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Abstract

In this paper we extend the work of Bello [4] where he considered the
periodic solutions of certain dynamical systemsinside a cylindrical phase space with
differential equations of the form

Yo ay™ e ra Y+ (Y y)=0 (=9 @)
with the property that thereisa @w >0 and a natural number K such that

y(t+w)=y(t)+k, Ot **)
with necessary and sufficient condition that the
fundamental matrix q(/l) of the characteristic equation
AA) A +a A+ 4 A, =0 (++%)

of (*) have negative real parts (See [1], [7]), ¢(\) is stable asymptotically. The
extension consider ed the periodic solutions of the differential equations of the type
y +A(y)y" +bly)y'+ f(y)=0 (<52%)

with the property (**). The periodic solutions and the asymptotic behaviour of the

solutions wer e investigated and analysed. Some theorems wer e proved and examples
given toillustrate certain properties of the solutions.

1.0 I ntroduction

Many authors (See [3], [4] and [5]) consideredpkeodic solutions of differential equations of tiype

yl" + a(yl)y" + wl + f(y) — O (1.1)
wherea,b >0 andf is a class functiofC’ and of period 1 with the property
y(t+w) = y(t)+1 Ot (1.2)

for everyw >0 .

In their methods of approach, they proved somerdms to illustrate certain properties of the soluiti
which included Schauder’s Fixed Theorem and amralteve method (See [5]) as used in Laser.
The existence of periodic solutions which are esendd functions was also discussed (See [5]).s Wurk also
served as the generalisation of the results ofoHdll, Chang [5] and Nazarov [9]. Some Lemmas vaated and
theorems proved.

2.0 Preliminaries
We considered the existence of periodic solutidrthedifferential equation of the type

y' +a(y)+b(y)y + f(y)=0 (2.1)
(See [5]) and established the property (1.2) wittlitonal provision thak is now substituted for 1.

Journal of the Nigerian Association of Mathematicd&hysics Volume 1(November 2006)391 - 398
Period differential equations F.A.J.Bdlo J of NAMP



The analytic solution (2.1) was given and a nuna¢gxample used as illustration.

3.0 Periodic Solutions of Differential Equationsin the Cylindrical Space

It has been proved by Bello [4] that if the funcatibdefined on the real line R is negative, coraimsi and
periodic and if the polynomial

dAA) = A a1+ ™ (3.1)
of the differential equation
dl‘ly dl‘lfly dy , L
—+aq, ta,_, —+fly.y", 3.2
dtn i dtn—l n-1 dt (y y y) ( )
has all the roots with negative real parts, theaéiqa (3.2) admits at least one solution= y(t) having the
property that there is &> ,@uch that
y(t+w): y(t)+ k, fortOR. (3.3)
It will be shown in this paper that this result d®ktrue under the assumption that (3.1) has roiksnegative real
parts.
The existence of a solution with a property (3.3)il wbe proved for the equation

d%y [ MDY, )Y -
e +a(dt] e +b(y) it + f(y)-O (3.4)

Let x(t) be the(n—1)-vector with componentéy’(t), y'(t),...,y" (t)) as a solution of the equation (3.2).

It is clear that this is equivalent to the propenvtyich is such that there i» > 0 with
x(t+w)=x(t), y(t+w)=y(t)+1 Ot (3.5)

Theorem3.1

Let R' denote the set obtained from the n-dimensionalid&an space R by the identification of pairs
(xl,...,xn,l,u), (xl,...,xn,l,v) with integer u-v, the “cylindrical space” (See [14]) then implietédt the map
t - (x(t), y(t)) of RintoR" is periodic with period w.

Write (3.4) as a system (See [3])

{xipuy? (3.6)
y =X

in which (Xp---’XH) and P:R"™ xR - R" is continuous and periodic in y with period 1.

It will be shown under the assumption of the twedtems later in this paper that the system (3.4jitach
solution satisfying the property (3.5)
The following Lemma will be used in proving the uégd theorems.

Lemma3.1
Assume that for an arbitrar(/xo, yO)D R, the initial value problen(3.6) x(0)= X, y(0)= y, has a unique

solution x = x(t, X, yo), y= y(t, Xy, yo)which exists for allt > 0.
Let the mapR™ - R be continuous and denote By, S the sets

S, = {(x y) ty= h(x), x0 R”’l} , (3.7)

s ={(xy): y=h(x)+1 xOR™}, (3.8)

For any x, O R™, there is a unique numbé(xo) such that

(x(t0x ) %, hilx,)), yit(x, ) %, h(x, )OS, (3.9)

Then, the system (3.6) has a solution satisfying)(@and only if mapU : R » R defined by
U (xo) = x(t(xo); xo,h(xo)) (3.10)

has a fixed point.
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As usual, the following rotation will be used: Ifi&ian n x m-matrix, theﬂuﬁ“, A" denote respectively the
norm and the matrix transposeAfFrB, (C,B) denotes the boundary (closure) of the set B

For a real-valued functiow/(x, y), (XD R™, yO R) denotes its derivatives with respect to the sohstiof

@) W)= SE(e). )

where x(t), y(t) is a solution of the system (3.6).

Theorem3.2
Leta mapf:R - (—oo,O) be continuous and let

f(y+1)=f(y) for yOR (3.11)
If the polynomial(3.1) has no pure imaginary roots then the equat{8r2) admits, at least one solutiog = y(t)
having the property that there iswa>0 such that the properi{8.3)holds

Proof:
Let the system (1.2) be in the form
{x: = Ax+bf (y)} (3.12)
y= X
o0 1 0 0] [0 ]
0 01 0 O 0 X,
where A=| 0 1 |,b=|:]| andx=
0 .. 0 1 0 X,
|-a,, 00 ... 0 -a,| | —1]
Let S,and S be defined as in the Lemma 3.1, WHI(‘K)= (— a'n_l)'lde, that is
y=(-a, )"d"x (3.13)
y= h(x)+1 (3.14)
and with d" =[a,,...a (3.15)
we obtain,
W(x, y) =a, y+d'x (3.16)

Since fis continuous, f is bounded [9] and thiplies that the solutions of the system (3.12) exist all t because
of (3.1). Sinceh(x)= (— an,l)’lde then by (3.13), (3.14) becomes
AT
W(x y)=a,,y+dx = a“(ﬁJ +d"'x =-d"x+a,,+d'x =0,
a

By (3.17) and the equation (3.18), the equation

W(x{t:x;.h(x,)), v{t:x;.h(x,))) =@, (3.20)
has a unique solutiot(xo) for every x, O R, thus (3.9) holds.

Assume additionally that the system (3.12) hasptteperty of uniqueness. Thus the Lemma 3.1 is eplple and
the proof reduces to showing that the mapping Uahiaed point. (See [5], [6], [12]).
Let the map U be defined by the formula

n-1

U(x,)=P(x,)x, +b(x,) (3.21)
where P(xo): (t(xo)) and
b(xo) = j;(m)x(t(xo)— s) bf (y(s, xo,h(xo)))ds(See [9] and [12]) (3.22)
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Here x(t) denotes the fundamental matrix af = Ax which implies thatU(xO) is the solution of the system

(3.12). Since A has no eigenvalues on the imaygiasis, P(xo)—l is non-singular. We now show th|4|eh(x]| =0

as|x| - . From the integralb(x,) = [ x(t(x,) - s) bf (y(s, %, h(x,)))ds we have

o, ) = 5" x(t(x,) = 5) bf (s %, hlx, Waig| < el =] b/ (vl o D < () bt ()
o
0
sinceb=| : |,
0
__1_
Hence,

[l ) (v (3.24)
because of the boundednessfdfy).
But U(x) ~ 0 asx — @ and so we obtained

tim (B3] 4 *)=0. | £ (u)| < 0 (3.25)
Since t(x) is a unique solution of (3.21) thel(ux) is also bounded, a$ (y) and with boundedness d‘(x) and
f(y), and by the finite-dimensional theorem (see [8] HiR]), the mapU : R™ - R"* is one to one, hendg has
a fixed point and we complete the proof of TheoBeth
In the general case, we observe that the boundemh#ﬁ’(x) - 1|| and ||b(xX| led to the fact thus,
xor:u()=x  {xOR:|x <k} (3.26)

where a constant K>0 depends on the matrix A atichates f. This permits us to approximate with tnéqueness
property such that the corresponding sets of fp@idts are in the ball.

x| <K} (see[4)) (3.27)

By the standard limiting argument Theorem [7], ves conclude that the Theorem 3.1 holds withoutrapsion
that the solution is unique.

4.0 Basic Theorem

The following theorem will also be proved in thiscion, the assumption of which we would use toasho
that the system (3.6) admits a solution satisfyirgproperty (3.8)

Theorem4.1
Letf:R - (—oo,O) be continuous and let the propef8y5) hold. Let the functiora: R -~ Rb:R - R be

continuous and satisfy

la(y)z0 foryOR, (4.1)

b(y+1)=b(y) for yOR (4.2)
Let the solutions of the equati@¢8.4) be uniquely determined by initial conditions andsefor all t > 0. Then the
equation(3.4) has a solution having proper{.5)

Proof:
Let the system (3.4) be written as
X]’. = X2
X, =-a(x )x, ~b(y)x - f(y) (4.3)
y =%
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And let ( ) ( )be positive, put

Wlxy)=x, + Al )+B(y) (4.9)
and h(x)= (B - x, - Alx)) (4.5)
Then from (3.18) and (4.4) we obtaB(h(x)) ==X, - A(xl)

where x = (x,x,), A(z)=[’a(sds, B(z)= [ b(s)ds

By the Theorem 3.1 and the system (4.4) we hava {rb6) and (4.7)

Alz)=[ alsids =] x,dx=x2/2 (4.8)
and
B(2) = [{b{skis= [} (-, = Al Jdx = [} (- x, ¢ /2)dx= -4 -4 (4.9)
It follows from (4.4) that,
W(x y)=x, ~4x))dx= 43¢ — 47 (4.10)

Since a is even and is continuous for all x, ([6]8& referred) and for the fact that there existsuanber x, > 0
such thatA(x)< 0 for 0<x<x, and A(x)> 0 and monotonically increasing fox > X, , and furthermore, since

A(x) -~ as x — o, we see that the equation (3.4) possesses antiakserique non-trivial solution by the
Theorem 3.1. (See also [3])
Also we see thab(x) is odd, has a continuous derivative for all x aIB(k) - o thus the equation (3.4) has a
periodic solution.

Now let x(t A ) (t Xy yo) and U be defined as in the Lemma 2.1, we obsethaig

S, {(x y):wixy) =0 (4.11)
{(x y):wixy) B} (4.12)
Since xOR™ and yORand becausp h( )+1 B( ( )) =X, = A(xl)
But W'(x, y)=1—2x% —3x% =1-x, -
=-f(y)=a >0 (4.13)

Thatis,W' =-f(y)=a@ >0 by (3.19)
This implies that for any, OR there is at(xo) >0 satisfying (3.9). This shows that U is definedddrx, .

Furthermore, U is a homomorphism (See [7]), Présgrhe orientation ofR> .
Since f(y+1)= f(y) for anyx, JR?, then the points;,, =u(x) u= OL... belong to the set

{xOR?:x=x(t;x,,h(x,)), t=0} (4.14)
Let D(C) be the “half-cylinder” (See [3]) then
{xyOR*xR:V(x)<C, W(x y)=0} (4.15)

whereV(x)= }~/2((x1)2 + (xz)z)—exlx2 ande is a constant such that<e< .1
Replacing e by a smaller number of necessary ttoen 4.16) we obtain
V() = 742 (¢ )+2(x, )0, J} = e, (), O )} = x, o+, Jx, Y€l (S, ()

=%, +x=a(x )x, ~b(y)x — (y) —ex[-alx ), ~bly)x - f(y]]-exx,

=xx, +x-ax (%) =bly)xx, =x, f (y)-edx )x, +edy)(x )" +ex f(y)-ex,)

From there we obtained

V,(X) =XX, * (Xz - e)g)(_ a(xl)xz ) - b(y)xl - e(xz )Z (4.17)
Then by (4.15) and (4.17) we got

V'(J_r J2c, O)> 0, V'(O, t\/f)< 0

for sufficiently large C.

By inequality (4.18) the set
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E ={(x,y)OFrD(C): (x(t; x, y), y{t;, x, y) DCLD(C)} (4.19)
is nonempty for all smalt > (@&nd has at least two components (See [3] and If3)) is any component of E, then
the set

K ={(X. y)oD(C)n s, (s Xo,yo)} (4.20)

¥(s:%,¥,) 0D,
for some s > 0 and{x(t;x,y), y(t;x,§)D(C) for te [0,5] } as can be seen is open in S (See [6]).

5.0 Example

Consider the differential equations
y"+plt)y=0 (5.1)
where p(t) is a real-valued continuous function of period w,
Let p(t) = 0% + £cos2p and write (5.1) in the form
y"+ (52 + 50052¢))y =0 (5.2)
in which the periodic coefficient is a simple hamiwfunction of the independent varialjed and £ are real
constants.

We will now indicate some of the properties, paiticly the stability of the solution of 5.1.
We know from Theorem 3.1 that all the solution&df are stable sinc¢(t) < M ; therefore we shall

investigate the conditions op(t) under which all the solutions of (5.1) are boundst - o .
To do this, we construct two linearly independeitisons yl(t) andy, (t) of (5.6) with the initial condition
y,(0)=1, y,"(0)=0 andy,(0)=0, y,"(0)=1 respectively. (See [6])
In particular, fore = Q the solutions of (5.2) are clearly simple harmdanctions and hence boundedtas o .
Since p(t) is a continuous periodic function ofipew, y,(t +w)and y,(t +w) are also functions of (5.1).
Hence any f these solutions can be expressediasaa tombination ofyl(t) andy, (t) Therefore
yi(t+w)=y,(w)y,' (W)y, (t) }
v (t+w)=y, (w)y,' (W)y, (t)
Let W(t) be the Wronskian oﬁll(t) andy, (t) In view of the initial conditions

(5.3)

W(t)=1and W(w)=1 (5.4)
We now found those solutions of (5.1) that haveptfuperty
y(t+w)=ay(t) (5.5)

where O is a constant.
Such solutions are known as normal solutions, [SgeAny normal solution of yj of (5.1) if it exists, can be
written as

y(t)=cy,(t)+c,y,(t) (5.6)
Where (cl, c2) (not both zero) are some suitable constants. Fetetions (5.3), (5.5) and (5.6), it follows that

Cl(yl(W)_ 0’) +C, (W) = O} (5.7)
¢y, (w)+c,(y,'(w)-w) '
This is a linear homogenous algebraic system asa mn-trivial solutior(c,,c,) if and only if
AR yz(W)J‘ o
W)y (w)-

SinceW(w) =1, this determinant becomes o’-Bo+0= 0 (5.9)
where £ = yl(w)+ yz'(w)

Let 0; and O; be the roots of equation (5.9); correspondingacheof these roots, we can find a set of
constantsc, and c,. By using these constants, we can obtain theisohjtsay,S, Z,(t) and Z,(t), of (8.1) such

(5.8)
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that

(5.10)

zﬁ+mzq;®}

Z,(t+w)=0,2,()
Let (p(t) be a fundamental matrix of the two - dimensioryatem corresponding to (8.1) witf{0) =1.

Then, (See [10]), there exists a constant matrixich that

At +w) = dt)C (5.11)
Moreover there is a constance matrix R such that
C=e" (5.12)

The characteristics roots of R are called the dteristics exponents of (5.1). From the relatidiil5it is clear that
(/(W) = C and the characteristics roots and o, of C are given by (5.9). Now I<a7t1 and )\2 be the characteristic
exponents of (5.1). From relation 5.12 we obtain

o, = exp.(w/li) i=12: (5.13)
Further, the characteristic roots and o, satisfy g, o,= 1. Hence if|,8| =2, then (5.9) has a double rootwé
considerf3 = 2 the double root ir = .ISimilarly, when = -2 the double root i&r = - 1Thus from
(5.5) we havey(t +W) = y(t) foro=1

y(t + 2W) = —1y(t +W) = y(t) foro=-1 (5.14)

This implies that the exists a solution of (5.1)hwperiod w if 3 = 2 and
with the period 2w if 3 =-2.

6.0 Conclusion

Under the assumption of Theorem (*) and (**), thelgtic solutions of the system (3.5) was establish
and it was discovered that the system (5.2) admitsast one solutioty = y(t) having the property (3.5) provided

that the polynomial equation of the fundamental rmat;a(t) has no root lying on the imaginary axis, strictly
speaking the roots should have negative real pathé stability of(/(/l).
Furthermore, we also established that the soluipr w) = y(t)+1 Ot exist for the system (3.5)

The differential equations with periodic coefficierconsidered in this paper arise in three mainswhy
some practical problems they occur naturally bezawmme factors in the problem itself periodic sashHill's
equation solved as example in this paper. Anotyyee bf problem is that in which we have to findoduton of a
partial differential equation where the solutiorshta be such as to satisfy given boundary conditiaincertain
special surfaces, in particular elliptic cylinders.

A third source of periodic differential equatiorssdf mainly mathematical interest. Many mathematici
not without reasons, have come to regard ODE heais bigected mostly on existence - theorems andasimasults
for equations of general type. Only rarely does fam mention, especially at postgraduate levehrof problems in
connection with process of actually solving sucbampns. The electric computer may perhaps beypgrtblame
for this. Since the impression prevails in manyrtpra that almost differential equation problems ba rarely "put
in the machine" so that finding an analytic solntis largely a waste of time. This however is aalgmall part of
the truth for at the higher levels there are gdheso many parameters or boundary conditions wvewlthat
numerical solutions, even if practicable give nal ideal of the properties of the equation.

It is in this perspective that in this paper weéraought to give an account of important equatan the
special function which they generate such as Matheguation. The paper tried to keep on eye on hysigal
origin of the equations and be mindful of theimsiigance, in the material world, of their solutsn
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