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Abstract

The curve fairing problem has seen many innovationsespecially in
Computer-Aided Design (CAD) applications where prodct design depend largely
on aesthetic, producibility and functional requirements. A major factor for
evaluating these requirements is the geometric faiess of the product being
modelled. This paper addresses the geometric fairgnproblem in which we model
the shape of the product using Non Uniform RationalB-Splines (NURBS). The
concept of curvature plot is used to interrogate tb curve for defects and the
corresponding knot and weight (at the defective ragns) are sequentially modified
in a sense that a fair curve ultimately results. Fially, results of our implementation
are presented to show the validity of the proposescheme.

Keywords: NURBS, virtual array, convexity, knot vector, horeogous coordinate
vector, inflection point, curvature discontinuity, curve fairing.

1.0 Introduction

As a result of high customer awareness in addttoinequently varying expectations, there is thechéor
product developers to keep abreast with the curremd to produce customer compliant products.oriter to
satisfy the need for products to assume complegeshashape (curve) optimisation techniques like Noiform
Rational B-Splines (NURBS), has emerged. With teeetbpment of high-speed computers, form desigraépect
of product design that examines the shape and egrpEaof a product) has become an essential prbogeafich
the producibility, aesthetic and functional chaesistics of a product are investigated. Typicalltich
characteristics may include the hydrodynamic prigeiof a car body, an aeroplane fuselage or atslilpamong
others. It is practically possible to improve oeda properties, if the designer is able to modelothject correctly
using its geometric (curve and surface) representat This has motivated the field of geometric elbadg.
Geometric modelling is a wide field of study andludes 2D and 3D geometry, wire frame, surface soldl
modelling, and parametric, variational and relalogeometry etc. An important requirement in geoimet
modelling of a product is its geometric fairneshisTcharacteristic can be investigated by modelthey product
surface. The surface of a product may be viewed ast of smoothly attached patches derived by ktelded
intersecting curves. The fairness of these cursdsased partly on the subjective judgement of #sgther and
partly on the current situation in which the desigis working. However to ensure that products nteetr
aesthetic, producibility and functional requirenseriheir geometric representations should be ffedl ainwanted
features [1] which may exist as cusps, inflectiomfs, wiggles and excessive flat regions etc.

The vast research work that has been performedrsim the curve fairing environment may be grouped
into two categories, namely: local fairing and glbfairing. Local fairing is the process by whialcurve is made
subjectively better in a sense that only those segsnof the curve that contain unwanted featuresvadified and
as a result the curve becomes optimum and feasitdey where. In global fairing, a curve is fairddlglly based
on the assumption that every segment of the cuamebe potentially made better. The disadvantaghisfstrategy
is that some initial good features may be lost. sThthe resulting curve is optimum everywhere but mat
necessarily be feasible everywhere. In
practical terms, it could therefore be inferredheiit much loss of generality that the former schenobaracterized
by a more even trade-off (between aesthetics anctifinality) while the latter is characterized bytitted trade-
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off” (between aesthetics and functionality), instikese more in the aesthetic direction. We theseah this paper,
adopt a local fairing strategy in which the defeeticurve segment(s) is/are identified using thevaturre plot
concept and subsequently modified using a nonlinpimization technique [2].

Non Uniform Rational B-Splines (NURBS) presentatiman be found in several computer- aided design
(CAD) and computer graphics (CG) literatures. Regard Adams [3] gave a detailed mathematical ptasen of
B-spline curves and surfaces, generally while Buegel Gillies [4], and Watt [5] gave a rather deetitheoretic
presentation. Chalmovinsky and Juttler [6] devetbpesthods for the variational design of algebraioses based
on geometric criteria such as elastic bending snefdiey formulated the fairing problem as a corisad
optimization problem and used the Sequential QuimdRrogramming (SQP) technique to attack the pmoblin
Huang et al [7] an algorithm for raising the degodeB-splines was proposed. The algorithm was basefirst,
computing derivatives from control points, nextpkmector re-sampling and finally, computing newtrol points
from derivatives. Goldenthal and Bercovier [8] attuced a novel method of unified optimal controkoknot
vectors of non-uniform B-splines, which was appliiedcases that violate the Schoenberg-Whitney ¢iomdi
Poliakoff et al [9] proposed an automatic algoritfonfairing B-spline curves. Their formulation was extension
of the Kjellander's algorithm (which was used tguati"bad" data points on a uniform parameterizede so as to
create a jump of the third derivative of the cuatehe point to be equal to zero). Hahmann [10ppsed a local
method for automatic fairing of bi-cubic B-splinarfaces. In this method, a local fairness criteritatects the
region where the spline needs to be faired and@dhé&ol net is modified there. Eck and Hadenfeld] [iroposed a
local fairing technique for automatic fairing of$pline curves based on minimizing me integral ef squared”
derivative of a given curve interactively by chamgia single control point where the highest improgat of the
energy integral is to be expected in every stepretbm and Sequin [12] applied nonlinear programnt@aniques
to minimize a fairness functional based on cunettariation. Liu et al [13] employed a constrairsedoothing B-
spline curve fitting technique for mesh curvestaps by minimizing energy functional as fairnessnme Nowacki
et al [14] presented an approximation scheme basedhinimization of the strain energy sum of mestedi and
potential energy of strings attached to the datatpoMcCallum and Zhang [15] proposed an autongtioothing
algorithm based on B-spline curvature property @&adapplication in ship design. Pigounakis and kakl6]
presented an automatic fairing scheme for fairingic parametric B-splines under convexity, tolemand end
constraints. In Juhasz and Hoffmann [17], and Speaf [18], a geometric approach to curve fainvap presented
such that the knot vector placement problem is idensd a non-optimization problem. In Renner ef18], a
genetic algorithm approach was used to optimizekiize vector. Sapidis [20] proposed an automatiorthm for
fairing B-spline curves using uniform and non-unifoparameterized knot vectors. His key idea isatothe curve
at the knot value that corresponds to the highesstature discontinuity. This knot is known as ttigending knot
and is faired first. Aszddi et al [21] presenteflldRBS fairing algorithm based on knot vector optiation. The
approach used in their work is to optimize the kmettor by the method of simulated annealing st the
process tries to find the knot value for which tulity of the curve is optimum. In a practical senthe method of
simulated annealing is based on the metaphor ofttiding process of a material composed by pagiclhe
inherent problem in this technique is that if coglis allowed to proceed too fast, the algorithny méss the global
minimum and end up in a local minimum. Alternatefythe rate is slow, then a global minimum is vegssible
though this will increase computation time. Theswafor this behavior can be explained thus (O#ed van
Ginneken [22]): minimum energy states are callemligd states in condensed matter physics thoughriexgras
showed that an extremely low temperature does unatagtee that a system is in its ground state agecto that
state. A technique called annealing was therefereldped to bring a substance into one of its glosmates. It
starts from a state in which the substance is oheltben the temperature is slowly lowered, slowlpugh to keep
the system in a state of quasi-equilibrium. Whentdmperature is lowered too fast, the resultiygtat may have
many defects, or even lack all crystalline ordes. apply this concept in simulation and modellingcafves, a
trade-off between fairness and computation timetbide made. This paper features an automatic sefi@nfairing
NURBS curves. Our work uses the Sapidis [20] detefor identifying defects in the curve segment.rOu
contributions include: (a) the developmentaohovel but simple method foomputing both the rational B-spline
functions and the parametric curve in each segraauit(b) the extension of Sapidis fairing critédahe seemingly
complex NURBS, where we optimize the homogeneousdioate vector in addition to the knot vector. The
presentation here includasovel but simple approach tmwmputing the rational B-spline basis functioBsction 2
is focussed on NURBS formula. . Bection 3 details of the fairing scheme are presentgekction 4features
examples and results, while conclusions and futumé are presented fBection 5
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2.0 NURBS Formula

NURBS stands for non — uniform rational B-splin€key are equations used to define curves or swgface
that simulate the designer’s pattern in terms iffnstss and continuity [23]. In other words a NURB&ve is a
rational B-spline curve that is defined over a nmiform knot vector. For over two decades ago, NSRB] has
been used as an initial graphics exchange staqtais) through which interchange of design data barmade
between two CAD systems or between CAD and CAMesyst NURBS has been well known and used as a
versatile tool in shape modelling due to its matagcal capability to represent all types of curvelgnes, conic
sections and free-form shapes. It is thus regaeded unified surface geometry. NURBS curves argnpahials,
which are smoothly joined together by knots. Theveuhas a non — decreasing knot vector, a homogeneo
coordinate vector and rational B — spline basiscfions. Each weight in the homogeneous coordinatdov is
attached to a vertex point. These weights affecstiape of the curve locally in the vicinity of trertex point.

A cubic NURBS curve may be defined parametricaiiytie equation:

ci)= j B R¥(t) (2.1)

k 2.2

R =N (2.2)
2 ANF®

B, =[BXi B,i] = control points

h = weights
t = curve parameter
N/ (t) = B-spline basis function

R¥(t) =Rational B-spline basis function

In this paper, we present a novel but simple apggrdar computing the parametric NURBS curve. The
approach here is based on the concept that the ¢aimade up of smoothly joined segments; whichieapghat it
is piecewise continuous. To exploit this conceptoampute each segment of the curve and sum thellisagetely.

A NURBS curve of ordeK defined byn+1 control points has the following primary charaistes:

Propertyl
There are a total ofi + Kk +1 knots for whichn—k +1 of the knots are interior and “controllable” or

“active” knots, leavingk -multiplicity of knots at both ends of the knot t@cas “uncontrollable” or “passive”
knots.

Property2
The number of curve segments which make up theedsrgiven by the expressiowW=n—K + 2.

Property3
The basis function dependencies for the curve imendy the array:

NS Nf .. N

n+l

NSNS L NS

n+2

NS NI .. .o N?
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2.1 Forming Virtual Arrays

The basis function dependenciefimperty 3above are decomposed inte numbers ofk XK “virtual
arrays” as follows:

1% virtual array (segment 1, w = 1):

Summarily, the above formulation shows that, fouave ofw segmentsy+1 control points and ordér
virtual arrays are possible from= 1 tow = n-k+2 and may be recursively computed from omlerl toc = k.
Hence thev"virtual array may be de fined as:

k k
NE NK.
1 1
ND N

2.2 Computing B-spline basis functions

The B-spline basis functions in each segment amgpoted based on the following rules:
Rulel

Locate the element Iabelleliil\}wk_1 in each virtual array and assign it a value 1.

Rule2
Perform a hill climbing motion?(, —, 1, — etc) starting at positiorii\l\}wk_1 and stopping at positioNV'f,.

For instance, considering a fourth level curve v control points, the following could be derivéat its 2™
virtual array:

n+l1=6

w=2

hencec=1 to c=4
w+k-1=2+4-1=5
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In this sense th2" virtual array becomes:
T N, Ng N, Ng

N3 N3 N NS
N2 N2 N? NZ

N3 N: N; TN;
Rule 3

Assign a value of zero to all elements on thedéthe hill-climbing boundary and outside the ranghile

elements on the right of the hill-climbing boundarg computed using the Cox-de Boor formula:
NK(t) = (t=x)N + (X —ONSD) (2.3)
Xi+k71 - X1 )g+k - Xi+1
For instance, in the" virtual array of a cubic NURBS curve defined by six control fisjrthe computation of

NZ(t) may result in the terdN; (t) . Obviously, this latter term is outside the rangehis virtual array and must
therefore be assigned a value of zero. Terms ssidd/t) , N2 (t), NZ(t), Ni(t), Ni(t) and N3(t) must
all be assigned a value, 0 aNd(t), NZ(t), N2(t), N2(t), N3(t), NJ(t) , Nj(t), N2(t) and N;(t)

are computed using equation (2.3) above.
Rule 4

0
Any computation using equation (2.3) that resuﬂtsdi must be assigned a value of zero.

2.3 Computing rational B-spline basis functions

The rational B-spline basis functions that defiaeresegment are computed using only those elenrents
the top row of the corresponding virtual array.
Generally, for an arbitrary segment,
RE()=_hNS() (2.4)

w+k-1
2 NS (1)
I=w
NURBS contains an additional blending tool called homogenous coordinate vector. It is a row vector
containing values called weights, each attachedal tertex point. In specifying the homogenous cowtdi vector,

the external Weightslﬂi and hn+1 are each assigned a value, 1 while the interidghwe may be intuitively assigned

values in the range 0 to n+1. Although each comoiht has an attached weight, the amount of chantfee shape
of the curve cannot be precisely predicted by #er.uTo ensure controllability of the curve whemgswveights, we

intuitively recommend the range 0.25hi <1

3.0 NURBS fairing

This paper adopts a local faring strategy to corb® shape of the curve. This strategy recommémeats
the curve be modified only at “defective segmeni&). achieve this objective the curvature plot of tturve is
investigated and all defects in the curve are ifledt To identify defective segments, we investigehe behaviour
of the curve from one knot to another, along thereuSince the knot vector defines how the polyradpieces are
blended together, a slight change in the valuelafa will have a significant effect on the shap¢he curve in that
vicinity. For this reason, the behaviour of thevauwith respect to the knots can better be predlibteconsidering
the knots. We therefore use a scheme that expbsatefective segments as we investigate the cuovwe dne knot

Journal of the Nigerian Association of Mathematic&hysics Volume 1(November 2006275 - 292
Fairing NURBS Curve  John A. Akpobi and Ufuoma D. Ebedi J. of NAMP



to another. Although the knots can be used to s&ehébape control of the curve, NURBS has an additishape
control tool (the homogeneous coordinate vectorickvigontains weights, each attached to a vertemrtptithese
weights are well specified and manipulated concamitvith the corresponding knot, a better shaperobaf the

curve can be achieved [1] and [23]. To this end,propose that for any defective kn®t, , the corresponding
weight should bd‘lj_k+2 since this weight is capable of fine tuning (cagsninimal shape changes in) the curve at

the point, X; -
The behaviour of the curve with respect to a paldiccontrol point when the associated weight scaeed
values it <1 and h>1, 00 0< h < n+1) is of interest. The curve tends to increase d@sitive convexity

relative to a vertex point when the correspondirggivt is decreased fronh =1to h = 0. Alternatively, Wherhi

is increased from 1 to say n+1, positive convexityds to decrease. At both extremé};z( 0 and hi = n+l),

positive convexity is maximum (making the curve douthe vertex point), and zero (making the cunad)fl
respectively.

3.1 Identification of defective curve segments

A fair curve is one that satisfies its aesthetrodpicibility and functional requirements. In otheords, the
curve should look visually pleasing as well as eres the expected performance characteristic. Alyobis
objectively beautiful if it is aesthetically comatit as may be judged by every user. To apply thieept to shape
modelling of objects, it is necessary that a slgtajuality measure be specified. This quality meashould be
defined mathematically so as to be able to autoth&téairing process. Automatic faring has two madvantages.
First, it makes possible high-speed computations tfeducing labour cost/time. Second, the resuitaimed are
more consistent, thus more acceptable universally.

Burchard et al [1] theorised that: beautiful obgeate free of unessential features and simple @igde
Based on this concept, a product will meet itshatst requirements if it is characterised by a stim@md visually
pleasing shape. With the development and use bhtéagies such as CAM, CNC, robotics etc., it isessial that
products be sufficiently investigated for geomefairness during their design. In this way suchdpiais will meet
their aesthetic, producibility and functional demianGeometric modelling has revealed that unesddrtitures in
products may include cups, curvature extrema, loapd unwanted inflection points which in turn riegudifferent
mathematical techniques for identifying them. Fonwenience, these unwanted features (defects dlengurve
segments) may be grouped into the following twes#s:

Class | Curve Defects

These defects are due to the presence of inflegibamts. Basically an inflection point, where itigts in
the curve may not represent a defect if it is ieghlby the vertex points in that vicinity. In thiase the convexity of
the curve is prescribed. On the other hand an uradanflection point (in a point segment) is notialsy implied
by the vertex points in that vicinity and as subl turve must be modified in that region so as teimize the
effect of the unwanted feature.

Class Il Curve Defects

These defects are due to the presence of suchrdsads loops, curvature extrema, cusps (discotigsli

etc. It is necessary in geometric modelling thaséhfeatures be identified, and the curve modifiedre they exist
SO as to optimize the curve.
This paper features the use of curvature plot éntifly defective curve segments. Curvature ploésgarod tools for
investigating the behaviour of a curve with respiecthe knots. From the curvature plot, it is pblgsito infer
whether an inflection point exists within a knoteémal or not. In this sense it can be used tovdeai suitable
fairness indicator. The curvature plot could therefbe regarded as an “interior property” as itapable of
revealing defective segments which ordinarily may nave been noticed cosmetically. For convenietie,3D
NURBS curve is here modelled parametrically in 2D a

C(t) =[x®), y(t)] (2.5)

To investigate this curve for fairness using thevature plot, we compute the plane curvature, glvethe relation:
X(t) y(t) — y(t)X(t
= XOIO YO0

[X(®)" +y(t)°]72

(2.6)
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The termk (t) is a signed quantity; as a result changes inigre« (t) as we progress from one knot to

another may be given different interpretations. &dypical curve, a change in sign &f{t) from one reference
point (knot) to another signifies the presenceroirdlection point within the said interval. Howaydecause of the
multiplicity of knot values at both ends, the cunra plot will be a plot ofk(t) againstX in the rangeX, <X <

X,+2- The existence of an inflection point in a cunegment is characterized by a curvature sign change.

Mathematically, this makes possible the producadjbining curvature values with opposite signs ¢oabnegative
value. This concept can reveal the presence ofiftection point. Hence the criterion for existerafean inflection
point is defined thus:

Criterion |

For a curve segment characterized by end kXp&ésdX ,, , an inflection point exists for this interval He
condition given by equation (2.7) holds:

K(X).K(%,) <0 (2.7)
Although, Criterion | can be used to identify a point of inflectionc#n not show whether it is desired or
unwanted The question then isvhen is an inflection point desired or unesseftial
An inflection point when it exists in a curve segmé desired when and only when it is implied bg tefining
vertex points. To prove whether an inflection pasmimplied by the defining vertex points it is essial that we
examine the change in convexity of the polygon asweve from segment to segment within the regioimtefest.
In our formulation in Sections 2.2 and 2.3, we cadi that a single segment is defined by four vepeits.
Typically, segment 1 is defined by vertex point8;, B,, B,and B, , segment 2 is defined by vertex points:

B,, B,, B, and B, . Applying this notion, we determine the vertexrgsifor (the last segment), segmentk +2 as

B, ., Brss Bows @NA B .. TO determine whether there is a change in conyddtween any two segments we

consider the positions of the other three verteitpowith respect to the initial vertex point. Fimstance for
segment 1, the positionB,, B, and B, are investigated relative t8,. This derivation can be summarized in

Criterion Il below.
Criterion Il

An unwanted inflection point exists in a curve seginwhen the inflection point is not implied by the
vertex points defining that segment and is charaet@ by a constant sign in the “relative gradientsWhen
Criterion 1l is applied to the defining vertex points of a segtwith inflection point, if there is a sign chan
relative gradient within the segment, then theeictibn point is ‘implied’.

This can be explained by the change in convexityr instance, for a cubic NURBS curve with five semts, the
relative gradients in each curve segment are:

Segmentl
A BBy
. BXZ - Bxl
A -BeBy
“? BX3 - Bxl
A -BeBy
. Bx4 - Bxl
Segmen®
A -Br=By
. BX3 - Bx2
A -BuBp
22 Bx4 - Bx2
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Dy, = =

. Bx5 - Bx2
SegmenB

A -BuByg

" Bx4 - Bx3

A =Bs By

23 Bx5 - Bx3

A =Brs By

* Bx6 - Bx3
Segmentd

A -BsB

14 Bx5 - Bx4

A =BrBy

“ BxG - Bx4

A -BrBu

> Bx7 - Bx4
Segmenb

A BBy

o BXG - Bx5

A BBy

® Bx7 - Bx5

A -BeBs

* Bx8 - Bx5

If there is a sign change in relative gradientany of the segments, then the inflection poinit @xists in
that segment, as identified Byiterion ) is desired.Class Ildefectsn the curve can be identified if we investigate
the behaviour of the curvature change with respeetrc length of the curve. I8lass Il curve defectswe have
unwanted features such as cusps, loops, and fane
Cusps
These are discontinuities in the curve. A discantinin the curve is characterised by a sharp chaingthe
curvature. This can be identified by investigatihgchange in curvature with respect to a correspondihgnge in
arc length.

Loops
These are characterised by a monotone bendingeofuhve to one side. In other words a curve witlotone
convexity or monotone concavity has the tendendphing a loop.
Flat regions
Flat regions in the curve are characterised byllsthange in curvature with respect to a large gesin arc length.
To investigate a curve for these features we coenghe change in curvature with respect to a

corresponding change in arc length. This computdias to be investigated for knoxg to X,,,.
The curvature change with respect to a correspgrediange in arc length is given by the expression:

P10 (3.6)
P d c(t)
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dx()  det)

KoV = dt dt
_k®
DKp(t)—C(t)

Where K(t) and ¢(t) are first differentials of«(t) and c(t) respectively with respect to the curve
parameter, t.
For a better approximation of the quantid{t) over the range of the entire curve we take its ndremce
[20]:
K,(t) = ﬂ (3.7)
[e®]

Equation (3.7) can be used to investigate the ciaveusps, loops and flat regions.
Basically, When‘ K, (t)‘ is very large, it mean}sl'( ® ‘ >>|| c(t) || and the corresponding curve segment

will give a bulging or looping tendency. Howeve‘r,‘il(p (t)‘ is very small, ther‘/'( (t)‘ <<|| c(t) || may likely
result, leading to the formation of flat regionsisps represent sharp changes in the curvatureTadentify cusps
in the curve, we investigate the term, (t) for two adjoining knots. The key idea here is tha curvature
distribution should be made more even from one kmdhe other. This can be achieved by taking ifferdnce of
K, (t) for two adjoining knots, and minimizing this difésce. For any arbitrary knot , the difference in
curvature distribution leftwards and rightwards ¢enminimized by taking the modulus of the diffarerbetween
K,(%,) and k (X,,). This quantity, if minimized can be used to endoral shape correction, hence the

local fairness indicator [20]: L = ‘AK o (1) ‘ (3.8)
Equation (3.8) is the general form of the followithgee equations:
LK), O i=k (392)
L&), O i=n+2 (3.9b)

L =[ k0, (%) =K, ()|, Dk +1<i<n+1 (3.9¢)
Equations (3.9b) and (3.9 are intuitively specified as stated above so atdude any modification (whenever it
results) at the boundary knotg, and x_.,. If we minimize the discrete summationlgf (for all points with

respect to the defective point), it is possibldéwe an approximately better curve. In this setieeterm could be
assumed as a global fairness indicator, henceetisittbn [20]:

n+2

G = Z L, (3.10)

Equation (3.10) is a measure of the change in theature distribution of the curvature plot. Thakéhere is
obviously to minimize this change as this can Imat@mount to a modification of the global shapehef turve. We
therefore adopt a suitable nonlinear optimizatieohhique [24] and [2] which is capable of searchiog the
appropriate knot and weight that could return aatimer curve.

3.2 Nonlinear Optimization Process

The optimization process [24] and [2] finds thethle®t and weight values at the defective curversag
using the quality measures discussed in SectionThé curve fairing problem is a highly nonlineaolpem and
can best be attacked by a nonlinear programmirttnigae. The first step to solving this problem gsasuitable
nonlinear program technique is to properly foraeilthe problem as a nonlinear program.

In formulating the curve fairing problem as a norebr program to make suitable for particular
application, we notice that the problem has thrasp
Objective Function
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Min F(X) = f(X,,%X,,...,X,)
The objective function is the global fairness meass defined earlier by equation (3.10).
Design Variables

X(%, %50, X,)
There are only two variables in this problem; timetk x, and the corresponding weight,
defined values at the defective curve segment.
Constraints

g,(X)20, j=12..,n
The constraints are (a) a non-decreasing knot v&gtb fixed end values, and (b) a homogeneousdinate vector
with fixed end values. The key idea in this NLBheique is to evaluate the objective function aedes of points
which form a carefully directed search across tesible region (the pool of possible values, basedhe step
length, that satisfy the above constraints). Tteecdeprocedure is described in terms of base paimistemporary

positions (which represent original and perturbatlies of X and h , respectively). We start at some initial

.- These are the pre-

ks
feasible points known as the first base point, tiethby:X = B = (bl“’)sz“’),... ,b®)

A step lengthd,; (which is the j" component of the vectdD, , with all other components zero) is chosen
for each variablexj . we now vary each variable in turn by amountg or -9, each time accepting the change if
it leads to improvement. Having varied each vaeiate reach a new base poiBf’ . EvaluateF (B ) then vary
the variableX; and then, evaluaté (B +D, .)f F(B® +D,) < F(B"), then the poin(B“ +D, )s called the
temporary position and we denote it BY”. If F(B® +D,)> F(B®) then we evaluateF(B” —-D, gnd if
F(B® -D,) < F(B?)then (B” -D, ) is the temporary position. If this also gives ngpiovement therB® is
designated the temporary position. Next, we vagywhriablex, about the temporary positiof® instead of the
original base poinB®, and T, is computed as the new temporary positiomgs=2BY —B®. We then repeat
the procedure for computin'gﬂ.(‘” with the superscript zero replaced by 1. If theafitemporary position is an

improvement on the objective function value Bf , this is established as the new base pdatt,. Then we
compute a new temporary positidi’ = 2B® -B® and carry out exploratory moves aroufd . However, if this

action leads toF (T”) = F(B® )wve abandon the pattern search and continue vétgaence of exploratory moves
about B® .

3.3 Fairing methodology

In this section, we present the general methodologfairing a typical NURBS curve. Two basic anery

important conditions which the final curve musisfgtare:

0] Shape preservation,

(i) Performance characteristics.

To ensure that these conditions be satisfied, utes must be faired based on the quality meadlisesissed in
Section 3.2 above.

This paper features a fairing methodology thatadsedl on concepts from two fields: Boolean aritheneti
and set theory. Defects are faired according tér t@rection index,I” .The correction index is set based on
boolean arithmetic in a sense that only the sedegtdective point to be faired at a particularanste is set af =1
and all others set dt = 0. After correction, the previous point (correctaminp) is set atl’ =0 alongside others
except the immediate next point in the rank oradri¢h is now set al” =1). Class Idefects carry a higher rank
than Class Il defects and as such are faired béfertatterQ is a set ofn number ofClass Idefects defined by:
Q=1{a.,9,....,q,} and ranked in the following decreasing sequemcen, >...>q, where m<n-k+2 Risa

set ofClass Il defects defects are lump@diefined byrR ={r }. The universal set of defects existing in thevelis
given by the expressiorf = QU R.. From the above, it follows that
n(Q) = number ofClass Idefects identified
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N(R) = number ofClass Ildefects identified

n(&) = total number of defects identified

Assuming thatn(R) = 0 is always false, the following are true:

If n(¢)> n(R), thenn(é) - n(R) number ofClass Idefect(s) exist(s).

If however n(&) =n(R), there exist n&lass ldefect.

Based on the above argument, the following stepsrite the fairing methodology.
Stepl: IfQ#0, (else gotStep pandm>1; T, =L T, =0, 0q0Q-{q} I, =0 OrOR
Step2: Minimize G with respect tog; .

Step3: RepeaBtep 1by settingl', =L T, =0,0q0Q-{q,} I =0, UrIR

Step4: Minimize G with respect taqg, .

Step5: Perform this operation tiII'qm =1 and afterwards go tBtep 6

Step6: If =R, thenQ =10, hence sef, =10r R andl, =0,00q0Q .

Step7: Minimize G with respect ta;
Step8: Repeattep 6andStep 7subsequently, until the algorithm converges.

4.0 Implementation

In this work a software has been developed spgdialing Microsoft) to implement the proposed curve
fairing scheme. To use the software, the desigmauts the orderk of the curve, the number of defining control
points, +1), the control pointsB; = [By;,  By] and the homogeneous coordinate vector, [H]. Tiognmam then
automatically computes local variables such askti@ vector, [X], the B-spline basis functiori$(t) and the
rational B-spline basis functiong/(t). Further, the program proceeds to compute thenetr&c NURBS curve and
uses values of the parametric curve to plot th&lrdurve. The program thereafter computes threl tthérivatives of
the rational B-spline basis functions and uses th@mompute the curvature values (which are in wsaed to
generate a curvature plot). The program then Gsiésria | and Il in conjunction with the global fairness indicator
to identify all defects in the curve. The variabtesbe optimized are then recommended for optindnaby a
nonlinear optimization method [24] and [2]. Theioptation scheme finds the best knot that coula givminimum
value of the objective function. The values areomatically used to plot the final, fair curve. Higahe software
displays the initial curve, curvature plot and fif@ptimum) curve on its form, and also computed displays on

the form, the number of iterations, computer tifiee {he optimization process) and the percentageorement on
the curve.

4.1 Examples

Examplel

The following control points define a fourth lexelrve which represents the feature line of thetrggm of
a chair.

B, = 1.5, 0
B, = 0, 2
B, = 1,5
B, = 4,6
B, = 9,
B, = 12 , 14

In realizing his design objective, the designerciies the following homogenous coordinate vectasdd on
intuition [H] =1[1, 0.5 0.75 0.75 0.25 1pJestigate his design process using the proposeshsc
Example2

A shoe stylist has to design a shoe by modelliegdature line of the front upper section of a danspoe.
He concluded that he could realize his objective spgcifying the defining control points and inpudti a
homogenous coordinate vector. If he specifiesalieviing control points:
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B, = 0,0
B, = 0, 2
B, = 2,2
B , = 4, 2
B, = 6, 3
B, = 7,5

and homogenous coordinate vector
[Hl=[1 0.71 1 1 1 1].
Investigate his approach using the proposed shamteot schem

Example3

A SCARA robot palletizer is to be installed in tB8H of an existing beer brewing facility. The firm
decided that the existing installation in the BBélunaltered due to the huge costs that may beviedoHoweve!
for the robot end effector to transfer objects fritgrstation frame (the roller conve) to its goal frame (the pallet
a path defined by the following control points had¥e accurately followe

B, = 2.5,0
2
3

4

5

W W W W @
1

N O O O

g o ~ D [l

6
If a homogenous coordinate vector

[H1 =[1 1 1 0.95 1 1]
is intuitively specified by the designer;alize the following objectives using the proposkdpe controscheme:
(a) accuate path following, and (b) minimum discontinuiteleng the travel path of the robot end effe:

4.2 Results

The results of the curve fairing solution to thEx@mple are shown in Figure-3.

Initial cumre
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Figure 1a: Initial Curve of Y(T) against X(T) for Example 1(Chair right arm)
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Figure 1b: Curvature Plot of K'(T) against T for Example 1(Chair right arm)
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Figure 1c: Final Curve of Y(T) against X(T) for Example 1(Chair right arm)

Initial curve
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Figure 2a: Initial Curve of Y(T) against X(T) for Example 2 (Shoe upper sectiol
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