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Abstract 

 
In this paper, efforts are directed towards generating a 2-block 2-point 

numerical method for solving the special second order initial value problems of the 
form Y//////// = F(X, Y), Y(0) = YO, Y////(0) = YOO  ..  The scheme so developed, is in the 
same line of thought as Shampine and Watts (1969, 1972) [9]; Chu and Hamltion 
(1987) [2]; Fatunla (1991)[3].  The scheme is of orders 5/6, zero-stable and 
convergent.   It is thus possible, with this scheme, to assign computational tasks at 2 
points within the block to two different processors working simultaneously. 

 
 
1.0 Introduction 
 

Traditional computers are built on the Von Neumann model of computation which is on the concept of a 
single central processing unit(C.P.U), which has access to a linear array of fixed-sized cells, called memory. 

Due to the fact that modern problems are characterized by computational complexities that are either 
difficult to solve or take unduly long time to solve by the Von Neumann model of computation, on one hand , and 
the recent advances in speed and memory capacity of supercomputers, on the other hand, it has become necessary to 
modify existing algorithms or develop new algorithms to cope with the numerical solutions of the special second 
initial value problem of the form 
   ( ) ( ) ( ) ∞===′′ YYYYYXFY 0,0,, 0 Y// = F(X,Y),        (1.1). 

 Problems of the form (1.1), where Y/ is absent in F,  are of interest because they often occur in satellite 
tracking/warning systems; celestial mechanics; mass action kinetics, solar systems, molecular biology  and spatial 
discretization of  Hyperbolic partial differential equations or spatial discretization of infinite dimensional systems.  
However, the theoretical solutions of these equations are usually highly oscillatory and so restricts, very severely, 
the meshsize, h, of the conventional Linear Multistep Method (LMM) 
    ∑ ∑ ++ = jnjjnJ fhy βα 2 ∑ αj yn+j   (1.2) 

where yn  is the numerical approximation to the theoretical solution y(xn) at x = xn  and  fn = f(xn, yn) = y’n.   
 Several numerical integrators to solve problems characterized by equation (1.1) have been developed.  
Prominent among these are Gear (1967,1971); Brown (1974); Enright (1974); Chawla (1981); Fatunla 
(1978,1980,1981, 1988, 1991, 1993); Lambert and Watson (1975); Sharp (1979), who proposed an R-stable Runge-
Kutta-Nystrom mehods. 

In this paper, we propose 2-block 2-point numerical integrators of orders 5/6, by extending the ideas in 
Fatunla (1991, 1993).  The resultant numerical integrators possess the following desirable properties: 
(a) Zero-stability i.e stability at the origin; 
(b) Cheap and reliable error estimates; 
(c) Facility to generate solutions at 2 points simultaneously. 
(d) Ability  to generate higher order schemes with relatively smaller step-sizes than the equivalent traditional 
LMM  (1.2) 
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2.0 Development of Scheme 
 

The r-point k-step block method for the equation (1.1), Fatunla (1991) [3], was represented by the matrix 
difference equation 
  0 = Σ A(i) ym-i  +  h2 Σ B(i) fm-i      , i  = 0(1)k    (2.1) 
where,  0, A(i) , B(i) , are  r by r real matrices,  A(0) is an identity matrix of order r and  ym-i  ,  fm-i, are r-vectors such 
that  ym = ( yn+1,  yn+2, yn+3, ………yn+r -1, yn+r, ) 

fm = ( fn+1,  fn+2, fn+3, ………fn+r -1, fn+r, )       (2.2) 
In this paper, our focus is on r =2, k =2 and so n = mr = 2m, while  
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Assumption 2.1 
 The scheme (2.1) is normalized for easy analysis and consistency of scheme. 
Let zm = [y(xn+1), y(xn+2) ]

T  be the theoretical solution of equation  (1.1) and let it be sufficiently differentiable..  If 
Taylor’s series expansion is applied to z(x),  z(x + jh) and z” (x + jh) and inserted in the linear difference operator  

L[z(x), h ] = Σ[αjz(x + jh) – h2βj z” (x + jh)],  j=  0(1)∞  (2.4), 
it follows that  
  L[z(x), h ] = Σ cv h

v z(v) (x) + o(hq+1),  v = 0(1)q   (2.5) 
where the cv’s , which are independent of z(x), are called error constants given by the relation 
 Cv = (1/v!) [ Σjv αj – v(v – 1) Σjv-2 βj ] , j=0(1)k,  (k=2, in this case)  (2.6) 
Definition 2.1 
 The order P of the difference operator L in (2.4) and consequently of the LMM (1.2) is a unique integer 
which is defined by the relations  

Cv =0 for all v=0(1)P+1 and Cp+2 ≠ 0.  …..    (2.7) 
Now ym = (yn+1, yn+2 )

T = (y2m+1, y2m+2)
T, since in this case, n=mr=2m 

=> ym-1 = (y2(m-1)+1, y2(m-1)+2 )
T = (y2m-1, y2m)T   = (yn-1, yn)

T. Similarly, it can be shown that  ym-2 = (yn-3, yn-2)
T ;fm = 

(fn+1, fn+2)
T; fm-1 = (fn-1, fn)

T ; fm-2 = (fn-3, fn-2)
T . 

Using these last six results in equation (2.1) gives  
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which componentwisely can be written as 
yn+q =  ΣΣaqs

(t) yn+s-2t  +  h2ΣΣbqs(t)fn+s-2t   … , q =1,2     (2.8) 
Case q = 1 
yn+1 = a11

(1) yn-1 + a12
(1) yn + a11

(2) yn-3 + a12
(2)

 yn-2+ h2 [b11
(0) fn+1  + b12

(0) fn+2 + b11
(1) fn-1 + b12

(1)  fn + b11
(2) fn-3  + b12

(1)  
fn-2 ]. 
Matching with the LMM    
∑αjyn-j+r = h2 ∑βj fn-j+r , j = 0(1)m’, m’ = r(k + 1) - 1 (= 5 = p, in this case) …   (2.9) 
It follows that α0 =0,  α1 = 1,  α2 = - a12

(1)  α3 = - a11
(1) , α4 = - a12

(2) ,  α5 = - a11
(2)   

         β0 =  b12
(0) , β1 = b11

(0) ,  β2 =  b12
(1)  ,β3 = b11

(1) ,  β4 = b12
(2) ,  β5 =  b11

(2)  
=>   a12

(1)   +   a11
(1)   +  a12

(2)   +  a11
(2)  =  1 

2a12
(1)   +  3a11

(1)   +  4a12
(2)   +  5a11

(2)   =  1 
b12

(0) + b11
(0) + b12

(1) + b11
(1)  + b12

(2)  + b11
(2)  =   1 - 4a12

(1)  -  9a11
(1)  -  6a12

(2) -  25a11
(2)    

b11
(0) + 2b12

(1) +3b11
(1) + 4b12

(2)  + 5b11
(2)  = 1 - 8a12

(1) - 27a11
(1)  - 64a12

(2) - 1 25a11
(2)       

b11
(0) + 4b12

(1) +9b11
(1) + 16b12

(2)  +25b11
(2)  = 1 -16a12

(1) - 81a11
(1)  -256a12

(2) - 625a11
(2)    

b11
(0) + 8b12

(1) +27b11
(1) + 64b12

(2) +12 5b11
(2) =1 -32a12

(1) - 243a11
(1) -1024a12

(2) - 31 25a11
(2)    

b11
(0) + 16b12

(1) +81b11
(1) + 256b12

(2)  +625b11
(2) = 1 - 64a12

(1) -729a11
(1)  - 4096a12

(2)  - 15625a11
(2)    

Setting  a11
(1) =0 = a11

(2)   and b12
(0) = α, a free parameter, it was found that  a12

(1) = 1.5, a12
(2)  = - 0.5 and the b’s are 

given as follows: 
b11

(0) = 37/480 - 5α  ; b12
(1) = 9/10  = + α  ; b11

(1) =37/80  -  10α   
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b12
(2) = 1/15  + 5α   ; b11

(2) =  - 1/160  -  α      

Case q = 2   
α0 =1,  α1 = 0,  α2 = - a22

(1)  α3 = - a21
(1) , α4 = - a22

(2) ,  α5 = - a21
(2)   

β0 =    b22
(0) , β1 = b21

(0) ,  β2 =  b22
(1)  ,β3 = b21

(1) ,  β4 = b22
(2) ,  β5 =  b21

(2)  
Similar but appropriate set of equations were obtained for the second componentas per above.  By setting a21

(1) =0 = 
a21

(2)   and b12
(0) =  β, a free parameter, the following results were obtained a22

(1) =  2, a22
(2)  = - 1   and the b’s  are 

given as follows: 
b21

(0) = 21/15 - 5β  ; b22
(1) = 16/15 + 10β  ; b21

(1) = 26/15  - 10β   
b22

(2) = -4/15  +  5β    ; b21
(2) =   1/15 -β      

Thus the resultant 2-block 2-point scheme is given by the relation 
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with error constant   C7 =  ( 0.00416666667 - α ,  - 0.0672222222 - β )T.  Thus it is of order 5, which is also evident 
from (2.9) in which r = 2, k = 2  
The scheme (2.10) will be of order 6 if C7 = (0, 0)T   in  which case  α =  0.00416666667 and β =  - 0.0672222222  
while the scheme takes the form 
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3.0 Illustrative example 
 

Consider the non-linear system of initial value problem, considered by Liniger and Willoughby, given in 
the matrix form 

( ) ( ) ( ) ,5500,0,00,
0

1

11

10002000
2 ⋅=∀=
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m  

If the theoretical solution of this system of equations is y(x) =[y1(x), y2(x) ]T.  Then  
y1(x) = A1e

-0.49987505x + B1e
-2000.500125x + 0.001 

y2(x) = A2e
-0.49987505x + B2e

-2000.500125x + 0.001 
where A1 = -5.00249997 x 10 –4, B1 = 4.99750002 x 10 –4  

A2 = -1.00024993 x 10 –3, B2 = 2.49937494 x 10 –7 
Putting h = 0.45867(0.5);  R = h; S = 0.5h2, T = (1/6)h3 , the following tables were obtained 
 

Table 3.01(first component) 
 

X Theoretical solution New scheme Fatunla 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

6.103806060378229D-04 
6.965451636325849D-04 
7.636543989523875D-04 
8.159223502524445D-04 
8.566312526725824D-04 
8.883373367077421D-04 
9.130316026723283D-04 
9.322647175914462D-04 
9.472444317943433D-04 
9.589113705671485D-04 

6.103806060378229D-04 
6.966055755021406D-04 
7.637616668141930D-04 
8.160662248668210D-04 
8.568036053137039D-04 
8.885318875901718D-04 
9.132434436300985D-04 
9.324900263326148D-04 
9.474802176777583D-04 
9.59155318028161D-04 

6.103806060378229D-04 
6.955916019907959D-04 
7.629720119974668D-04 
8.154512027013876D-04 
8.563245955893255D-04 
8.881588111777582D-04 
9.129528732616115D-04 
9.322637157506769D-04 
9.473039557938117D-04 
9.590180365795390D-04 
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Table 3.02(first component error comparison) 
 

x Errors in 
New scheme Fatunla 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

-8.622486946431766D-05 
-6.721650318160805D-05 
-5.241182591443348D-05 
-4.088125506125942D-05 
-3.190063491175894D-05 
-2.490610692235639D-05 
-1.945842366028648D-05 
-1.521550008631212D-05 
-1.191088623382081D-05 
-9.337091764863173D-06 

-8.521099595297297D-05 
-6.642684835488185D-05 
-5.179680374900015D-05 
-4.040224533688103D-05 
-3.152755850517581D-05 
-2.461553655386938D-05 
-1.923211307834861D-05 
-1.503923820236552D-05 
-1.177350478519576D-05 
-9.230170198013823D-06 

 
Table 3.03(second component) 

 
x Theoretical solution New scheme Fatunla 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

2.209558701073540D-04 
3.932419260601047D-04 
5.274268600283223D-04 
6.319366426302199D-04 
7.133341039056124D-04 
7.767304274127176D-04 
8.261066188126192D-04 
8.645632372366923D-04 
8.945151797912424D-04 
9.178432269874254D-04 

2.211456125614792D-04 
3.933847491036992D-04 
5.275330940321029D-04 
6.320144694061078D-04 
7.133897206896912D-04 
7.767687925485174D-04 
8.261315500441900D-04 
8.645777091167462D-04 
8.945214740043890D-04 
9.178431557845681D-04 

2.195806778159415D-04 
3.921659005532158D-04 
5.265837945926828D-04 
6.312751079840543D-04 
7.128138695268057D-04 
7.763202911717866D-04 
8.257822349777694D-04 
8.643056452513671D-04 
8.943095772475774D-04 
9.176781201335351D-04 

 
Table 3.04(second component error comparison) 

 
x Errors in 

New scheme Fatunla 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

-1.897424541252636D-07 
-1.428230435945405D-07 
-1.062340037806151D-07 
-7.782677588783003D-08 
-5.561678407880609D-08 
-3.836513579977166D-08 
-2.493123157080350D-08 
-1.447188005392899D-08 
-6.294213146602261D-09 
7.120285730379677D-11 

1.375192291412420D-06 
1.076025506888893D-06 
8.430654356395104D-07 
6.615346461656636D-07 
5.202343788066342D-07 
4.101362409310576D-07 
3.243838348497606D-07 
2.575919853252021D-07 
2.056025436649622D-07 
1.651068538903016D-07 

 
4.0 Zero-Stability test for scheme 2.10 

Definition  3. (Fatunla 1991) 
 

 The block method (2.1)  is zero-stable, if and only if the roots Rj,j =1(1)k of the first characteristic 
polynomial ρ(R) defined as ρ(R) – det[ΣA(i)Rk-i ] = 0, satisfies lRjl ≤ 1, and for those roots with lRj l = 1, the 
multiplicity must not exceed two. 
 The first and second characteristic polynomials of (1.2) is given by the relations: 

ρ(R) = ΣαjR
j; σ(R) =  ΣβjR

j,  j = 0(1)k   (4.1) 

Now ( ) ( ) (twice)RRRRRRR 0012
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is zero = stable.  Since order of scheme = 5 > 1, Scheme is consistent and so by Dahlquist fundamental theorem 
of convergence, scheme (2.10) is convergent (Henrici, P(1962)[6]) 
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 Suppose scheme is explicit.  Then the coefficient of the matrix B(0) in 2.1 will all be zero.  Substituting 
directly in 2.1, the components of B(0), the following result was obtained. 
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This is the resultant explicit 2-block 2-point scheme.  It is of order 4 and has error constant C6 = (-23.0375, - 
48.1556) T.  This scheme can easily be used as a predictor for scheme (2.10) which itself can be used as a corrector.  

 This was done in this paper and both schemes were applied to the test equation y” = - 100y, given that y(0) 
=1 and y’(0) =10.  The following table illustrates the essence of the Predictor-Corrector concept. 

Table 4.1 
 

H Errors in Point 
Predictor Corrector 

0.001 -5.006790161132813D-05 
-3.70025634765625D-04 

-1.43051147609375D-05 
-2.86102294921875D-06 

First 
Second 

0.0025 -3.12805175788125D-04 
-2.312660217285156D-03 

-8.821487426757813D-05 
-1.621246337890625D-05 

First 
Second 

0.005 -1.249790191650391D-03 
-9.250164031382422D-03 

-3.523826599121094D-04 
-6.532669067382813D-05 

First 
Second 

0.01 -5.000114440917969D-03 
-3.700017929077148D-02 

-1.408576965332031D-03 
-2.598762512207031D-04 

First 
Second 

0.025 -3.125000000000000D-02 
-2.312498092651367D-01 

-8.801937103271484D-03 
-1.624584197998047D-03 

First 
Second 

 
5.0 Conclusion    

 
In this paper, we developed a family of numerical schemes, particularly 2-block 2-point numerical 

integrators of orders 5/6, by extending the ideas in Fatunla (1991, 1993).  The resultant numerical integrators 
possess the following desirable properties: 
(a) Zero-stability i.e stability at the origin; 
(b) Cheap and reliable error estimates; 
(c) Facility to generate solutions at 2 points simultaneously. 
(d) Ability to generate higher order schemes with relatively smaller step-sizes than the equivalent traditional 

LMM (1.2) 
(e) Convergent. 

In addition, the new scheme compares favourably with the theoretical solution.  Recall that it is a desirable 
property for a numerical solution to behave similar to the theoretical solution to a problem at all times.  Secondly, it 
is more accurate than Fatunla(1991,1993) as the illustrative example showed. 
 

The normal approach to implement these schemes is to adopt the P(EC)δE  mode for some δ > 1 (ideally, δ 
≤ 3).  After every integration step ( or attempt), we exploit the error at the immediate past integration step to select a 
new step size given by the relation  hnew =  0.9* (tolerance/errorn )

(1/p) * hold , where p is order of scheme,  hold   is the 
step size adopted in the last attempt, either a successful or a failed step and hnew , is the step size to adopt for the next 
integration step, tolerance is the specified error tolerance while errorn  , is the computed error in the last integration 
step.    
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