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Abstract 
 

In this work, the optimal determination of the perturbation factor ( )λ  or 

perturbation parameter for gradient method is considered. The spectrum analysis 
of the associated Jacobian of the associated matrix has laid the basis for the 
judicious selection of the perturbation factor. Numerical work is carried out to 
prove our hypothesis. 
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1.0 Introduction 
 

Let us consider the quadratic function RIRf n →:  which is continuously differentiable in some domain nIRCD  and 

it is assumed that f  assumes a local minimum value in D  at a point oDx ∈  where oD  is the interior of D .Now considering 

the Taylor’s series expansion [3]. ( ) ( ) ( ) ( ) ( )λθλλ +

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for sufficiently small 0>λ  we have ( ) ( )xfx
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∂− λ . Hence, the gradient method (GM) is defined as the 

construction of sequence kx   of points in nIR  by the recursion equation. 

( ) L,2,1,0,1 =
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xx
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kk λ  We make an initial guessed value for[ ]293345,,3 −pgxo . The convergence rate of GM 

has been extensively considered but the associated problem with the convergence rate of GM is not stable for the problems 

considered in [3]. Different values of λ  show different types of convergence profiles. There could be a situation where by one 
of the components of the vector might be converging consistently and rapidly, the other components might not show any pattern 

of convergence at all. These are the problems we are set to solve with a view to finding the optimal parameter λ  that will make 
the convergence rate of the method more stable. The spectrum analysis of the control operator A in the Conjugate Gradient 
Method (CGM) algorithm due to Ibiejugba [2] will be employed in this study. 
 
2.0 Conjugate Gradient method (CGM) 
 
 The conventional CGM was originally developed by Hestenes and Stiefel [4] and it was used for quadratic 
minimization. To this end we define quadratic functional as: 

( )
HHo Axxxafxf ,2

1, ++=  Where A is an nxn  symmetric, positive definite operator on the Hilbert spaceH , and a is 

vector inH . The steps involved in CGM algorithm are described as follows if nIRH ≡  
Step 1: 

e
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The first element Hxo ∈  of the sequence descent sequence is guessed, while the remaining members of the sequence 

are computed with the aid of the formulae. 
 
 

 
Step 2 

( )ooo Axagp +−=−=  

( op  is the descent direction;  

og  is the gradient of ( )xf  when oxx = ) 

Step 3: 

iiii pxx α+=+1 ,  

Hii

Hii

i APp

gg

,

,
=α ,  

α  is the step length.   

iiii APgg α+=+1 ,  

iiii PgP β+−= ++ 11 ,   
Hii

Hii

gg

gg
i

,

, 11 ++=β  

Step 4: if 0=ig , for somei , terminate the sequence, else set 

1+= ii   
And go to step 3. 
 
3.0 Spectrum analysis of GM for quadratic functional 

Theorem: 3.1 

The convergence rate of GM algorithm for quadratic functional remains stable if 
M

m=λ  where m and 

M are the smallest and largest eigen values of the control operator A respectively. 
 

Proof: 
Recall the problem of the minimization of  

RIRf n →:  Given by     

( )
HHo Axxxafxf ,2

1, ++=     (3.1) 

where A is an nxn  symmetric positive definite matrix and H is a Hilbert space. In our own case here nRH ≡ . 
Differentiate (1.1) to obtain   

( )
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x
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∂

∂
    (3.2) 
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( )
x

xf
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kk ∂
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Substitute equation (3.2) in (3.3), to obtain  

( ) λλλλ −−=−−=+ kkkk xAIaAxxx 1 ( λλ =a  Constant).   (3.4) 

It has been established [6] that there exists an orthogonal matrix p which diagonalizes A, i.e.  

TPAPP =−1    =AP  diag( )nλλλ ,.......,,     (3.5) 

where 1−P  and TP  are inverse and transpose of P respectively. 

ykk px = , L.3,2,1,0=k     (3.6) 

Therefore 
     ( ) ykk pAIP λ−=+1     (3.7) 

(Without loss of generality the constant λ  can be dropped. 
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The rate at which the numbers approach the minimum is dependent on 

     jλλ−1      (3.11) 

Ibiejugba et al. established the convergence rate of CGM as 
( )
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Where m  andM  smallest and largest eigen values of matrix A respectively.  Equate RHS of (12) to (3.11) and 
simplify. Therefore, we have  
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We take Mj 2=λ  (for some j) and equation (3.14) becomes 

M

m=λ           (3.15) 

Therefore our theorem has been proved. 
 
4.0 Convergence rate of CGM algorithm 
  

To fully understand our numerical work reported in the next section it will be necessary to show the 
convergence rate of CGM algorithm [2]. 
 Recall the quadratic functional 

( )
HHo AXXXafXf ,2

1, ++=  Where of  is constant, H is a Hilbert space, X is a nxn  dimensional vector in 

H, a positive definite constant matrix operator. 
 
Theorem 4.1 

The law of convergence of CGM algorithm is given as  
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where m  and M  are the smallest and largest eigen value of A respectively.. 
 

Proof 

Define ( ) ( ) ( )
H

XXAXXXE ** ,
2

1 −−= therefore, 
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Therefore, ( )XE  is ( )XF  plus a constant term, hence the convergence of ( )XE  is considered instead of that of 

( )XF  as from now Recall that,  

( )
H

aAXaAXXE ++= − ,
2

1 1 ( ) ( ) ( )
HH

XgXgAaAXaAXA ,
2

1
,

2

1 11 −− =++=  

Hence, ( ) ( ) ( ) ( )
HiiHiii XXAXXXXAXXXEXiE *

1
*

1
**

1 ,
2

1
,

2

1 −−−−−=− +++  

But 

iiii pXX α+=+ 1 , therefore  

( ) ( ) ( ) ( )
HiiiiiHiiii XpXiAXpXXXXAXXXEXE ****

1 ,
2

1
,

2

1 −+−+−−−=− + α  

( ) ( )
HiiHii XXAXXXXAXX **** ,

2

1
,

2

1 −−−−−=  

( )
HiiiHiiiii ApXXXpXAp ,

2

1
,

2

1 ** −−−+− ααα  

( )

HiiiHiiiHiii

HooiiHiiiHii
i

AppAppaAxp

pApApXXXXAp

,
2

1
,

2

1
,

,
2

1
,

2

1
,

2

22

**

ααα

αααα

−−+−=

−−−−−=
 

iiiHiii gggp ,
2

1
, αα −−=    since 

Hii

Hii

i App

gg

,

,
=α  

HiiiHiiiiHiiiHiiiHiiiii gggpgggggpg ,
2

1
,,,

2

1
, 1111 αβαααβα −−=−+−−= −−−−  

,,
2

1
,

Hiiiiii gggg αα −= (since 0,1 =− Hii gp , orthogonality of 1−ip  and ig ) 

HiiiHiiiHiii gggggg ,
2

1
,

2

1
, ααα =−=  

Hii

Hii

App

gg

,

,
2

1 2

=  because 
ii

ii

i App

gg

,

,
=α .  Hence  



Journal of the Nigerian Association of Mathematical Physics Volume 10 (November 2006), 363 - 370 
Optimal determination of perturbation J. O. Omolehin, K. Rauf, B. Opawoye and W. B. Yahya   

( ) ( ) ( )
HiiHii

iHii

ii
gAgApp

XEgg
XEXE

1

2

1 ,,

,
−+ =−  

Using the fact that iiii ppg −= −− 11β we get  

( )
HiiiiiHii ppApAgg −= −−−− 1111 ,, ββ   

HiiHiii AppApp ,, 11

2

1 += −−−β  

Hii App ,≥ , since 0, 11 ≥−− Hii App  (due to the positive definiteness of operator A), 

 

HiiHii AppAgg ,, ≥  

Therefore 

   ( ) ( ) ( )
HiiHii

iHii

ii
gAgAgg

XEgg
XEXE

1

2

1
,,

,
−+ ≥−  

But for a bounded self-adjoint operator in a Hilbert space H, Kantorovich established the following inequality 
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This shows the convergence rate of the CGM. {N.B Mm ≤ } 
In this case A is a matrix operator where m is the smallest eigen value and M  is the greatest eigen value. 

Note that the convergence rate is just reported here for proper understanding of the paper, it is not our work. Our 
own work is reported in main result. 
 Having reported the convergence rate of CGM algorithm it is the values of m and M we are going to 
consider. Observe that the convergence rate of CGM algorithm shows that the method will converge in at most n  
iterations. However, this convergence rate depends on the initial value. In our work, we determine the Hessian 
matrix of the problem and subsequently determined the eigen values of the matrix operator. These eigen values 
together with the initial values will be used in our numerical example for gradient method.  

The numerical work and the analysis of our results will be reported in the next section. 
 
5.0 Main result 
  

Let us consider a particular problem. Observe that maximization of f  is the minimization of f− . 
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(The exact solution to this problem is 5.0=x  and 10=y ) 

Solution: let us compute the Hessian matrix as follows: 
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To determine the eigen value we proceed as follows: 
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Therefore 02 =++ cba λλ  
We can now apply quadratic formula to solve for .λ  .A program was written in FORTRAN for that 

purpose. 
 In the next section we are going to report and analyze of our numerical result. 
 
6.0 Numerical Example 
  

We now consider some numerical examples. We are going to focus on the role played by the choice of the 
initial values and the value of λ  . The convergence profile of our minimizing vectors will be given in the table that 
follows. 
Problem:  

Maximize ( )
2
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2 1
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=  (Analytic solution is given as 10,5.0 == yx ) 

The numerical results are tabulated in table. 
 

7.0 Analysis of numerical results 
 
 Since the convergence rate of the Gradient Method depends on the parameter λ  and the initial values for 
updating of our minimizing vector, it is imperative that research should focus emphasis on the optimal selection of 
these parameters. 
 In Tables 1 and 2 in the Table of results, we have the same initial values but different values ofλ . When 
λ  = 1.0, the values for x show no sign of convergence but the exact value of y  was obtained at the 155th iteration.  

We now make the value of λ = 0.5 and the exact value ofy  was obtained at the 261st iteration and the approximate 

value for x is 0.453 instead of 0.5. 
 

Table of result: Summary of convergence profile 
 

Table Initial values Minimizing vector  Iteration number 
1 0.1=ox  

5.0=oy  

0.1=λ  

 
−=x  

 
0.10=y  

 
155 
 
155 
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2 0.1=ox  

5.0=oy  

5.0=λ  

 
453.0=x  

99.9=y  

 
261 
 
261 

 
 
 

Table Initial values Minimizing vector  Iteration number 
3 0.1=ox  

5.0=oy  

variable =λ  48.9514 

 
−=x  

0.10=y  

 
160 
 
160 

4 6.0=ox  

 

variable 1228.0=λ  

 
46.0=x  

0.10=y  

 
91 
91 

5 6.0=ox  

,variable 

5.0=λ  

453.0=x  
99.9=y  

 

106 
221 

 
We now calculated the eigen values of the associated Hessian matrix of the problem considered. At each 

circle of iteration, the value of λ  is re calculated through the Hessian matrix operator. In Table 3 of Table of results 
with initial values 0.1=ox  and 5.0=oy  with judiciously varying λ  at each iteration, the exact value of y  was 

obtained at 160th iteration with 9514.48=λ . However, the convergence of x  is discouragingly slow.  
 When our initial guess is 6.0=ox  and 045499.1=oy , the exact value of 5.0=x  and approximate value of 

99.9=y  was obtained at the 75th iteration. The exact value of 10=y  was obtained at the 91st iteration and the 

approximate value for 46.0=x  they are as shown in Table 4. If we look at Table 5 in the Table of results, it is 
observed that both x and y converge but none of them give the exact value. Their values are 453.0=x  and 99.9=y  

they are acceptable. The value of λ  is 0.5 and the values of the initial values are 6.0=ox  and 045499.10 =y . This 

is an interesting result and it is better than Russell’s [3] results.  
 
8.0 Conclusion 

 
We have succeeded in making the convergence rate of our method consistent than Rushell [3] approach 

using algorithm generated by Ibiejugba in [2].  We observed here that the calculation of our perturbation term ( )λ  is 

still a constant at every iteration.  It does not take into consideration the individual component of the vector.  Also it 
does not address the minimizing vector at each iteration.  All these identified shortcomings will be addressed in our 
next work. 

Bu and large, this is an interesting result and it is better than Rushell’s [3] results because the consistency 
of the convergence rate is more stable. 
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