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Abstract 
 

In this paper, efforts are geared towards the numerical solution of the first order 
initial value problem (I.V.P) of the form Y/ = F(X,Y), X∈[ a, b]  , Y(a) = Y0, where  Y

/ is 
the total derivative of Y with respect to X..  The scheme so developed for the stated 
equation is in the same line of thought as Fatunla (1980). It is of order 6, L-stable and 
exponentially fitted. 

 
 
1.0 Introduction 
 

Consider a first order initial value problem of the form  
Y’ = F(X,Y), Y(a) = Yo ,  X ∈ [a, b]    (1.1) 

which could be linear or non-linear. 
 
Definition 1.1 
 An equation involving a relation between an unknown function and one or more of its derivatives is called 
a differential equation and a differential equation together with a prescribed initial condition is called an initial value 
problem 
 Systems of ordinary differential equations whose Jacobian, J = δf/δy = δy'/δy, have at least one eigen value 
with a very large negative real part characterize stiff systems while those with a very large imaginay part 
characterize highly oscillatory systems. 
 In order to minimize errors of computation, researchers have found ways into the development of 
numerical integrators for solving stiff, stiff oscillatory and oscillatory systems of ordinary differential equations of 
the form (1.1).  
 Problems with solution components containing widely separated time independent variable scales are said 
to be stiff problems asserts Fatunla (1988).  Albeit stiff Initial Value Problems were first encountered in the study of 
the motion of springs of varying stiffness. They are of frequent occurrence in the mathematical formulation of 
physical situations in control theory and mass action kinectics where processes with widely varying time constants 
are usually encountered. Curtis and Hirschfelder (1952) were the first proponents of numerical integrators which are 
well suited to stiff I.V.Ps. Several numerical integrators have since then been developed to solve the problems of 
interest we are here investigating. Prominent among these are : Fatunla (1976, 1978,1980, 1982, 1998, 1989, 1990, 
1991,1993) ; Lambert (1973, 1974,1976, 1978) ; Ascher and Matthies (1998) ; Dahlquist (1963) ; Hall (1982, 1986) 
;Prothero (1976) ; Skeel (1985) ; Cryer (1973) ; Lee and Praiser (1978) ; Novikor, V.A and Novikor, E.A (1987) ; 
Robertson (1976) ; William (1982) ; Willoughby (1974). 
 
Definition 1.2 (Fatunla 1988)  
 Let α be the smallest in absolute value of the real part of all the eigen values of the solution of the initial 
value problem (1.1) in the form 

Y(x) = ∑Cje
λj xZj + φ(x)     (1.2) 

and satisfying the relation Re(λj) < 0 ∀j  .  If there exists a real no x* > 0 such that eαx* → 0, then 
(i) the transient phase is the interval (0, x*); 
(ii) (x*, ∞ )  is called the stiff phase; 

(iii)  x = x*is called the transient point. 
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Fatunla asserts “ In the trasient (i.e non-stiff) phase , stability does not pose any serious problem but 
stepsize h is chosen so as to resolve the rapid change in order to cope with the required accuracy. The non-stiff code 
is more efficient than the stiff code which is more expensive per integration step in this zone”.  He further asserted   
that the computation of x* is not easy but a good estimate for it can be obtained  � eαx* = TOL where α = max(Reλj 
)  < 0) and TOL (allowance error tolerance ) is specified. 
 
Remark 1.1 

Non-stiff algorithms have a definite region of absolute stability while stiff algorithms have unbounded 
region of absolute stability and this accounts for why stiff algorithms accommodate the use of a large meshsize, h, 
outside the transient or non-stiff phase. 
 For the treatment of stiff problems, the Jacobian matrix J = δf/δy =δy'/δy plays a prominent/deciding role. 
No wonder, Lambert (1974), in his defense for new stiff numerical integrators asserted that the real computational 
difficulty with stiff systems is centered round the need to repeatedly compute matrix inverses. 
 The research findings of Fatunla, his predecessors and colleagues clearly indicate that research work in this 
area is unlimited. This was the motivating factor for the present work which is an extension of Fatunla (1980)[4] 
“numerical integrations for stiff and highly oscillatory differential equations”.  It is of order 4. 
 In this paper, we develop a new numerical integrator of order 6, by introducing a new but real 
stiffness/oscillatory parameter Λ2, a diagonal matrix, into the interpolation function (1.7) of Fatunla (1980), which is 
of order 4.  It thus gives a more accurate result than Fatunla (1980).  Recall that the higher the order of a numerical 
integrator the more accurate is the scheme. 
 
2.0 Development of Scheme 
 

Consider the I.V.P   y’ = f(x, y), y(0) = yo; x ε [a, b]  (2.1) 
On every subinterval In = [xn, xn+1].  Let the theoretical solution y(x) of (2.1) be approximated by the interpolating 
function: 

F(x) = (I - eΛ1x)A + (I - eΛ1*x )A* + eΛ2xB + C   (2.2) 
where A,B,C are m-tuples with complex entries and (*) denotes complex conjugate.  Λ1,Λ2 are diagonal 
(Stiffness/Oscillation) matrices with Λ1complex and   Λ2   real [Fatunla used the interpolating function F(x) = (I - 
eΛx)A + (I -  eΛ*

 
x)B + C]  

If yn denotes the numerical approximation to the theoretical solution y(xn) at x = xn and let fn = f(xn,yn) then 
the following constraints are imposed on (2.2.) 
Constraint 2.1 

Equation (2.2) coincides with the theoretical solution at the endpoints of the subinterval  
=>   Yn+j = F(xn+j) for j = 0,1     (2.3A)  
Constraint 2.1 

The first derivative of the equation (2.2) coincides with the R.H.S of the equation (2.1) at the left endpoint 
of In 
⇒    fn =  F’(xn)     (2.3B) 
From constraint 2.1, 
 yn =  F(xn) = (I - e^1xn)A + (I - eΛ1*xn)A* +  eΛ2xnB + C , j = 0 
 yn+1  = F(xn+1) = (I - eΛ1xn+1)A + (I - eΛ1*xn+1)A* +  eΛ2xn+1B + C : j = 1 
Since xn+1 = xn + h and ∆yn = Yn+1  - Yn, then 
 ∆ yn   =[(I - eΛ1h) eΛ1xnA + (I - eΛ1*h) eΛ1*xnA*  + (I - eΛ2h)eΛ2xnB   (2.4) 
From constraint 2.2, 
 fn = F’(xn) =  - Λ1 eΛ

1xnA - Λ1*eΛ
1*xnA* + Λ2 eΛ

2xnB     (2.5) 
=> fn

(1) = ( - Λ1 
2
  
 )eΛ1xnA + (-  Λ1*

2  )eΛ1*xnA* +  ( Λ2 
2  )e2xnB     (2.6) 

 fn
(2)  = ( - Λ1 

3
  )eΛ

1xnA  + (-  Λ1*
3)eΛ1*xnA* + ( Λ2 

3)eΛ2xnB   (2..7) 
solving equations (2.5) – (2.7) for   eΛ1xnA,  eΛ1*xnA* ,   eΛ2xnB , the following results were obtained, using Cramer’s 
rule (D ≠ 0 ), where 
D =  Λ1

2Λ2
2Λ1*(Λ1 - Λ2)  +  Λ1Λ1

*2Λ2
2 (Λ2 - Λ1*)  +  Λ2Λ1

2Λ1
*2(Λ1* - Λ1) . 

eΛ1xnA =  [- Λ1*Λ2 (Λ2 - Λ1*)(Λ1
*Λ2 )fn - (Λ1* +Λ2 ) fn

(1) + fn
(2)  ]/D   (2.8) 
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e1*xnA* = [ Λ1Λ2(Λ2 - Λ1)(Λ1Λ2 ) fn  -  (Λ1 + Λ2 ) fn
(1) + fn

(2)  ]/D    (2.9) 
e2xnB  =  [ - Λ1Λ1*(Λ1 - Λ1

*)(Λ1
*Λ1 )fn - (Λ1* +Λ1 )fn

(2)  ] / D  .  (2.10) 
Inserting equations (2.8), (2.9), (2.10), in equation (2.4), the following result is obtained. 
   yn+1  =  yn  + Rfn + Sfn

(1) + Tfn
(2)    (2.11) 

where  
R = [(Λ1

*Λ2 )
2 (Λ1* - Λ2) (I - e

1h) + ( Λ1Λ2)
2(Λ2 - Λ1) (I - e

1*h)  
+ (Λ1Λ1*)

2(Λ1 - Λ1
*)(I - e2h) ]/D    (2.12A) 

S = [(Λ1
*Λ2 ) (Λ2

2 - Λ1*
2) (I - e1h) - (Λ1Λ2)(Λ2

2 - Λ1
2) (I - e1*h)  

+ Λ1Λ1*(Λ1
*2 - Λ1

2)(I - e2h)]/D(2.12B) (2.12B) 
T = [Λ1

*Λ2(Λ1* - Λ2)(I - e
1h)  +  ( Λ1Λ2)(Λ2 - Λ1) (I - e

1*h)  
+ Λ1

*Λ1((Λ1 - Λ1
*)(I - e2h) ]/D  (2.12C) 

For real constants λ, u, let  Λ1 = λ + iu .  Then Λ1
* = λ - iu and if Λ2 = α, then 

D =  - 2uiα ( λ2 + u2 )( λ2 + u2 + α2 - 2α λ)    (2.13) 
R = 2α2  i[eλh((3uλ2  - 2uαλ - u3)Cos(hu) –  (λ3 -αλ2  - 3u2λ + α u2)Sin(hu))  

– (3uλ2 -2uα - u3)  + (u / α2 ) ( λ2 + u2 )2(1 -eαh)]/D     (2.14A) 
S =  - 2α i[eλh((3uλ2  - uα2 - u3 )Cos(hu) + (α2 λ - λ3  + 3u2λ )Sin(hu))  

– (3uλ2  -uα2 - u3)   + (2uλ/α )(λ2 + u2 )2(1 -eαh) ] /D    (2.14B) 
T =  - 2αi[eλh((-2uλ + uα)Cos(hu) + (λ2  - αλ - u2)Sin(hu)) – (-2uλ + uα )   

- (u /α )( λ2 + u2 )2(1 -eαh)]/D    (2.14C) 
When  λ, u, α are simultaneously close to zero, results 2.14A –2.14C, respectively reduce to R(λ, u, α ) = 

h;  S(λ, u, α) = h2 /2 = h2/2! ; T(λ, u, α) = h3/6 = h3/3! and the resultant numerical integrator 2.11 reduces to the form  
    yn+1 =  yn + hfn + h2/2!fn

(1) + h3/3!f n
(2), 

which is the popular Taylor series algorithm of order 3. 
  
3.0 Illustrative examples 
3.1 Consider the system of initial value problem given in the matrix form 

   yY
















−
−−

−
=′ −

−

300

01010

01010
52

25

 such that ( )
















=
1

1

0

0y  

( ) ( ) ,100, ππ== xxfy  when solved simultaneously, componentwisely, the following results are obtained. 

( ) ( ) ( ) ( )[ ] [ ]TxxxT exexexyxyxyxy 350̀510
321 ,100cos,100sin,, −−−−==  

Putting λ = -10-5 = -0.00001,   u = 100, α = -3, h =π, the following tables were obtained 
 

x Theoretical solution Scheme 2.11(New scheme) Fatunla 
0 
π 
2π 
3π 
4π 
5π 
6π 
7π 
8π 
9π 
10π 

0 
0.1260996162891388 
0.2501780688762665 
0.3703112602233887 
0.4844122529029846 
0.5907797217369080 
0.6877176165580750 
0.7736803889274597 
0.8472975492477417 
0.9073958396911621 
0.9530172348022461 

0 
0.1260973663444949 
0.2501767179778298 
0.3702508136156766 
0.4844025119369659 
0.5908155483783548 
0.6877981272298164 
0.7738003121029644 
0.8474498824787009 
0.9075735639928455 
0.9532123111640780 

0 
0.1260995965255349 
0.2501758211271342 
0.3702531962086348 
0.4844052137569985 
0.5908192173469040 
0.6877977485145640 
0.7737995162133360 
0.8474498749136380 
0.9075736957869616 
0.9532134964569742 

 
Table 3.11: For first component y1(x)   
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x Theoretical solution Scheme 2.11(New scheme) Fatunla 
0 
π 
2π 
3π 
4π 
5π 
6π 
7π 
8π 
9π 
10π 

1 
0.9919859170913696 
0.9681348800659180 
0.9288063049316406 
0.8746961355209351 
0.8066381812095642 
0.7257184982299805 
0.6332288384437561 
0.5306450128555298 
0.4196038842201233 
0.3018770217895508 

1 
0.9919859300085195 
0.9681351695535401 
0.9288296841684505 
0.8746915919046277 
0.8065981489172787 
0.7256391963260711 
0.6331018108939643 
0.5304680767972223 
0.4193751775021828 
0.3015915809405487 

1 
0.9919859185503837 
0.9681349636037512 
0.9288291047738156 
0.8746900538198805 
0.8065975206438138 
0.7256366003532041 
0.6331023180485358 
0.5304662731520197 
0.4193715663883311 
0.3015901821144804 

Table 3.12: For second component y2(x)   
 

x Theoretical solution Scheme 2.11(New scheme) Fatunla 
0 
π 
2π 
3π 
4π 
5π 
6π 
7π 
8π 
9π 
10π 

1 
8.039396198000759D-05 
6.463189095029520D-09 
5.196016685492244D-13 
4.177280622238511D-17 
3.358306031041626D-21 
2.699873243371485D-25 
2.170545014962843D-29 
1.744976731744553D-33 
1.402869824370772D-37 

0 

1 
8.048672079973838D-05 
9.922946466605448D-08 
9.276679577168541D-08 
9.276627621185596D-08 
9.276627617008651D-08 
9.276627617008316D-08 
9.276627617008316D-08 
9.276627617008316D-08 
9.276627617008316D-08 
9.276627617008316D-08  

1 
8.018317126529234D-05 
9.920506111642726D-08 
9.276679380978634D-08 
9.276627621169823D-08 
9.276627617008650D-08 
9.276627617008316D-08 
9.276627617008316D-08 
9.276627617008316D-08 
9.276627617008316D-08 
9.276627617008316D-08 

 
Table 3.13: For Third component y3(x)   

 
As a second illustrative example, consider the moderately stiff system, as per Shampine (1975), given by 

the following  initial value problem: 

yY 








−
−−

=′
2000

9.1991.0
 

such that ( ) ( ) [ ]01.0,0,1,20 ∈= xy T .  The theoretical solution is given by relation,  

( ) 






 +
=

−

−−

x

x

e

ee
xy

200

1.0200

 

The following results were obtained with h = 0.001, R = h, S = 0.5h2 and T= (1/6)h3 
 

x Theoretical 
solution 

Scheme 
2.11(New 
scheme) 

Fatunla 

0 
0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.010 

2 
1.818630695343018 
1.670120000839233 
1.548511624336243 
1.448929071426392 
1.367379665374756 
1.300594329833984 
1.245897054672241 
1.201096892356873 
1.164399385452271 
1.134335756301880 

2 
1.818566659031208 
1.670003486466152 
1.548352140577421 
1.448734335561482 
1.367156052587995 
1.300347295414058 
1.245630810156932 
1.200814640435255 
1.164104153952370 
1.134030049606273 

2 
1.819899992474861 
1.671095127556475 
1.549245900651371 
1.449466084455360 
1.367755157970899 
1.300837801371310 
1.246032402440160 
1.201143436379126 
1.164373349349644 
1.134250448124508 

 
Table 3.21: For first component y1(x) 
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x Theoretical solution Scheme 2.11(New scheme) Fatunla 
0 

0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.010 

1 
0.8187307715415955 
0.6703200340270096 
0.5488116145133972 
0.4493289887905121 
0.3678794503211975 
0.3011941909790039 
0.2465969324111939 
0.2018965333700180 
0.1652988791465759 
0.1353352814912796 

1 
0.8186666592800975 
0.6702034726817048 
0.5486520975008471 
0.4491342555633859 
0.3676559280389826 
0.3009471186847341 
0.2463305698032041 
0.2016143250130302 
0.1650037520175571 
0.1350295535294757 

1 
0.8199999927237514 
0.6712951137720276 
0.5495458575747971 
0.4498660044572644 
0.3682550334218862 
0.3014376246419854 
0.2467321620864320 
0.201931209569016 
0.1652729474148305 
0.1352469520427115 

Table 3.22: For second component y2(x) 
 
4.0 Order and local truncation error 
 
  Let V(y(x)) be the operator associated with the integration formula 2.11(new scheme), where 
V(y(x)) = y(x + h) – y(x) arbitrary function y(x) ε c7(s). 

Then the local truncation error Tn+1 at x = xn+1 is given by V(y(x), h) where y(xn) is assumed to be the 
theoretical solution to the initial value problem 1.1.  By using the Taylor expansion of V(y(x),h) about x = xn, with 
the localizing assumption that there is no previous error (i.e yn = y(xn)), the truncation error for the integration 
formula 2.11 is derived thus. 

( ) ( ) L
)2()1(

111 nnnnnnnn TfSfRfyhxyyxyV −−−+=−= +++    (4.1) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )8)2()()(
7

)(
6

)(
5

)(
4

)(
3

)(
2

)(

0
!7

!6!5!4!3!2

hTfSfRfyxy
h

xy
h

xy
h

xy
h

xy
h

xy
h

xhyxy

n

i

nnnn

vii

n

vi

n

v

n

iv

n

iii

n

ii

n

i

+−−−−+

++++++=
 

( )8)2()()6(
7

0
!7

hTfSfRff
h

n

i

nnn +−−−=      (4.2) 

{as the coefficients of h1, h2, h3, h4, h5, h6, vanish, yn =  y(xn)}.  Result 4.2 shows that scheme 2.11 is of order 6. 
 
5.0 Stability considerations 
 
 To solve stiff systems, numerical integrators possessing special stability properties such as A-stability, L-
stability and Ao–stability are required. 
 
Definition 5.1 (Fatunla 1988) 
 A one-step numerical integrator is said to be A-stable, if when applied to the scalar test equation y’ = λy, 
where λ is a complex constant such that Re(λ) < 0, the resultant numerical solution is of the form yn+1 = µ(λh)yn, 
where the stability  polynomial µ(λh) satisfies the inequality lµ(λh)l < 1 ∀ Re(λh) < 0. 
 
Definition 5.2 (Fatunla 1980) 
 A one-step numerical integrator is said to be L-stable, if apart from being A-stable, when applied to the 
scalar test equation y’ = λy, where λ is a complex constant such that Re(λ) < 0, the resultant numerical solution is of 
the form y n+1 =  µ(λh)y’n , where the characteristic equation µ(λh) is such that lim lµ(λh)l = 0, as Re(λh) → -∞. 
 
Definition 5.3 (Fatunla 1980) 
 A numerical integrator scheme is said to be exponentially fitted at a complex value λ =  λo, if when applied 
to the initial value problem 1.1, with exact initial condition, the characteristic equation µ(λh) satisfies the relation 
µ(λoh) = eλoh  

y’ = λy  ( scalar test equation) 
=>  y’n  =  λyn  =>  fn =  y’n  =  λyn  => fn 

(1)  = λyn 
1 = λ (λyn ) = λ2yn  ,and   fn

(2)  =  λ3yn    
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� y n+1 = y n  + Rλ y n  + Sλ2 y n  + Tλ3 y n  = µ(λh)yn   
�  where µ(λh) = 1+ λR +  λ2S + λ3 T. 
� lµ(λh)l < 1 ∀ Re(λh) < 0. 
� Thus scheme 2.11 is A-stable. 
Stiffness parameter imaginary => λ = 0 => 
R(0,u,α,h) = {-2α2/2u3α(u2 + α2)}[- u 3cos(hu) - αu2 sin(hu) + u3  + (u5 / α2 )(1-eαh)] 
    = 1/{u3(u2 + α2) }[ ( αu3cos(hu) + α2u2 sin(hu) – u3 ) –u5(-h-αh2 - α2h3 + ..)]  
    =  h + 0(h) when α = 0 
=>R(0,u,0,h) = h. 
S(0,u,α,h) =  1/{u3(u2 + α2)}[u(1 - cos(hu) )(+ α2   + u2 ] = (1/ u2 )(1 – cos(hu)) whenever α = 0. 
=>S(0,u,0,h) =  (1 – cos(hu))/ u2  
T(0,u,α,h) =  1/{u3(u2 + α2)}[u αcos(hu) - u2sin(hu) - uα  + u3h] 

    =  (-1/u3 )((sin(hu) – uh), whenever α = 0. 
=> T(0,u,0,h) =  (-1/u3)((sin(hu) – uh) 

 
∴ µ(λh)  =  1 + λh + λ2/u2 (1 – cos(hu)) -  λ3/u3(sin(hu) – uh)) 

     =  1 + iuh –1 + cos(hu) +  isin(hu) – iuh = cos(hu) + isin(hu) =  eiuh  whenever λ = iu. 
=>µ(λh) = eiuh  =  e(iu)h  = eλh  . 
This shows that the scheme has an exponential fitness.  
Also lim µ(λh) = 0 as Re(λh) → -∞.  This confirms the L-stability of the scheme as it has been shown earlier that it 
is A-stable. 
 
6.0 Conclusion   
  

In this paper, we developed a numerical integrator of order 6, L-stable and exponentially fitted.  It 
compares favourably with existing methods to address the problem of interest.  In particular, the scheme performs 
better than Fatunla (1980) [4] as evidenced in the two illustrating examples as the integration progresses. 
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