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Abstract 
 

 Time independent flow of fluid between two concentric rotating spheres 
permeated by magnetic filed is studied.  Prevailing mode of heat transfer is 
radiation while optically thin limit case is considered.  The mathematical model of 
the problem with the induced magnetic field is developed and the resulting 
differential equations were solved using perturbed numerical technique.  It is found 
that the magnetic field has no effect on the temperature distribution.  However, 
when the magnetic field is introduced a decrease in velocity is obtained with an 
increase in either radiation parameter or Reynolds number. 
 

 
 
1.0 Introduction 
 
 The problem of heat transfer by free convection in an enclosure is in itself of practical importance.  Such 
problem plays a significant role, for example, in the re-entry problem of intercontinental ballistic missiles.  The 
problem of heat transfer in electrical conducting fluids permeated by electromagnetic fields has also been studied.  
Such studies are of importance in connection with geophysical, astrophysical and engineering problems such as the 
motion of the inter stellar gas, origin of earth magnetism, plasma jet, the design of magneto hydrodynamic (MHD) 
generator, cross-field accelerators, shock tubes & pumps.  The works of the following researches are important in 
the present investigation. 
 Romig [4] presented a comprehensive review of the problem of heat transfer in electrically conducting 
fluids subjected to an electromagnetic filed.  Gershuni and Zhukhovitsky [1] presented an analysis of convection 
flow in a vertical channel when the wall temperature is constant.  Yu [5] extended the work in [1] by considering the 
case when the wall temperature varies linearly with the vertical distance.  The flows in both cases [5] and [1] are 
subjected to a transverse magnetic field. 
 The studies mentioned above, however, do not take into account heat transfer by radiation, which is 
significance when one is concerned with space applications, liquid metal fast breeder reactors and higher operating 
temperature.  Grief et al [8] obtained the solution for the problem of steady radiating laminar convective flow in a 
vertical heated channel.  He adopted a differential approximation for the radiative flux given by Cogley and Vincenti 
[6].  The effect of radiation on magnetohydrodynmic channel flow with heat transfer, however does not seems to 
have received much attention. 
 Viskanta [3] investigated the forced convection flow in a horizontal channel permeated by uniform vertical 
magnetic field taking radiation into account to study the effects of magnetic field and radiation on the temperature 
distribution and the rate of heat transfer in the flow but did not discuss the influence of radiation on the induced 
magnetic field.  Gupta and Gupa [9] considered the effect of radiation on combined free and forced convection flow 
of an electrically conducting fluid inside an open ended vertical channel permeated by a uniform transverse 
magnetic field.  Closed form solutions for the velocity, temperature and the induced magnetic field are obtained 
when the wall temperature vary linearly with the vertical distance.  Recently the effect of radiation on temperature 
and velocity in electro hydrodynamic forth flow process was analysed in [13]. Furthermore, Adesanya and Ayeni 
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[14] also studied radiative effect on hydro magnetic flow of a radiation reacting gas with variable thermal 
conductivity in a vertical channel. 
 In the aforementioned investigations only the physical model consisting of a channel is considered.  
However, a defect in this model is that in most cases an additional assumption of large width of the plates has to be 
made so that edge effects are negligible.  Better models for avoiding edge effects are cylinder and sphere and in fact, 
the best is the sphere. 
 Some researchers such as Bestman [10] considered a steady flow of a radiating gas between concentric 
rotating spheres.  He assumed that the rotational Reynolds number of the flow to be small.  The solution is effected 
by classical perturbation scheme.   Consequences of important radiative effects on the heat transfer characteristics 
are discussed quantitatively.  In this chapter, therefore, the problem of steady laminar convection to magneto 
hydrodynamic flow of a radiating gas between concentric spheres is studied.  Since the problem of radiative transfer 
involves complicated integral expression we shall assumed that the gas is optically thin non-grey and is near 
equilibrium so that Cogley, Vincenti and Gilies differential approximation could be employed.  The temperature of 
the sphere are high enough so that radiation transfer is significant, though, the difference in sphere’s temperature is 
assumed small as in [10] so that the free convection parameter is correspondingly small. 
 The mathematical formulation of the problem, is discussed, this is followed by the perturbation scheme, 
where the leading and higher approximate solution are presented.  Finally the results are discussed. 
 
2.0 Mathematical Formulation 
 
 Considering a static fluid at a given Temperature Ts, density ρs and pressure Ps that is introduced between 
two concentric rotating spheres.  The inner sphere has a radius of r0, rotating an angular velocity of ω0 and maintains 
a constant temperature T0.  While the outer sphere is of radius r1 rotating at an angular velocity of ω1 and is 

maintained at constant temperature T1.  If ( )wr UUU ,θ  are the velocity component and (Hr,  H0, Hw) are the 

magnetic intensity components in the spherical coordinate system (r , θ, w), then for axisymetric motion, the 
continuity equation is 
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The corresponding Navier – Stokes equations are 
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while the magnetic equations are 
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Furthermore, the associated Energy equation is 
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From the above equations 
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µ is the viscosity, Rq
r

 is the radiative flux vector, 
πρ

η
4

1=  is the resistivity, Cρ is the specified  heat at a constant 

pressure, k is the thermal conductivity, U  is the velocity vector field, H is the magnetic vector field. 
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Using these definitions and introducing the following Dimensionless quantities 
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where Gr is the free convection parameter or Grashof number.  Pr is the Prandlt number, Re is the Reynolds number 
and N is the radiation parameter. 
We have 
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Eliminating the terms involving π in equation (2.12) and (2.13) and simplifying gives  
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The corresponding boundary conditions are 
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Thus, equation (2.11), (2.14) - (2.19) subject to (2,20) are mathematical problem to be solved. 
 
3.0 Perturbation analysis of the boundary value problem 
 

These above equations are non-linear and not amenable to analytical treatment. Thus asymptotic expansion 
will be more applicable. For small Re we seek the solution of the form   
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while for θ we have  θ  = θ(0) Re θ(1) (r, θ)  +  h.o.t   (3.3) 
(where h.o.t means “higher order temrs”)..   

Now on substituting (3.1) to (3.3) into (2.11) and (2.14) – (2.19) and collecting terms of the same order we 
have, for 0(1) 
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With the corresponding boundary conditions 0 (1) 
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 Ur  =  0  =  Uθ  =  Hr  =  Hθ  on  r  =  1 
 
4.0 Analytical solution of leading order problem 
  

We notice equation (3.4c) can be written as  
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Solving (33) via series method solution we have 
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which when written as Bessel function becomes 
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where Jn (r) is Bessel function of first kind and Yn (r) is a Bessel function of second kind or order n. 
Now to solve equation (3.4a) we assume this form of solution 
   Uw0 = h0(r) sin θ      (4.5) 
On substituting (4.5) into (3.4a) and solve via series solution we have 
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which gives  
   h0 = A0r + B0r2      (4.7) 
where A0  and B0 are arbitrary constant.  On applying the bounding conditions h0(r) = 1 when r = 1 and h0(r) =  Ω 
when r =  R we have 
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and γ  is an arbitrary constant 
 
5.0 Solution of the Higher Order problem 
  

Solving (3.5) to (3.11) we assume the following 
  Ur1 = f1(r) cosθ;   U01 = g1(r) Sinθ 
  Hr1 = N1(r) Cosθ;   H01 = M1(r) Sinθ 
  Uw1 = h1(r) Cosθ  Sinθ;    Hw1 = K1(r) Sin θ  Cos θ   (5.1) 
  θ1 = Γ1(r) Cos θ 
Substituting (5.1) into (3.5) to (3.11) we have 
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Equation (5.2) to (5.7) are subjected to the following boundary condition 

f1(1)  =  g1(1) = 0; n1(1)  =  m1(1)  =  0 
Γ1(1) = h1(1) = k1  =  0      (5.8) 

f1(R) = g1(R) = 1Γ (R) = h1(R) = k1(R) = 0  

n1(R) = m1(R) = 1 
Equations (5.1) to (5.7) subject to (5.8) are solved numerically using a scheme for solving ordinary differential 
equation in particular Runge Kutta method is adopted here and these equations are reduced to first order O.D.E. 
from second order. 
 
6.0 Discussion 
 
 In the flow of any high temperature gas, the temperature distribution plays a significant role.  However, as a 
result of free convention in the limit of flow, the polar velocities are induced. 
 In the numerical analysis carried out the Prandtl number (Pr) is taken to be 0.71, M = 0.1.  Tables 1 to 3 
show respectively the velocity distribution without magnetic field effect, velocity distribution with the introduction 
of magnetic field and temperature distributions. 
 It was observed from Table 1 that when the radiation parameter N is increased, it causes in general an 
increase in the velocity.  Obviously an increase in the Reynolds number causes an increase in the velocity.  On the 
other hand an increase in the distance between the concentric spheres causes a decrease in the velocity distribution 

From Table 2 it is observed that the introduction of magnetic field causes a decrease in the velocity varying 
all the parameter like radiation parameter, Reynolds number and distances between the spheres as done in Table 1 
Table 3, concerns the temperature distribution.  For the maximum temperature distribution, θ = θ0 +ReΓ1 was used. 
 From the table, it is observed that an increase in the radiation parameter N causes an increase in the 
temperature distribution.  In same way an increase in Reynolds number (Re) causes a sharp increase in the 
temperature.  But an increase in the distance between the concentric spheres causes a decrease in the temperature 
distribution. 
 
7.0 Conclusion 
 
 The steady state magnetohydrodynamic flow of a radiating gas between concentric spheres was studied 
with the view of ascertaining the influence of magnetic field on the velocity and temperature distribution. The 
temperature of spheres is assumed large to allow for radiation while the difference in the temperatures is assumed 
small. The steady flow of the radiating gas between the concentric spheres is discussed under the optically thin gas 
limit. Also, all the physical variables, unlike what we have in [14] are assumed constant. Furthermore, the gas flow 
is not a two-phase flow as the one treated in [13]. 

 The analysis carried out, in the present work, showed that when the magnetic field is introduced a decrease 
in velocity is obtained with an increase in the distance between the spheres. This is at variance with result obtained 
in [10] where it was observed that as the distance between the spheres is increased the velocity increases. The 
difference between the present result and that of [10] can be accounted for by the absence of magnetic field in [10]. 
Similarly, it is further observed, in this present work, that with an increase in either radiation parameter N or 
Reynolds number Re causes a decrease in velocity. Finally, although the magnetic field does not have direct effect 
on the temperature distribution but it causes a reduction in the flow of the gas. 
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3.0 Tables of Results 
 

Table 1: Velocity Distribution without Magnetic Field Effect 
 N =0.2,R=1.5,Re=10 

Uw 

N =0.2,R=1.5,Re=20 
Uw 

N =1.0,R=1.5,Re=10 
Uw 

N =0.2,R=2.0,Re=10 
Uw 

1 
1.1 

0.707106781 
1.543194517 

0.707106781 
1.546823099 

0.707106781 
1.543194527 

0.707106781 
1.185647444 
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 N =0.2,R=1.5,Re=10 
Uw 

N =0.2,R=1.5,Re=20 
Uw 

N =1.0,R=1.5,Re=10 
Uw 

N =0.2,R=2.0,Re=10 
Uw 

1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

2.272835413 
2.933865733 
3.551278754 
4.142076765 
4.717888607 
5.286327705 
5.851568534 
6.415205682 

2.289311813 
2.975204133 
3.6290557754 
4.262787 
4.8752161 
5.448012205 
5.937308034 
6.471343782 

2.272836063 
2.933876833 
3.551343254 
4.142314 
4.71859607 
5.287932705 
5.854981534 
6.421798502 

1.612055608 
2.00817225 
2.388630547 
2.76363838 
3.140450428 
3.524100259 
3.917681266 
4.322839737 

 
Table 2: Velocity Distribution with Magnetic Field Effect 

 
 N =0.2,R=1.5,Re=10 

Uw 

N =0.2,R=1.5,Re=20 
Uw 

N =1.0,R=1.5,Re=10 
Uw 

N =0.2,R=2.0,Re=10 
Uw 

1 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

0.707106781 
1.541003087 
2.26400521 
2.913590883 
3.514400654 
4.08312 
4.631114107 
5.165774205 
5.691085934 
6.221347847 

0.707106781 
1.542440207 
2.271651413 
2.934654433 
3.555301154 
4.144875 
4.701668107 
5.206904205 
5.716343034 
6.369757782 

0.707106781 
1.54100308 
2.264005913 
2.913601983 
3.514465254 
4.0833587 
4.631785607 
5.167378705 
5.694499034 
6.2279400782 

0.707106781 
1.183455999 
1.1610917708 
2.9878974 
2.351752397 
2.70468288 
3.053675978 
3.438052759 
3.757198766 
4.128981828 

 
Table 3: Temperature Distribution 

 
  

N =0.2,R=1.5,Re=10 
θθθθ 

 
N =0.2,R=1.5,Re=20 

θθθθ 

 
N =1.0,R=1.5,Re=10 

θθθθ 

 
N =0.2,R=2.0,Re=10 

θθθθ 

1 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

0.5 
0.577557634 
0.651632176 
0.72326873 
0.793237845 
0.862125214 
0.930798301 
0.999380073 
1.066443866 
1.134787768 

0.5 
0.577829515 
0.653199748 
0.727167506 
0.800540897 
0.873960489 
0.947951566 
1.022958593 
1.099368601 
1.177527259 

0.5 
0.56857816 
0.636157895 
0.703379685 
0.765823123 
0.83832603 
0.907887148 
0.978219093 
1.050152545 
1.12395958 

1 
1.128059459 
1.253612561 
1.37767484 
1.501013675 
1.624228089 
1.747788043 
1.872066171 
1.997351176 
1.123851258 
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