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Abstract

In this work, the optimal determination of the perturbation factor (/]) or

perturbation parameter for gradient method is consdered. The spectrum analysis
of the associated Jacobian of the associated matrixas laid the basis for the
judicious selection of the perturbation factor. Nunerical work is carried out to

prove our hypothesis.
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1.0 Introduction

Let us consider the quadratic functidn: IR" — R which is continuously differentiable in some dom&CIR" and
it is assumed thaf assumes a local minimum value B at a pointx[D, where D, is the interior ofD .Now considering

the Taylor's series expansion [31][)(_,1 %(X)T] = f(x)+ﬂ(x)[_,1 ﬂ(X)T)J, 6(1)

ox ox
%(Xl 2+ 9(/1). Where € is the usual Euclidian spacHﬂ || is a norm in€ . It is assumed thgtf—(x) # 0, then

=f(x)-A at

for sufficiently small A >0 we havef(X—Ag—f(x)Tj< f(X). Hence, the gradient method (GM) is defined as the
X

construction of sequenc¥, of points inIR" by the recursion equation.

Xesg = X, —/I%(X)T,k = 01,2,--- We make an initial guessed value )’@[3, pg,345— 29(%. The convergence rate of GM

has been extensively considered but the assoqgmtdslem with the convergence rate of GM is not Istdbr the problems

considered in [3]. Different values ol show different types of convergence profiles. Ehesuld be a situation where by one
of the components of the vector might be convergimgsistently and rapidly, the other componentshitnigt show any pattern

of convergence at all. These are the problems weetrto solve with a view to finding the optimarqimeterﬁ that will make
the convergence rate of the method more stable.speetrum analysis of the control operator A in @@njugate Gradient
Method (CGM) algorithm due to Ibiejugba [2] will leenployed in this study.

2.0 Conjugate Gradient method (CGM)

The conventional CGM was originally developed bgsténes and Stiefel [4] and it was used for quiadrat
minimization. To this end we define quadratic fuoical as:

f (x) =f, +<a, x}H + %(x Ax)H Where A is anNXN symmetric, positive definite operator on the HittepaceH , and A is

vector inH . The steps involved in CGM algorithm are descriasdollows if H = IR"
Step &
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The first elementx, JH of the sequence descent sequence is guessed théhilemaining members of the sequence
are computed with the aid of the formulae.

Step 2
p, ==g, =~(a+ Ax,)
( p, is the descent direction;
g, is the gradient off (x) whenx = x)
Step 3:
Xa =X *ta,p,
. (9,.9,),, |
" (p.AP),
a is the step length.
9.=9 *a AR,
<gi+1’ gi+1>H
(9..9,),
Step 4: ifg, = 0, for somd , terminate the sequence, else set
=i+l
And go to step 3.

R+1:_gi+l+ﬁiF?’ ﬂ:

3.0 Spectrum analysis of GM for quadratic function&
Theorem 3.1

The convergence rate of GM algorithm for quadratic functional remains stable if A :% where mand

M are the smallest and largest eigen values of the control operator A respectively.

Proof:
Recall the problem of the minimization of

f:IR" -~ R Given by
f(q)=f,+(ax), + ¥5(x Ax), (3.1)

where A is annNXN symmetric positive definite matrix and H is a Hitb space. In our own case heéte R".
Differentiate (1.1) to obtain

o) - 4 ax (3.2)
ox
Consider
of (x)'
X = K, _/]% (3.3)
Substitute equation (3.2) in (3.3), to obtain
X, =X —AAx —Aa=(I = JA)x -1 (Aa=A Constant). (3.4)
It has been established [6] that there exists #Hiogonal matrix p which diagonalizes A, i.e.
P*AP=PR. AP = diag(A,/,.......A,) (3.5)
where P™ and P" are inverse and transpose of P respectively.
X, = P, k= 0123.-- (3.6)
Therefore
P..=(1-1A)p, (3.7)

(Without loss of generality the constahtcan be dropped.
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Yo = (I = ApAP)yk = diag{l-AA,,~AA, 1-AA,,-1- A y,) (3.8)
Yhea = (L= A1, )y, j=12-n (3.9)
Thus yie=[-a4 )y, j=12--n (3.10)

Thereforeyki form a geometric progressi%j ,(1—/1/1i )yoj , (1—/1/1i )2 yoj
The rate at which the numbers approach the minimsutependent on

-1 (3.11)
m
- : E(x,) 1_ﬁ
Ibiejugba et al. established the convergence faB as —(—5” < , (3.12)
) 1+$

Where m andM smallest and largest eigen values of matrix A eetipely. Equate RHS of (12) to (3.11) and
simplify. Therefore, we have

m

M -1-a4,
1+
M

-1=-AA, (3.13)
—=A (3.14)
We takeA, =2M (for somgj) and equation (3.14) becomes

A= % (3.15)
Therefore our theorem has been proved.

4.0 Convergence rate of CGM algorithm

To fully understand our numerical work reportedtlie next section it will be necessary to show the
convergence rate of CGM algorithm [2].
Recall the quadratic functional

f(X)=1,+(aX), +}é<X,AX>H Where f, is constant, H is a Hilbert spacéjs a hXn dimensional vector in

H, a positive definite constant matrix operator.

Theorem4.1
The law of convergence of CGM algorithmis given as
l_m 2n
E(Xn)= M E(Xo)'
1+ M

where m and M arethe smallest and largest eigen value of A respectively..

Proof
Define E(X)=%<(X -X) A(x - X)), therefore,

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006)363 - 370
Optimal determination of perturbation J. O. Omolehin, K. Rauf, B. Opawoye and W. B. Yahya



elx)=3{(x-x Jax -x7),

=%<x + A%, AX +AM)), =%<x + Aa, AX + AA™a)

swand), +Linaa),

%<X+A ‘a, AX +a, AX +a)_
1 1
:§<X’AX>H +§<x’a>H
1 1 1,,.. 1 .
- Lx,ax), + e, +haa ax), <1,
1 1 1, ,0- 1, .
:§<X’AX>H +§<X'a>H +§<X AX ’>H +§<A 1a,AX>H
- TR Y
E(x)=F(X)-F +2<x AXC)
F(0-F(
Therefore, E(X) is F(X) plus a constant term, hence the convergenci(xf) is considered instead of that of
F(X) as from now Recall that,
1,5 _1/ .4
E(X)= <X+A a,AX +a) =E<A (AX +a), AX +a)_ —E<A a(x).a(x)),
1 . . 1 . .
Hence, E(Xi) - E(xiﬂ)zi(xi =X A% -x), —§<XM =X X = X)),
But
X.,, =X, +a,p,, therefore

E(Xi)—E(XM)=%<Xi =X AlX, - X)), —%(xi #Xp, =X AXi+a,p, - X)),

=%(xi =X A% -X), —%(xi =X A% -X),
_%ai<pi,A(Xi rap -X), —%ai<xi =X, Ap).

:—%<pi,A(Xi -x'), —%ai<xi - X", Ap), —%a’i<pi,Aa’0po>H
=-a(p. Ax +a), ~5a(p. A ), ~5ai(p.Ap),

1 :
=-a,(p.9,), —Eai<gi,gi> sincea, =

=-a,(-g, +B.p..9), —lai(gi.gi)H =a,(9,,9,), ~a.B.(P19), —%ai(gi.gi)H

=a/g, g|> ( g,), . (since(p,,,g,), =0, orthogonality ofp_, and g,)
1
=O’|<g| g|>H < > Eai<gilgi>H
1 2
2(9 9. becauser, = (9.9) . Hence
“(p.Ap), (p.Ap)
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_ <gi ’ gi>2H E(xi)
E(X., )=
(x.) (p.Ap),(g,A"g),
Using the fact thag, = 5_ p_, — p, we get
(9.A9), =(B.p AlB.PL—P)),

=B (P APL), H(PLAR),
2 < P Api>H , since( P Api,1>H >0 (due to the positive definiteness of operator A),

E(Xi)_

(9.0, 2(P.Ap),
Therefore

(g,.9.)"E(X,)
(9.A9),(9,A%),
But for a bounded self-adjoint operator in a Hittegrace H, Kantorovich established the followingguality

(X, X)" 4mM

(X, AX), (X,A™) *mem )
the spectrum of operator A. using Kantorovich’sjuality we obtain

1_m 2n
e(x.)s M| Elx,)

E(X)-E(X.)=

where Mand M are respectively the greatest lower and least uppends of

This shows the convergence rate of the CGM. {\E M }

In this case A is a matrix operator where m isgimallest eigen value anél is the greatest eigen value.
Note that the convergence rate is just reported faarproper understanding of the paper, it is awat work. Our
own work is reported in main result.

Having reported the convergence rate of CGM allgoriit is the values of m and M we are going to
consider. Observe that the convergence rate of @@ggrithm shows that the method will converge inmatst N
iterations. However, this convergence rate depemdshe initial value. In our work, we determine tHessian
matrix of the problem and subsequently determireddigen values of the matrix operator. These eigdues
together with the initial values will be used irr awmerical example for gradient method.

The numerical work and the analysis of our resuilisbe reported in the next section.

5.0 Main result

Let us consider a particular problem. Observe rietimization of f is the minimization of f .

Problem:
A
x (y 20j[x 2j
+

1+ x+x° 1+ x+x°
(The exact solution to this problemis=  @bd y=10)

Solution: let us compute the Hessian matrix a®fadl:

Maximize f(x,y)=

2 2
ERA (2]
H = ox’ 0X6y :(Hu lej ﬂ: 2 10
o°f 0°f | (H, H,) oy 1+x+x
dyox  ay’
Y1
1-x2)+| y-L | Z-x-x2
PR e ) vl
ox (1+x+x2)2
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_of _of 1 [1_1}_ 2x+1 (“lj[l‘lj . o1 X+ N
27 oxdy  Oyox 1+ x+x | 10] [1+x+x2) 2 10 2T 9y 10 1+x+x z

0*f __ (1+2x) PPVl N5 N N VOV | O P (O ~6(x+x) |_
ox’ 1+ x+x° 10 |1+ X+ X? |Z 20 20 2 i1+ X+ x? 53 "

To determine the eigen value we proceed as follows:

e[
H21 H22

H,-4 H
H, H,-A
= (H1, -A)H,,-A)-H,H,=0

H,H, —A(H, +H,)+ A2 =H,H,=0 P -A(H,+H,)+H H, ~H,H,=0
Leta=1, b=—(H, +H,,),

c=H;Hy, -HyuHy,

ThereforeaA®* +bA+c=0

We can now apply quadratic formula to solve fdr .A program was written in FORTRAN for that

purpose.
In the next section we are going to report andyaeaof our numerical result.

H, = SREL

A

6.0 Numerical Example

We now consider some numerical examples. We argggoifocus on the role played by the choice of the
initial values and the value of . The convergence profile of our minimizing vestavill be given in the table that

follows.
y? 1
- X+ =
X (y 20)( 2)
+

Problem:
1+ x+x° 1+ x+x?
The numerical results are tabulated in table.

(Analytic solution is given as= 05,y =10)

Maximize f(x, y)=

7.0 Analysis of numerical results

Since the convergence rate of the Gradient Metiegbnds on the parametdr and the initial values for
updating of our minimizing vector, it is imperatitieat research should focus emphasis on the opseitattion of
these parameters.

In Tables 1 and 2 in the Table of results, we Hheesame initial values but different valueslofWhen
A = 1.0, the values foK show no sign of convergence but the exact valuy ofias obtained at the 18%eration.

We now make the value ol = 0.5 and the exact value Wf was obtained at the 28iteration and the approximate
value for X is 0.453 instead of 0.5.

Table of result: Summary of convergence profile

Table Initial values Minimizing vector Iteration number
1 X, =10 _

y, =05 X= 155

A=10 y =100 155
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2 X, =10
y. =05 x = 0.453 261
°_ y =999
Table Initial values Minimizing vector Iteration number
3 x, =10
y. =05 X= - 160
o y =100
variable A = 48.9514 160
4 x, =06
y, =1.045499 X flo(')“g o
variable A = 0. 1228 y=25
5 x, =06 x=0.453 106
y, = 1.045499 variable Y~ 999 221
A=05

We now calculated the eigen values of the assatidessian matrix of the problem considered. At each
circle of iteration, the value ofl is re calculated through the Hessian matrix oper#t Table 3 of Table of results
with initial values x, = 1.0and y, = 05 with judiciously varyingA at each iteration, the exact value yf was
obtained at 160iteration with4 = 48. 9514 However, the convergence &f is discouragingly slow.

When our initial guess i, = 0.&ndy, =1. 045499 the exact value ok = 0.and approximate value of
y =999 was obtained at the 75teration. The exact value of =10 was obtained at the 3iteration and the

approximate value for= 048hey are as shown in Table 4. If we look at Tablm the Table of results, it is
observed that both x and y converge but none of thige the exact value. Their values are 0. 458l y = 999

they are acceptable. The valueAfis 0.5 and the values of the initial values age=0 arly, =1. 045499 This
is an interesting result and it is better than Bllisq3] results.

8.0 Conclusion

We have succeeded in making the convergence raterofmethod consistent than Rushell [3] approach
using algorithm generated by Ibiejugba in [2]. Weserved here that the calculation of our pertishaerm (/1) is
still a constant at every iteration. It does ratetinto consideration the individual componenthef vector. Also it
does not address the minimizing vector at eachtiter. All these identified shortcomings will bedressed in our
next work.

Bu and large, this is an interesting result and ketter than Rushell’s [3] results because thesistency
of the convergence rate is more stable.
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