular, for 0=ε , the solutions of (5.2) are clearly simple harmonic functions and hence bounded as ∞→t . 
Since p(t) is a continuous periodic function of period w, ( )wty +1 and ( )wty +2  are also functions of (5.1). 

Hence any f these solutions can be expressed as a linear combination of ( )ty1  and ( )ty2 . Therefore 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )



=+
=+

tywywywty

tywywywty

2222

2111

'

'
      (5.3) 

Let ( )tW be the Wronskian of ( )ty1  and ( )ty2 . In view of the initial conditions  

( ) 1=tW  and  ( ) 1=wW      (5.4) 

We now found those solutions of (5.1) that have the property  
( ) ( )tywty σ=+       (5.5) 

where  σ  is a constant. 
Such solutions are known as normal solutions, (See [3]). Any normal solution of y(t) of (5.1) if it exists, can be 
written as  

( ) ( ) ( )tyctycty 2211 +=      (5.6) 

Where ( )21,cc  (not both zero) are some suitable constants. From relations (5.3), (5.5) and (5.6), it follows that 

( )( ) ( )
( ) ( )( )



−+
=+−
wwycwyc

wcwyc

''

0

2211

211 σ
      (5.7) 

This is a linear homogenous algebraic system and has a non-trivial solution ( )21,cc  if and only if  

( ) ( )
( ) ( ) 0

'' 21

21 =
−

−
σ

σ
wywy

wywy
     (5.8) 

Since ( ) 1=wW , this determinant becomes  002 =+− βσσ     (5.9) 

where ( ) ( )wywy '21 +=β  

Let 1σ  and 1σ  be the roots of equation (5.9); corresponding to each of these roots, we can find a set of 

constants 1c  and  2c . By using these constants, we can obtain the solutions, say, 1S  ( )tZ1  and ( )tZ2 , of (8.1) such 
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that  

( ) ( )
( ) ( )



=+
=+

tZwtZ

tZwtZ

221

111

σ
σ

      (5.10) 

Let ( )tφ  be a fundamental matrix of the two - dimensional system corresponding to (8.1) with ( ) 10 =φ .  

 
 
Then, (See [10]), there exists a constant matrix C such that 

( ) ( )Ctwt φφ =+        (5.11) 

Moreover there is a constance matrix R such that 
wReC =        (5.12) 

The characteristics roots of R are called the characteristics exponents of (5.1). From the relation 5.11, it is clear that 

( ) Cw =φ and the characteristics roots 1σ   and  2σ  of C are given by (5.9). Now let 1λ  and 2λ  be the characteristic 

exponents of (5.1). From relation 5.12 we obtain 
( )iwλσ .exp1 =    :2,1=i      (5.13) 

Further, the characteristic roots 1σ  and 2σ  satisfy 1σ 2σ = 1. Hence if 2=β , then (5.9) has a double root. If we 

consider 2=β  the double root is 1=σ . Similarly, when 2−=β  the double root is 1−=σ . Thus  from 

(5.5) we have ( ) ( )tywty =+  for σ = 1 

    ( ) ( ) ( )tywtywty =+−=+ 12  for σ = -1   (5.14) 

This implies that the exists a solution of (5.1) with period w if 2=β  and 

with the period 2w if 2−=β . 

 
6.0 Conclusion 

 
Under the assumption of Theorem (*) and (**), the analytic solutions of the system (3.5) was established 

and it was discovered that the system (5.2) admits at least one solution ( )tyy =  having the property (3.5) provided 

that the polynomial equation of the fundamental matrix ( )tφ  has no root lying on the imaginary axis, strictly 

speaking the roots should have negative real part for the stability of ( )λφ . 

Furthermore, we also established that the solution ( ) ( ) ttywty     1 ∀+=+   exist for the system (3.5) 

The differential equations with periodic coefficients considered in this paper arise in three main ways. In 
some practical problems they occur naturally because some factors in the problem itself periodic such as Hill's 
equation solved as example in this paper. Another type of problem is that in which we have to find a solution of a 
partial differential equation where the solution has to be such as to satisfy given boundary conditions at certain 
special surfaces, in particular elliptic cylinders. 

A third source of periodic differential equations is of mainly mathematical interest. Many mathematician, 
not without reasons, have come to regard ODE has been directed mostly on existence - theorems and similar results 
for equations of general type. Only rarely does one find mention, especially at postgraduate level, of any problems in 
connection with process of actually solving such equations. The electric computer may perhaps be partly to blame 
for this. Since the impression prevails in many quarters that almost differential equation problems can be rarely "put 
in the machine" so that finding an analytic solution is largely a waste of time. This however is only a small part of 
the truth for at the higher levels there are generally so many parameters or boundary conditions involved that 
numerical solutions, even if practicable give no real ideal of the properties of the equation. 
 It is in this perspective that in this paper we have sought to give an account of important equations and the 
special function which they generate such as Matheus equation. The paper tried to keep on eye on the physical 
origin of the equations and be mindful of their significance, in the material world, of their solutions. 
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