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Abstract 
 

The solution of a boundary layer flow problem often neglects the effects of 
viscous dissipation.  However, the present treatment incorporates these effects with 
a view to assessing their global contributions to velocity and temperature 
distributions in the flow field.  Hence, fluid motion induced between two 
differentially heated concentric elliptic cylinders is investigated under transient 
condition and significant viscous dissipation.  When the temperatures of the 
cylinder are large enough for radiative heat transfer to be significant.   The solution 
approach is via an explicit finite difference algorithm on a PC 1512 micro-computer.  
The numerical results obtained for the two cases show that the velocity and the 
temperature of the fluid are increased as a result of increase in thermal internal 
energy of the fluid caused by viscous dissipation. 
 

 
1.0 Introduction 
 
 The problem of radiative transfer is of importance in temperature phenomena prevalent in hypersonic 
flight, liquid metal fast breeder reactors, re-entry, problems, just to mention a few.  Little attention has been devoted 
to the effects of viscous dissipation in flow problems as most flow situations considered do not warrant the retention 
of dissipation term in the energy equation. 
 However, the influence of viscous dissipation on momentum and energy transport may be quite significant 
when the stream velocity of the fluid flow is very high.  In particular, viscous dissipative effects play an important 
role in natural convention flow fields of extreme size or extremely low temperature or in high gravity which are 
various situations prevalent in physiology and engineering.  Notable workers in this area of investigations include Y. 
Joshi and B. Gebhard [4].  D.L. Turcotte, A.T. Hsul, K.E. Torrance and C. Schubert [5] to mention a few. 
 The present work therefore studies the influence of viscous dissipation on laminar convention flow of a 
radiating gas between two vertical concentric elliptic cylinders. 
 Two cases considered in this work are: 
(i) Optically thin and  
(ii) Thick gas limits 
 A finite difference algorithm is developed for the cases since the resultant equations are not amendable to 
analytic treatment. 
 
2.0 Mathematical Formulation/Problem Formulation 

 
In this section, we consider unsteady, incompressible, induced flow between two differentially heated 

concentric elliptic cylinders of infinite.  The semi-minor axis of the inner cylinder is denoted by  
 

_________________ 
*Corresponding author. 

 



Journal of the Nigerian Association of Mathematical Physics Volume 10 (November 2006), 299 - 304 
Viscous dissipation  R. O. Oladele, J. A. Gbadeyan and O. A.Taiwo  J. of NAMP 

the length L0 (say), while the semi-major axis or the same cylinder is denoted by the length′L0 .   The semi-minor 

axis and the semi-major axis of the outer cylinder are denoted by the length L1 and ′L1 respectively. At time  ′ <t 0, 
the cylinders are maintained at a fixed temperature T0 (say) for equilibrium conditions to prevail.  At time ′ =t 0, 
the outer cylinder is raised to a temperature T T1 0= + γ .   This analysis assumes that T1  and T0 are sufficiently 

large enough for radiative heat transfer to be significant.  If we consider the asymptotic flow (i.e flow parallel and 
uniform at far distance from the origin), then for the axisysmetric problem the velocity and radiative flux 
components in the elliptic cylindrical coordinates  ( , , )′ ′ ′r v w  are given by  ( , , ) ( , , )0 0 0 0′ ′V and qw r  

respectively. 
Thus, if we denote the temperature of the fluid by T, the scale factor  hr  the fluid pressure by p, the thermal 

conductivity by k, the gravitational acceleration by g, the heat capacity by Cp, the fluid density by ρ , the fluid 

viscously by  a  and we further assume that the only force acting is the body force, the equations of momentum and 
energy under the usual Boussinesq approximation can be written as: 
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 The subscript 0 refers to the conditions in the static fluid at time ′ <t 0 .  When  γ  is small, the radiative 

flux term in (2.1) may be replaced by the optically thin gas approximation as given by Cogley,  Vicenti and Gilles 
[8]..  That is: 
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where the subscript w denotes condition at a wall  λβ and a  denote frequency, plank’s function and absorption 

coefficient respectively. 
When γ  is arbitrary, we adopt the Rosseland differential approximation for optically thick grey gas given by: 
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where,  δ  is the Stephan –Boltzman constant and  a  is the absorption coefficient. 
 To expedite analysis, we now introduce the following non-dimensional qualities. 
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Here, is the kinematic coefficient of viscousity, Gr is the free  convection parameter or Grashor number, Pr is the 
Prandtl number, N is the radiation parameter and the subscript 0 is N corresponds to condition at the inner cylinder. 
Thus, making use of (2.5) in (2.1), (2.2) and coupled with the introduction of  ′hr  = a sinhr we obtain: 

(2.4) 

(2.4) 
(2.5) 
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and similarly, we obtain: 
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3.0 Solution Techniques Algorithm 
  

In this section, we consider a forward finite difference technique in time and a central difference in space, 
also denoting time by superscript j and position by subscript i , then provided the higher order derivatives are not 
considerably large.  In order to solve equations (2.6) and (2.7), a reasonable approximation of the form: 
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are used for optically thin problem with the following  conditions: 
 θ(i , 0)  =  θ(i0, j) 
 θ(i , j)  =  I 

 0),( 1 == jivv ww
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Also, for an optically thick problem, a reasonable approximation to solve (1.6*) and (1.7*) simultaneously are of the 
form: 
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are used for optically thick problem with the following conditions 
 θ(i , 0)  =  θ(i0, j)  =  1 
 θ(i1 , j)  =  θ1        (3.6) 
 Vw(i, 0) = Vw(i0 , j)  =  Vw(i1 , j)  =  0 

where 
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3.0 Numerical Result 1 
 
 In this section, we give the results obtained using the solution techniques algorithms for solving optical 
thinness problem with the following constants. 
(i) k  =  0.0104  (ii) Pr = 0.71 (iii) T1 = 227 
(iv) T0 = 225   (v) a = 1.0  (iv)  r0 = 1.0 
(vii) N = 0.5   (viii) Gr = 5  (ix) t = 0.0056 
 
Temperature and Velocity Distribution for Optical Thinness Problem 
 

Position(r) Temperature(θθθθ) Velocity(Vw) 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

0.0 
0.130719644 
0.225455135 
0.319637038 
0.415009183 
0.511311277 
0.608315154 
0.705848915 
0.804689542 
0.982777945 
1.0 

           0 
2.98847 x 10-3 

5.76209 x 10-3 

8.52150 x 10-2 

1.12880 x 10-2 

1.40607 x 10-2 

1.68381 x 10-2 

1.96188 x 10-2 

2.23960 x 10-2 

2.4984 x 10-2 

         
 0

 

 
 

Position(r) Temperature(θθθθ) Velocity(Vw) 
1.0 
1.1 
1.2 
1.3 
1.4 

0 
0.136473938 
0.230101929 
0.323314628 
0.417946324 

0 
3.02378E  - 03 
5.79285E  - 03 
8.54596E  - 03 
1.13075E - 02 
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1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

0.513668338 
0.610213564 
0.707386512 
0.806235998 
0.998526143 

1 

1.40763E - 02 
1.68507E - 02 
1.96289E - 02 
2.24064E - 02 
2.50885E - 02 

0 

 
Table: 2 µµµµ  = 7.50, v = 5.00 

4.1 Numerical Result 2: 
  

Here, we present the results obtained when our solution techniques algorithm is employed for solving 
optically thick problem with the following constants. 

(i) t  =  0.00294  (ii) k = 0.0104 (iii) P1 = 0.71 
(iv) T1 = 227   (v) T6 = 225 (iv) (iv)  a  =  1.0 
(vii) τ0  =  1.0   (viii) N  = 0.5 (ix) (ix) Gr  = 5 
 

4.2 Temperature and Velocity Distribution for Optical Thinness Problem 
 

Position(r) Temperature(θθθθ) Velocity(Vw) 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1 
8.01138725 
12.4253219 
16.1758781 
17.3509248 
12.3837787 
6.13788653 
3.915149 
3.18813422 
2.63733663 
         5 

          0 
2.40193 E - 02 
3.23450 E - 02 
3.43331 E - 02 
3.21236 E - 02 
2.77051 E - 02 
2.40230 E - 02 
2.18423 E - 02 
2.02551 E - 02 
1.78150 E - 02 
            0 

 
Table: 2 µµµµ  = 7.25:  v= 4.75 

 
Position(r) Temperature(θ) Velocity(Vw) 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1 
8.05604208 
12.4859803 
16.2579069 
17.4352455 
12.421119966 
6.14218136 
3.91540058 
3.18852044 
2.6391788 
         5 

          0 
2.40732 E - 02 
3.23786 E - 02 
3.43560 E - 02 
3.21359 E - 02 
2.77085 E - 02 
2.40230 E - 02 
2.18424 E - 02 
2.02558 E - 02 
1.78205 E - 02 
           0 

Table: 4 µµµµ  =  14.50, v  =  9.50 
 
5.0 Conclusion 
  

Results at various dynamic and kinematic visciousities are presented in tables 1 to 4. The radiation 
parameter N and Grashof number Gr both assumed constant values 0.5 and 5 respectively in all cases.  It is 
obviously clear that a slight increase in viscous dissipation (i.e dynamic viscousity and kinematic viscousity) leads 
to corresponding increase in both temperature and velocity of the fluid in the case of optical thinness problem.  
While an appreciable increase in viscous dissipation leads to a slight increase in  both temperature and velocity of 
the fluid, for optical thickness problem. 
 From the result of the present analysis, it is evidently clear that viscous dissipation causes local temperature 
and velocities to increase throughout the flow region.  Emphatically speaking viscous dissipation causes the thermal 
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internal energy of the fluid to increase throughout the flow region, and thus acts essentially as a heat generating 
source.  In fact, viscous dissipation inhibits heat transfer from the hot wall.  In all the numerical discussions in this 
paper, the prandtl number Pr. is taken as 0.71, which corresponds to that of air.  The other quantities N. Gr. K . . .  
etc. are chosen to simulate physically realistic situations. 
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