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Abstract

In this paper, efforts are directed towards generating a 2-block 2-point
numerical method for solving the special second order initial value problems of the
form Y" = F(X, Y), Y(0) = Yo, Y/(0) = Yoo .. The scheme so developed, is in the
same line of thought as Shampine and Watts (1969, 1972) [9]; Chu and Hamltion
(1987) [2]; Fatunla (1991)[3]. The scheme is of orders 5/6, zero-stable and
convergent. It isthus possible, with this scheme, to assign computational tasks at 2
pointswithin the block to two different processor s working simultaneoudly.

1.0 I ntroduction

Traditional computers are built on the Von Neumamrdel of computation which is on the concept of a
single central processing unit(C.P.U), which haseas to a linear array of fixed-sized cells, cattezinory.

Due to the fact that modern problems are charaetrby computational complexities that are either
difficult to solve or take unduly long time to selby the Von Neumann model of computation, on aadh and
the recent advances in speed and memory capadtypefcomputers, on the other hand, it has becaoeseary to
modify existing algorithms or develop new algorithito cope with the numerical solutions of the splesécond
initial value problem of the form

Y"=F(X,Y), Y(0)=Y,, Y(0)=Y, Y = F(X,Y), (1.2).

Problems of the form (1.1), wher€ ¥ absent in F, are of interest because they often ocaatétlite
tracking/warning systems; celestial mechanics; mass actiorickinstlar systems, molecular biology and spatial
discretization of Hyperbolic partial differential equationsspatial discretization of infinite dimensional systems.
However, the theoretical solutions of these equations aadlys$ughly oscillatory and so restricts, very severely,
the meshsizdy, of the conventional Linear Multistep Method (LMM)

Za.] yn+j = hzZﬂj fn+] pX O Yn+j (12)
wherey, is the numerical approximation to the theoretical solut{eg) gt x = %, and f, = f(X,, ¥») = V'n.

Several numerical integrators to solve problems characterizeztjimtion (1.1) have been developed.
Prominent among these are Gear (1967,1971); Brown (19%djight (1974); Chawla (1981); Fatunla
(1978,1980,1981, 1988, 1991, 1993); Lambert and Wigt®75); Sharp (1979), who proposed an R-stable Runge-
Kutta-Nystrom mehods.

In this paper, we propose 2-block 2-point numerical integsadf orders 5/6, by extending the ideas in
Fatunla (1991, 1993). The resultant numerical integratussgss the following desirable properties:
€) Zero-stability i.e stability at the origin;

(b) Cheap and reliable error estimates;

(c) Facility to generate solutions at 2 points simultaneously.

(d) Ability to generate higher order schemes with relativelglnstep-sizes than the equivalent traditional
LMM (1.2)
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20 Development of Scheme

Ther-pointk-step block method for the equation (1.1), Fatunla (1g81vas represented by the matrix
difference equation
0=SAy+ WW3BYf,, i =0(1)k (2.1)
where 0, A, BY | arer byr real matrices, ® is an identity matrix of ordarand ym. , fn, arer-vectors such
that Ym = (yn+1- Yo+2s Ynezs coeennnn Wer-15 Yo )

fm = (fn+1, fn+2, fn+3, ......... ,f.'.r 1y fn+|-, ) (22)
In this paper, our focus is ore2,k =2 and s = mr = 2m, while
(i) (i) (i) (i)
po=[® B | po (B B )y g0 2.3)
) ay by by

Assumption2.1

The scheme (2.1) is normalized for easy analysiscansistency of scheme
Let z, = [y(X+1), Y(Xs2) 17 be the theoretical solution of equation (1.1) and le¢isufficiently differentiable.. If
Taylor's series expansion is applied {&)z z(x + jh)andz” (x + jh) and inserted in the linear difference operator

L[z(¥), h]=Z[az(x +jh) —h’B; Z (x+]h)], j= O(1po (2.4),
it follows that
L[z(x), h] == ¢, h' 27 (x) + o(H"Y), v=0(1) (2.5)
where thec,’'s , which are independent pfx),are called error constants given by the relation
C,= (AW [ 5 a—v(v-1)5"%5]1,j=0(1)k, k=2, in this case) (2.6)

Definition 2.1

The order P of the difference operator L in (2.4) and comselyuwof the LMM (1.2) is a unique integer
which is defined by the relations

C, =0 for all v=0(1)P+1andC,., Z0. ..... (2.7)

NOW Vi = (Yns1s Yos2 )T = (Yames Yoms2)', Since in this cas@=mr=2m
=> Y1 = Vamenes Yom-e2)' = Ooms, Yom) - = (s, V)~ Similarly, it can be shown thatn., = (Vo3 ¥ ifm =
(fn+la fn+2)T; fm-l = (fn-la fn)T ; 1:m—2 = (fn-3a fn—Z)T .
Using these last six results in equation (2.1) gives

L0 Vau ) _fan A ) Ve | (B2 &Y Ve, o (B2 BEY fu )L DR FL
0 -Lhy..) (&% allvy, ) (& a?ly. by by L. Nl by LA,
LB B ) (BT B

by by A ) by b L f

which componentwisely can be written as
yn+q = zzaqs(t) Yn+s-2t + hzZqus(t)fms-Zt -5 q =1,2 (2-8)
Caseq=1
Yn+1= a, Vo1t a Yot @ Vo3t a Yot h? [bll(O) fars + D15 foaz + b1y fog + 02D £ + by @ frp + byt
fn-2 ]
Matching with the LMM
Y Y =P XS fojer j = 0(1)mM, M’ =r(k+ 1) - 1 (= 5 = p, in this case) ... (2.9)
It follows thatqo =0, a, = 1, ap = - alz(l) as = - all(l) , ay = - alg(z) , a5 =- all(z
b= b12(0) Bu= bll(O) y Bo= b12(l) Bs = bll(l) y Ba= b12(2) » B = bll(Z)
= ad + a,® + ap® + a,@=1
22,9 + 33, + 43,2 + 53, = 1
)+ by, @ + by® + by ® +b,? +b,@ = 1-4a, - 98,V - 6a,?- 25a,2
) + 2b12(1) +3b11(1) + 4b12(2) + 5b11(2) =1- 8812(1) _ 27&1(1) _ 64312(2) -1 25@1(2)
b1 @ + 4b; Y +9by,® + 16b, P +25b,,® =1 -16a," - 81a,Y -256a,? - 625a,?
)+ 8b,Y +27b,® + 64b,@ +12 5b,? =1 -32a,Y - 2433, -10243,? - 31 253,
)+ 16b, +81by, M + 256b,2 +625b,P = 1 - 64a,Y -729a," - 4096a,? - 156258,%
Setting &" =0 = 3, and h,” =, a free parameter, it was found thas*a= 1.5,a;,® =- 0.5 and thé's are
given as follows:
b, ¥ =37/480 - 5 ; b,V =9/10 =+ a ; b, =37/80 - 1
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a21(2) and 92(0)

b12(2)
Case gq=2
=1, =0, & =-ay® az=

ﬂo bzz(o) b= b21(0)1 b= b

given as follows:

b22(2)

©=21/15-8 ;b = 16/15 + 18 ; by =
=-4/15 + B ;bP= 1158

- a21
,83 b21(1) b= b22 » Bs= b21(2)

Similar but appropriate set of equatlons were obtained fasetbend componentas per above. By settifj a0 =

= B, a free parameter, the following results were obtaiggt = 2, 3,? =-1 and they's are

=1/15 +50 ;b;,?= -1/160 - a

- 322( ), 0’5 =- 321(2)

26/15 - 10

Thus the resultant 2-block 2-point scheme is givethbyrelation

|

. 37/80-10a 9/10+10a
26/15-108 16/15+108
with error constant £= ( 0.00416666667¢ , - 0.06722222223 )".

0 15) (0 -1 o
O 2 ymfl 0 _1 ym*Z
o

from (2.9) in whichr =2, k=2

The scheme (2.10) will be of order 6 i €(0, 0f in which casex = 0.00416666667 artl= - 0.0672222222

while the scheme takes the form

i

0 15) (0 -1 o
O 2 ymfl O _1 ym*Z

37/480-5a «a
21/15-58 S

1/160-a
1/15- 3

1/15+5a
— 4/15+5)) "

0005625 0000417 ¢
180278 -0M06722) "

+[0 (42083 O[94167J +(—0|])1417 —0[0)874Ej J
4

2[40556 003944

3.0

[ustrative example

the matrix form

o

If the theoretical solution of this system of edos is y(x) =[y(x), y2(x) ]".
Y1(X) Al 049987505x+ B.e 0.001
ya(X) = Aze
where A =
A, =-1.00024993 x 10, B, = 2.49937494 x 10
Puttingh = 0.45867(0.5);R=h; S = 0.5R, T = (1/6°

1 0

1
0. 49987505X+ B g

0013389

-0060278 ™*

2000 1?00] g4 [1Jym_2, y(0)=(00)", Ox=0(0r5)5,

-2000. 500125X+
-2000. 500125X 0 001

-5.00249997 x 10, B, = 4.99750002 x 10}

Table 3.01(first component)

(2.10)

Thus it is of order 5, which is also evident

(2.11)

Consider the non-linear system of initial valuelpeon, considered by Liniger and Willoughby, given i

Then

, the following tables were obtained

Theoretical solution

New scheme

Fatunla

0.5
1.0
15
2.0
25
3.0
3.5
4.0
4.5
5.0

6.103806060378229D-04
6.965451636325849D-04
7.636543989523875D-04
8.159223502524445D-04
8.566312526725824D-04
8.883373367077421D-04
9.130316026723283D-04
9.322647175914462D-04
9.472444317943433D-04
9.589113705671485D-04

6.103806060378229D-04
6.966055755021406D-04
7.637616668141930D-04
8.160662248668210D-04
8.568036053137039D-04
8.885318875901718D-04
9.132434436300985D-04
9.324900263326148D-04
9.474802176777583D-04
9.59155318028161D-04

6.103806060378229D-04
6.955916019907959D-04
7.629720119974668D-04
8.154512027013876D-04
8.563245955893255D-04
8.881588111777582D-04
9.129528732616115D-04
9.322637157506769D-04
9.473039557938117D-04
9.590180365795390D-04
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Table 3.02(first component error comparison)

X Errorsin
New scheme Fatunla
0.5 -8.622486946431766D-05 -8.521099595297297D-05
1.0 -6.721650318160805D-05 -6.642684835488185D-05
1.5 -5.241182591443348D-05 -5.179680374900015D-05
2.0 -4.088125506125942D-05 -4.040224533688103D-05
2.5 -3.190063491175894D-05 -3.152755850517581D-05
3.0 -2.490610692235639D-05 -2.461553655386938D-05
35 -1.945842366028648D-05 -1.923211307834861D-05
4.0 -1.521550008631212D-05 -1.503923820236552D-05
4.5 -1.191088623382081D-05 -1.177350478519576D-05
5.0 -9.337091764863173D-06 -9.230170198013823D-06

Table 3.03(second component)

X Theoretical solution New scheme Fatunla
0.5 2.209558701073540D-04 2.211456125614792D-04| 2.195806778159415D-04
1.0 3.932419260601047D-04| 3.933847491036992D-04| 3.921659005532158D-04
1.5 5.274268600283223D-04 5.275330940321029D-04| 5.265837945926828D-04
2.0 6.319366426302199D-04 6.320144694061078D-04| 6.312751079840543D-04
2.5 7.133341039056124D-04 7.133897206896912D-04| 7.128138695268057D-04
3.0 7.767304274127176D-04 7.767687925485174D-04| 7.763202911717866D-04
3.5 8.261066188126192D-04 8.261315500441900D-04| 8.257822349777694D-04
4.0 8.645632372366923D-04| 8.645777091167462D-04| 8.643056452513671D-04
4.5 8.945151797912424D-04 8.945214740043890D-04 | 8.943095772475774D-04
5.0 9.178432269874254D-04 9.178431557845681D-04| 9.176781201335351D-04

Table 3.04(second component error comparison)

X Errorsin
New scheme Fatunla
0.5 -1.897424541252636D-07 1.375192291412420D-06
1.0 -1.428230435945405D-07 1.076025506888893D-06
1.5 -1.062340037806151D-07 8.430654356395104D-07
2.0 -7.782677588783003D-08 6.615346461656636D-07
2.5 -5.561678407880609D-08 5.202343788066342D-07
3.0 -3.836513579977166D-08 4.101362409310576D-07
35 -2.493123157080350D-08 3.243838348497606D-07
4.0 -1.447188005392899D-08 2.575919853252021D-07
4.5 -6.294213146602261D-09 2.056025436649622D-07
5.0 7.120285730379677D-11 1.651068538903016D-07

4.0 Zero-Stability test for scheme 2.10
Definition 3. (Fatunla 1991)

The block method (2.1) is zero-stable, if andyoiflthe roots Rj =1(1k of the first characteristic
polynomial p(R) defined ap(R) — detfAR*' | = 0, satisfies IR < 1, and for those roots with JR= 1, the
multiplicity must not exceed two.

The first and second characteristic polynomialéld?) is given by the relations:

PR =ZaR;  o(R) = ZBR, j=0(1k (4.1)
1 0y (0 15| (0 -05 .
Nowp(R):detRz( j—R{ j—[ J: R'(R*-2R+1)=0 = R=0 (wice) ~ Sscheme
01/ o 2) (o -1

IS zero = stable Since order of scheme =5 > 1, Scheme is consiateho by Dahlquist fundamental theorem
of convergence, scheme (2.10) is convergent (HeR{t€962)[6])
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directly in 2.1, the components of’Bthe following result was obtained.

yo =[O 15), (0
~lo 2)™ o

This is the resultant explicit 2-block 2-point sofe

Suppose scheme is explicit. Then the coeffiaxéhe matrix B” in 2.1 will all be zero. Substituting

-1 -6 -2 -1 12
+h? fo+ f 4.2
_1 jym—z [( 0 8 j m-1 ( O 16) m—zj ( )

It is of order 4 and has error constant C623.0375, -
48.1556). This scheme can easily be used as a prediatscfeme (2.10) which itself can be used as a ciome
This was done in this paper and both schemes apgpied to the test equation y” = - 100y, givert §{a)

=1 andy'(0) =10. The following table illustrates the esse of the Predictor-Corrector concept.

Table 4.1
H Errorsin Point
Predictor Corrector
0.001 -5.006790161132813D-05| -1.43051147609375D-05 | First
-3.70025634765625D-04 | -2.86102294921875D-06 | Second
0.0025| -3.12805175788125D-04 | -8.821487426757813D-05| First
-2.312660217285156D-03 | -1.621246337890625D-05 Second
0.005 -1.249790191650391D-03| -3.523826599121094D-04 First
-9.250164031382422D-03 | -6.532669067382813D-05 Second
0.01 -5.000114440917969D-03| -1.408576965332031D-03 First
-3.700017929077148D-02 | -2.598762512207031D-04] Second
0.025 -3.125000000000000D-02| -8.801937103271484D-03 First
-2.312498092651367D-01 | -1.624584197998047D-03 Second
5.0 Conclusion

In this paper, we developed a family of numericehesnes, particularly 2-block 2-point numerical
integrators of orders 5/6, by extending the idead-atunla (1991, 1993). The resultant numerictdgrators
possess the following desirable properties:

(a) Zero-stability i.e stability at the origin;

(b) Cheap and reliable error estimates;

(c) Facility to generate solutions at 2 points dtameously.

(d) Ability to generate higher order schemes withatively smaller step-sizes than the equivalesditional
LMM (1.2)

(e) Convergent.

In addition, the new scheme compares favourablly thi¢ theoretical solution. Recall that it is @idsble
property for a numerical solution to behave simitathe theoretical solution to a problem at afids. Secondly, it
is more accurate than Fatunla(1991,1993) as thriditive example showed.

The normal approach to implement these schemesaddpt the P(ECE mode for somé& > 1 (ideally,d
< 3). After every integration step ( or attemptg @xploit the error at the immediate past integrasitep to select a
new step size given by the relatiope,j= 0.9* (tolerance/errglj(l’p) * hog , Where p is order of schemegghis the
step size adopted in the last attempt, either eesistul or a failed step ang.f, is the step size to adopt for the next
integration step, tolerance is the specified etotarance while errqr, is the computed error in the last integration
step.
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