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Abstract 
 

 In this paper, the eigen values of the associated Hessian matrix of our 

control problem are considered for optimal selection of the perturbation factor ( )λ  

or perturbation parameter for gradient method. The perturbation factor is 
calculated as an n-dimensional vector as against real number. The numerical results 
generated compare favorably with the existing works. 
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1.0 Introduction 
 
 In any numerical method the focal point is the Convergence rate. The researcher will continue to find a 
simpler way to speed up the Convergence. Towards this end, this paper considers the Convergence rate of Gradient 
Method due to Rushell. For detail see [3]. The convergence rate of the method is greatly influenced by the choice of 
the perturbation term( )λ  . Rushell [3] guessed the perturbation arbitrary and the rate of convergence was not 

consistent. In an attempt to solve this problem of inconsistency, he (Rushell) proposed some complicated 
hypothesis. However the problem still remained unsolved. Once the problem of this perturbation parameter is solved 
we are done. The method proposed is very easy to handle. 
 To solve this problem of convergence rate, this work used the principles of the Conventional Conjugate 
Gradient Method (CGM) algorithm to calculate the value of the perturbation parameter judiciously. 

The conventional CGM algorithm was originally developed by Hestenes and Stiefel [6]. The method is 
very easy, elegant and precise. It was developed to handle problems in quadratic form. It has a well worked out 
theory and beautiful convergence profile. That is why some of its properties are being used in this work by the 
author.  
 Let us temporarily confine ourselves to the case when the conjugate gradient method is used for quadratic 
functional minimization.  
We consider a quadratic functional of the form ( ) HH Axxxafxf ><+><+= ,,0   (1.1) 

where A is an nxn  symmetric, positive definite operator on the Hilbert SpaceH , 0f  is a constant and a is a vector 

in H . The CGM algorithm is described as follows: 
If R

nH ≡  

Step 1 
 The first element Hx ∈0  of the descent sequence is guessed, while the remaining members of the 

sequence are computed with the aid of the formulae: 
Step 2 

( )000 Axagp +−=−=          (1.2) 

( 0p  is the descent direction, 0g is the gradient of ( )xf  at 0xx = ) 

Step 3 

Hii

Hii
iiiii pp

gg
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,
,1 αα         (1.3) 



Journal of the Nigerian Association of Mathematical Physics Volume 10 (November 2006), 355 - 362 
Hessian Spectrum to perturbation  J. O. Omolehin     J of NAMP 

(α  is the step length) 
 iiii Apgg α+=+1   (1.4) 
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><=+−= ++

++
ii
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iiii gg

gg
igp

,

,
, 11

11 βββ      (1.5)   

Step 4 
If 0=ig  for some i  terminate the algorithm, else set 1+= ii  and go to step 3.  It has been established in 

[1] that the CGM will converge in at most n iterations. The rate of convergence was given [1] as 
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2.0 Monotonic convergence rate of CGM Algorithm 

The monotonic convergence rate has been established and it will be given here as a theorem. For details see [1]. 
Theorem 2.1 
 Under the conditions of problem (1.1) ehe convergence process of CGM algorithm is monotonic in the 

sense that  
22

1 jiijii xxxx +++ −≤−       (**) 

Proof:  
We know that   ,...1,0,1 =+=+ kpxx kkkk α    (2.1 

from (6) we obtain the following set of equations: 
,0001 pxx α=−  when 0=k  

1112 pxx α=− , when 1=k      

2223 pxx α=−  when 2=k   

LLLL

LLLL

        (2.2) 

,2221 −−−− =− iiii pxx α  when 2−= ik , ,111 −−− =− iiii pxx α   when 1−= ik the addition of the system of equation (2.2) 

yields   ∑
=

=
=−

1

0
0

i

k
kki pxx α      (2.3) 

 In the same manner as equation (2.3) is derived we can easily establish the following relationship:  

 ∑
−+

=
+ =−

1ji

lk
kkiji pxx α     (2.4) 

From (2.6) we have    iiii pxx α+=+1     (2.5) 

Subtracting jix +  from both sides of equation (2.5) we get  

jiiiijii xpxxx +++ −+=− α1       (2.6) 

Henceforth, to conserve space and for notational convenience we shall drop the subscript H on inner product and 
norm symbols: from (2.6), we see that 

22

1 iijiijii pxxxx α+−=− +++ >−<++−= ++ jiiiiiijii xxppxx ,2
222

αα  

>−<++−= ∑
−+

=
+

1222

,2
ji

ik
kkiiiijii pppxx ααα , 

by virtue of (2.4) ><−+−=−= ∑
−+

=
+++

1222

1 ,22
ji

ik
kkiiiijiijii pppxxxx ααα    (2.7) 

To prove our desired result we need to show that  

γααα −>=−<− ∑
−+

=

122 ,2
ji

ik
kkiii ppp      (2.8) 

 
where γ  is a non-negative quantity. Towards this objective, we proceed as follows: 
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From which we can see the recursion relationship 

∑
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,       (2.9) 
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Since 0, >=< ji gg    →= ji a property of inner product.   Similarly,  
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Expression (2.9) can then be written in the following ways 
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which is our contention since, by virtue of equations (1.4) and (1.5) each of the components within the chain 
brackets in (2.11) is non-negative due to the positive definiteness of operator A satisfying (1.3). See Ref.[1]. We can 
then rewrite (2.7) in the equivalent form 
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from where it is clear that: ,
22

1 jiijii xxxx +++ −≤−  which is the desired result. 

We have carefully recalled the Monotonic Convergence property of the conventional gradient method 
algorithm. Based on properties ( )∗  and ( )∗∗  we are going to use spectrum analysis by determining the eigen values 

associated with the Hessian matrix of the problem to consider using Gradient Method. The eigen values will be used 
as perturbation term for our Gradient Method. In this case our perturbation factor will be a vector of n-dimension as 
against real positive number used by Rushell [3]. 
 
3.0 Gradient Method. 
 Let us consider the quadratic function RIRf n →:  which is continuously differentiable in some domain 

nIRCD  and it is assumed that f  assumes a local minimum value in D  at a point oDx ∈  where oD  is the interior 

of D .Now considering the Taylor’s series expansion [3]. 

( ) ( ) ( ) ( ) ( )λθλλ +
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∂
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xf .  Where e  is the usual Euclidian 

space, ⋅  is a norm in . It is assumed that ( ) ,0≠
∂
∂

x
x

f
 then for sufficiently small 0>λ  we have

( ) ( )xfx
x

f
xf T <









∂
∂− λ . Hence, the gradient method (GM) is defined as the construction of sequence kx   of points 

in nIR  by the recursion equation ( ) ,...2,1,0,1 =
∂
∂−=+ kx

x

f
xx T

kk λ   

We make an initial guessed value for[ ]293345,,3 −pgxo . The convergence rate of GM has been 

extensively considered but the associated problem with GM (gradient method) the convergence rate is not stable for 
the problems considered in [3]. Different values of λ  show different types of convergence profiles. There could be 
a situation where by one of the components of the vector might be converging consistently and rapidly, the other 
components might not show any pattern of convergence at all. These are the problems we are set to solve with a 
view to finding the optimal parameter λ  that will make the convergence rate of the method more stable. The 
spectrum analysis of the control operator A in the Conjugate Gradient Method (CGM) algorithm due to Ibiejugba [1] 
will be employed in this study. 
 
4.0  Hessian approach to spectrum analysis of GM for quadratic functional. 

Theorem 4.1 

The convergence rate of GM algorithm for quadratic functional remains stable if 
M

m=λ  where m and 

M are the smallest and largest eigen values of the control operator A respectively. 
 
Proof:  

Recall the problem of the minimization of RIRf n →:  Given by   

   ( )
HHo Axxxafxf ,2

1, ++=     (4.1) 

Where A is an nxn  symmetric positive definite matrix and H is a Hilbert space. In our own case here nRH ≡ . 
Differentiate (1.1) to obtain 

( )
Axa

x

xf +=
∂

∂
      (4.2) 

Consider   
( )
x

xf
Kx

T

kk ∂
∂−=+ λ1      (4.3) 

Substitute equation (1.2) in (1.3), to obtain 

( ) λλλλ −−=−−=+ kkkk xAIaAxxx 1 ( λλ =a  Constant).  (4.4) 

It has been established [3] that there exists an orthogonal matrix p which diagonalizes A, i.e.  
 

e
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APPAPP T=−1  diag( )nλλλ ,...,,     (4.5) 

 where 1−P  and TP  are inverse and transpose of P respectively. 

ykk px = , ...3,2,1,0=k       (4.6) 

Therefore  ( ) kk PIP
f

Λ−=+ λ1      (4.7) 

(Without loss of generality the constant λ  can be dropped. 
( ) =−= −

+ ykpAPIyk

1

1 λ  diag( )nn yλλλλλλλλ −−−− 1,...1,,1 321    (4.8) 

( ) j

o

k

jk
j yy λλ−=+ 11 , nj ,...,2,1=          (4.9) 

Thus  ( ) j

o

k

jk
j yy λλ−= 1  nj ,...2,1=      (4.10) 

Therefore 
j

ky  form a geometric progression
j

oy , ( ) ( ) ,...1,1 2 j

oj

j

oj yy λλλλ −−  

The rate at which the numbers approach the minimum is dependent on 

jλλ−1       (4.11) 

Ibiejugba et al. established the convergence rate of CGM as 
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Where m  andM  smallest and largest Eigen values of matrix A respectively.  Equate RHS of (4.12) TO (4.11) and 
simplify.  Therefore, we have 
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We take Mj 2=λ  (for some j) and equation (4.14) becomes 

M

m=λ          (4.15) 

Therefore our theorem has been proved. 
 
5.0 Main Result 
 

We now make use of these two results of convergence profile of CGM algorithm: 
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 Let us consider a particular problem. Observe that maximization of f  is the minimization of f− . 

Problem:  

  Maximize ( )
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(The exact solution to this problem is 5.0=x  and 10=y ) 

Solution:  
Let us compute the Hessian matrix as follows: 
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To determine the eigen value we proceed as follows: 

Let 
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Let a =1,   b ( )2211 HH +−=  , c 12212211 HHHH −=  

Therefore 02 =++ cba λλ  
We can now apply quadratic formula to solve for .λ  .A program was written in FORTRAN for that 

purpose. 
 In the next section we are going to report and analyze our numerical results. 
 
6.0 Numerical Example 
 
 We now consider some numerical examples. We are going to focus on the role played by the choice of the 
initial values and the value of λ  . The convergence profile of our minimizing vectors will be given in the table that 
follows. 
Problem: 

 Maximize ( )
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Table 1: Summary of convergence profile when λ  is a real number 
 

Case Initial values Minimizing vector  Iteration number 
1 0.1=ox  

5.0=oy  

0.1=λ  

 
−=x  

 
0.10=y  

 
155 
 
155 

2 0.1=ox  

5.0=oy  

5.0=λ  

 
453.0=x  

99.9=y  

 
261 
 
261 

3 0.1=ox  

5.0=oy  

variable =λ  48.9514 

 
−=x  

0.10=y  

 
160 
 
160 

4 6.0=ox  

 

variable 1228.0=λ  

 
46.0=x  

0.10=y  

 
91 
91 

5 6.0=ox  

,variable 

5.0=λ  

453.0=x  
99.9=y  

106 
221 

 
Table 2: Summary of convergence profile when λ  is calculated as a vector 

 
Case Initial values Minimizing vector Iteration Number 

1  

5.00 =y  

Constant ( )λ  

061.0−=x ,   11025.1 −×=xλ  

        11092.1 −×=yλ  

 
105 
105 

2  

5.00 =y  

Variable ( )λ  

5.0=x , 31007.1 −×=xλ  

97.6=y , 21077.6 −×=yλ  

453.0=x , 21075.5 −×=xλ  

0.10=y , 11099.1 −×=yλ  

 
201 
201 

1431 
1431 

 

3 6.00 =x  

045499.10 =y  

Variable ( )λ  

5.0=x , 31006.1 −×=xλ  

0.7=y , 2107.6 −×=yλ  

476.0=x , 5101 −×=xλ  

0.10=y , 2107.5 −×=yλ  

 
183 
183 
2179 
2179 

 
 
7.0 Analysis of numerical results 

Table 1  
Since the convergence rate of the Gradient Method depends on the parameter λ  and the initial values for 

updating of our minimizing vector, it is imperative that research should focus emphasis on the optimal selection of 
these parameters. 
 In cases 1 and 2 in Table 1 we have the same initial values but different values ofλ . When λ  = 1.0, the 
values for x show no sign of convergence but the exact value of y  was obtained at the 155th iteration.  We now 

make the value of λ = 0.5 and the exact value ofy  was obtained at the 261st iteration and the approximate value for 

x is 0.453 instead of 0.5. 

045499.1=oy

045499.1=oy

0.10 =x

02.1=y
0.10 =x
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 We now calculated the eigen values of the associated Hessian matrix of the problem considered. At each circle of 
iteration, the value of λ  is re calculated through the Hessian matrix operator. In case 3 of Table 1 with initial values 

0.1=ox  and 5.0=oy  with judiciously varying λ  at each iteration, the exact value of y  was obtained at 160th 

iteration with 9514.48=λ . However, the convergence of x  is discouragingly slow.  
 When our initial guess is 6.0=ox  and 045499.1=oy , the exact value of 5.0=x  and approximate value of 

99.9=y  was obtained at the 75th iteration. The exact value of 10=y  was obtained at the 91st iteration and the 

approximate value for 46.0=x  they are as shown in case 4. If we look at case 5 in Table 1, it is observed that both x 
and y converge but none of them give the exact value. Their values are 453.0=x  and 99.9=y  they are acceptable. 

The value of λ  is 0.5 and the values of the initial values are 6.0=ox  and 045499.10 =y . This is an interesting 

result and it is better than Russell’s [3] results. 
Table 2 
 In case 1 the perturbation is chosen as a constant vector, that is λ  does not change at each iteration. The 
convergence rate is not interesting at all but in case 2 with the same initial values for our minimizing vectors, with 
variable λ , that is λ  is recalculated at each iteration, the exact value of 10=y  is obtained at the 1431st iteration. 

The value of x  is 0.453.  A close look at case 3 shows more interesting results. The most interesting aspect is that 
all the variables were descending until convergence occurred. The convergence is monotonic. That is the most 
interesting aspect of the work. The monotonicity property of CGM algorithm has greatly enhanced the convergence 
rate of our GM algorithm.  

These results are far superior to Rushell result [3] and my earlier results [5]. A FORTRAN program was 
written for the computation. WATFOR77 was the compiler used. 
 
8. 0 Conclusion 
  

The work considered carefully, the choice of perturbation term ( )λ  judiciously. That is, the penalty or 
parameter perturbation term was calculated at each iteration. That is, at each phase of iteration, the method used the 
current minimizing vector to calculateλ . The convergence rate of the method is far superior to Rushell’s result [3] 
and my earlier result in [5]. The arbitrary selection or calculation of the perturbation term ( )λ  makes Rushell’s work 
tedious and difficult. See [3]. 
 In this approach, the value of the perturbation λ  is very easy to compute. All that is needed to be done is to 
make an initial guess and the method will automatically recalculate the value of the perturbation term at each face of 
iteration and it will update itself automatically. The calculation of the perturbation term was calculated as a real 
number and there is no updating rule. But, in this work, the calculation of the perturbation term is calculated as an n-
dimensional. 
 Finally, the new method is better than the Rushell’s result and my earlier work as evident in the tables of 
values and analysis. 
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