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Abstract 
 

This paper is concerned with the construction of some classes of multistep 
methods for the numerical integration of initial value problems in ordinary 
differential equations.  For this purpose we employ the Chebyshev polynomials as 
basis function in a non-perturbed collocation approach.  The continuous schemes 
thus obtained yield four classes of initial value solvers namely the Optimal order 
methods, the Adams-Bashforth methods, the Adams-Moulton methods and the 
Backward differentiation formulae at appropriate grid points.  A theorem in 
support of the accuracy of the continuous schemes is also established. 

 
 
1.0 Introduction 
 

Recently research on the formulation of initial value solvers as continuous approximation schemes for the 
integration of ordinary differential equations has progressed tremendously and reported by quite a number of 
authors, some of whom have employed either the monomials {xr}, r = 0(1)n, as in [4], [6], [18], [14] or the so-called 
canonical polynomials {Qr(x)}, r = 0(1)n, as in [1], [2], [4] of the Lanczos method [9], [11] as basis functions.  Some 
of these earlier works will be reviewed briefly in Section 2 of this paper. 

It is, however, desirable to consider technique which are based on the well-behaved Chebyshev 
polynomials {Tr(x}, r = 0(1)n, which are known to oscillate with equal amplitude in the entire range of definition, 
thus ensuring even distribution of error, in contrast with the popular Taylor series which diminishes in accuracy as 
one moves further away from the origin/centre.  As will be shown later in this work, this characteristic feature of 
Tr(x) is also exhibited by the continuous approximant which we shall propose here and which we have formulated 
based on Tr(x). 

Consequently, for the initial value problem (IVP) 
 y′(x) = f(x,y(x)),  a ≤ x ≤ b     (1.1a) 

y(a) = ya        (1.1b) 
we shall seek an approximation of the form 

)()()(
0

xyxTaxY rr

n

r

≅=∑
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     (1.2) 

over the segmented interval. a = x0 < x1 < x2 < … < xn-1 < xn = b and where the points {xr}, r = 0(1)n, have uniform 

spacing  nabh )( −=  such that xr = x0 + rh.  For convenience and without loss of generality we shall let a = 0 in 

the differential system (1.1) so that xr = rh and since by appropriate transformation (1.1) may be redefined for the 
interval [o,b] .  This will be our concern in Section 3 of the paper. 
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 As stated earlier, Section 2 of the paper focuses on a brief review of earlier work on the subject.  In Section 
4, we shall provide some numerical evidences in support of this work.  Finally we shall end the paper with some 
concluding remarks in Section 5. 
 
2.0 Review of earlier works 
 

We shall briefly discuss here a method, which is based on the power series in a non-perturbed collocation 
technique, and another method based on the canonical polynomials in a perturbed collocation procedure, as classical 
cases of earlier works on the subject matter. 
 
2.1 Methods based on Power Series 

 
We review here the work reported in [4] and [10] for a second degree approximant of y(x) as a particular 

case.  To this end we insert 
   Y(x) = a0 + a1(x) + a2 (x) ≅  y(x),     xk ≤ x ≤ xk+1  (2.1) 
in (1.1a) and then collocate the resulting equation at xk and xk+1 as well as interpolate (2.1) at xk+1 to get the system 
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We solve this system and subsequently obtain from (2.1) the continuous scheme 
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At the grid point xk+2, this yields the two-step Adams-Bashforth explicit scheme 

   )3(
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h

yY −+= ++     (2.4) 

 
2.2 Methods Based on Canonical Polynomials 
 
 We review here a perturbed method reported in [ ] and which is based on the canonical polynomials 
{Qr(x)}, defined by LQr(x) = xr,    r ≥ 0, where L is a linear differential operator associated with (1.1a)..  For this 

purpose we seek nkkrr

n

r

xxxxyxQaxY +
=

≤≤≅=∑ ),()()(
0

  (2.5) 

where Qr(x) is given by   Qr(x) = xr – rQr-1(x)   (2.6) 
And which satisfies exactly the perturbed problem 
  Y′(x) = f(x,Y(x)) + τPn(x),   Y(xk) = Yk, xk ≤ x ≤  xk+n  (2.7) 
The free τ parameter in (2.6) is to be determined along with the ar’s and Pn(x) is the nth degree Legendre polynomial 
valid in (xk, xk+n)..  We collocate (2.6) at xk+r,  r = 0(1)n and interpolate (2.5) at xk to get the system. 
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From this and (2.5) we get a continuous scheme which at the grid point xk+2 yield the Simpson’s scheme 
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3.0 Methods Based On Chebyshev Polynomials 
 
 We shall now consider here a modification of the method of the preceding section by seeking an 

approximation   pkkrr

M

r

xxxxyxTaxY +
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0

 

over each of the sub-interval [xk, xk+p]  of [a,b]  where M and P will be appropriately chosen so as to derive four 
classes of multistep methods . 
 So then we shall solve the non-perturbed IVP: 
   Y′(x) = f(x, Y(x)), xk ≤ x ≤ xk+p    (3.1a) 
     Y(xk) = Yk    (3.1b) 

pkkrr

M

r

xxxxyxTaxY +
=

≤≤≅= ∑ ),()()(
0








 −−= ∑
=

1
22

)(
0 n

k

nh

x
xTa rr

M

r

   (3.6) 

The rth degree Chebyshev polynomial Tr(x) in (3.2) is defined as 
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and satisfies the recurrence relation 
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Of all monomials in [a,b] , ( ) )(
1)( xTC r

r

r

−
 has the least maximum magnitude.  Hence the desirability of Tr(x) in this 

work. 
 
3.1 Optimal Order Methods 
 
 We derive here continuous formulation of two optimal order initial value solvers for (1.1) by choosing M = 
n+1 and P = n in (3.1) – (3.2), that is 
   Y′(x) = f(x, Y(x)), xk ≤ x ≤ xk+n    (3.5a) 

   Y(xk) = Yk     (3.5b) 
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We shall collocate (3.5a) at the (n+1) points xk+r,   r = 0(1)n and interpolate (3.6) at xk to give the (n+2) equation for 
the unique determination of ar,  r = 0(1)n+1, in (3.6).  So doing we have 
    Y′(xk+r) = fk+r ,   r = 0(1)n      

   Y(xk) = Yk     (3.7) 
Let us now consider specific cases of (3.6) – (3.7). 
3.1.1 A One-Step Method (n = 1) 
 Suppose n = 1 in (3.7) so that 
    Y′(xk) = fk 

    Y′(xk+1) = fk+1 
    Y(xk) = Yk 
That is 
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We solve this system to get 
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We now insert these in (3.6) with n = 1 to get the continuous scheme 
[ ]110 )()()( +++= kkk fxfxhYxY ββ    (3.8) 
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We evaluate (3.8) at xk+1 to obtain the optimal order one-step method 

 ( )kkkk ff
h

YY −+= ++ 11 2
       (3.9) 

otherwise called the Trapezoidal method. 
 
3.1.2 A Two-Step Method (n = 2) 

For a two-step continuous formulation we now consider (3.6) – (3.7) with n = 2 to have 
Y′(xk) = fk 

   Y′(xk+1) = fk+1 
   Y′(xk+2) = fk+2 
   Y(xk) = Yk 
This leads to the system 
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whose solution yields the values 
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 We insert these in (3.6) with n = 2 to get the continuous scheme 

[ ]22110 )()()()( ++ +++= kkkk fxfxfxhYxY βββ     (3.10) 
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At the grid point xk+2 , (3.10) gives the discrete form 
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which is the Simpson’s optimal order two-step method. 
 The procedure may be continued to obtain higher order methods.  We shall now proceed to the Adams-
Bashforth methods. 
 
3.2 The Adams-Bashforth Method 

 
We construct here some continuous schemes which yield Adams-Bashforth explicit methods at the grid 

points by letting M = P = n in (3.1) – (3.2) to have 
Y′(x) = f(x, Y(x)), xk ≤ x ≤ xk+n   (3.12a) 

    Y(xk) = Yk     (3.12b) 
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For the unique determination of the (n+1) – coefficients ar, r = 0(1)n, in (3.13) we shall collocate (3.12) at 
the n points xk+r, r = 0(1)n-1, and interpolate (3.13) at xk+n-1 to give 
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We shall now consider specific cases of (3.13) – (3.14). 
 
3.2.1 A One-Step Method 

When n = 1 in (3.13) – (3.14) we have 
Y′(xk) = fk 
Y(xk) = Yk 

That is 
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scheme   kk fxhYxY )()( 0β+=    (3.15) 

where ,)(0 h

xx
x k−=β   At the grid point xk+1 this yields the one-step Adams-Bashforth explicit method  

   Yk+1 = Yk + hfk    (3.16) 
From (3.16) we obtain fk for our proposed continuous scheme (3.15). 
 
3.2.2 A Two-Step Method 

When n = 2 in (3.13) – (3.14) we have  
Y′(xk) = fk 
Y′(xk+1) = fk+1 
Y(xk+1) = Yk+1 

This leads to the system 
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whose solution is 
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These together with (3.13) for n = 2 gives the continuous scheme 
    [ ]1101 )()()( ++ ++= kkk fxfxhYxY ββ    (3.17) 
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From this we get the two-step Adams-Bashforth method 
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2

    (3.18a) 

3.2.3 A Three-Step Method 
 For a three-step method (n = 3), from (3.13) – (3.14) we have 
    Y′(xk) = fk ,, Y′(xk+1) = fk+1 

Y′(xk+2) = fk+2,, Y(xk+2) = Yk+2 
These leads to the system 
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We solve this to get  
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These with (3.13) for n = 3 yields the continuous scheme 
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At the grid point xk+3 this yields the three-step Adams-Bashforth method 

    ( )2123 23165
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YY   (3.19) 

We proceed this way to obtain methods of higher step numbers. 
 
3.3 The Adams-Moulton Methods 
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 For a continuous formulation of the Adams-Moulton methods we set M = n + 1 and P = n in (3.1) – (3.2) 
and thus have 

Y′(x) = f(x, Y(x)), xk ≤ x ≤ xk+n   (3.20a) 
      Y(xk) = Yk   (3.20b) 
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We collocate (3.20) at xk+r, r = 0(1)n and interpolate (3.21) at xk+n-1 for the determination of the (n + 2) coefficients 
ar, r = 0(1)n+1 in (3.21).  So then we have 
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Let us now demonstrate the techniques for specific cases of (3.21) – (3.22).    
 
3.3.1 A One Step Method 

When n = 1 in (3.21) – (3.22) we have 
   Y′(xk) = fk,  

Y′(xk+1) = fk+1 
   Y(xk) = Yk  
From these we get the linear algebraic system 
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and from which we obtain the values 
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We insert these in (3.21) for n = 1 to have the continuous formulation 
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The corresponding discrete form is the one-step Adams-Moulton scheme 

    ( )11 2 ++ ++= kkkk ff
h

YY    (3.24) 

also known as the Trapezoidal method. 
 
3.3.2 A Two-Step Method  

Let n = 2 in (3.21) – (3.22) so that  
Y′(xk) = fk,, Y′(xk+1) = fk+1 

  Y′(xk+2) = fk+2,, Y(xk+1) = Yk+1 
From these we get the linear algebraic system 
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which yields the values 
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We insert these in (3.21) with n = 2 and so obtain the continuous scheme 
[ ]221101 )()()()( +++ +++= kkkk fxfxfxhYxY βββ   (3.25) 

where in this case 
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From this we get the two-step Adams-Moulton implicit method 
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From (3.26 we determine fk+2 for our proposed continuous scheme (3.22). 
 
3.3.3 A Three-Step Method 
 For a three-step method we set n = 3 in (3.21) – (3.22) and thus have 
   Y′(xk) = fk ,, Y′(xk+1) = fk+1,  Y′(xk+2) = fk+2    

Y′(xk+3) = fk+3,, Y(xk+2) = Yk+2 
These lead to the system 
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the solution of which is 
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We insert these in (3.21) with n = 3 to have the continuous scheme 
[ ]3322110 )()()()()( +++ ++++= kkkkk fxfxfxfxhYxY ββββ    (3.27) 
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and which at the grid point xk+3 yields the three-step Adams-Moulton method 
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YY   (3.28) 

 
3.4 The backward differentiation Formulae 
 
 We shall now derive the continuous formulation of the backward differentiation formulae (BDFs) by letting 
M = P = n in (3.1) – (3.2) and thus we have 

Y′(x) = f(x, Y(x)), xk ≤ x ≤ xk+n    (3.29a) 
   Y(xk) = Yk      (3.29b) 
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We shall collocate (3.29) at the only point xk+n, and interpolate (3.30) at the n-points  xk+r, r = 0(1)n - 1 and thus 
have 
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Let us now consider specific cases of (3.30) – (3.31).    
 
3.4.1 A One Step Method 

When n = 1 in (3.30) – (3.31) we have that 
  Y′(xk+1) = fk+1 
  Y (xk) = Yk  
That is 
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whose solution yields the values 
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1
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   11 2

1
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We insert these in (3.30) for n = 1 to have the continuous scheme 

110 )()()( ++= kk fxhYxxY βα     (3.32) 
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where 
h

xx
xx k )(
)(,1)( 10

−
== βα   

At the grid point xk+1 this yields the one-step backward differentiation method. 

    11 ++ =− kkk hfYY     (3.33) 

From this we obtain fk+1 for the proposed continuous scheme (3.32). 
 
3.4.2 A Two-Step Method  

For a two-step formulation, when  n = 2 in (3.30) – (3.31) we have  
Y(xk) =Yk,, Y(xk+1) = Yk+1 

  Y′(xk+2) = fk+2 
This yields system 
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whose solution gives the values 
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By inserting these in (3.30) with n = 2 we get the continuous scheme 
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The corresponding discrete form is the two-step backward differentiation formulae 
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3.4.3 A Three-Step Method 
 For the case when n = 3 in (3.30) – (3.31) we have 
  Y(xk) = Yk ,, Y(xk+1) =Yk+1, 

Y(xk+2) = Yk+2,, Y′(xk+3) = fk+3 
From this we get 
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whose solution yields the values 
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These values inserted in (3.31) for n = 3 yields the continuous scheme 
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The corresponding discrete initial value solver is the three-step backward differentiation formulae 
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We determine fk+3   from (3.37) for the continuous scheme (3.36).  We proceed in this manner to obtain the results in 
the Table 1 below which represents values for the k-step method 
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Table 1:Coefficients of Backward Differentiation Methods 
 
 

K α0 α1 α2 α3 α4 α5 α6 βk 
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4..0 Accuracy of the new continuous scheme 
  
 We state here with proof a theorem in support of the accuracy of the Chebyshev based methods viz-a-viz 
the power series methods.  
 
Theorem 4.1 
 Suppose 
 (i) y(x) is continuous in the closed interval [a,b]   
 (ii) y(x) is a solution on [o,b]  of the initial value problem (1.1) 
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Then 
 Y1(x) is a better approximant of y(x) on [o,b]  than Y2(x). 
Proof 
 Let us define the error function. 
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Now we need to show that 
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as n → ∞, we have that 
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Corollary 4.2 
 Suppose that 
 (i) y(x) is a continuous in the closed interval [xk, xk+n] 
 (ii) y(x) is a solution on [xk, xk+n] of the IVP 
  y(x) = f(x, y(x)),  y(xk) = yk, xk ≤ x ≤ xk+n 
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Then Y1,k(x) approximates y(x) better than does Y2,k on [xk, xk+n] . 
 
Proof 
Set  rkrrrkrkr ccddcc ,,, ,, ====  

)()(,,, ,11, xYxYxbxodd knkkrkr ==== +  and  )()( ,22 xYxY k=  in the above proof and  

the conclusion follows immediately. 
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5.0 Conclusion 
 
 A method which employs the Chebyshev polynomials as basis functions in a multistep collocation 
technique for a continuous formulation of some classical initial value solvers has been presented.  Four popular 
multistep methods namely the optimal order methods, the Adams-Bashforth explicit methods, the Adams-Moulton 
implicit methods and the Backward differentiation methods have thus been recovered. 
 A (k+1)–step Adams Bashforth step may be coupled together with a k-step Adams-Moulton method in a 
predictor-corrector algorithm.  The optimal order methods are the most accurate amongst methods of the same step-
number, and the backward differentiation formulae are desirable in solution of stiff-problems. 
 Our major attraction of all these continuous formulation is in their ability to yield solution at the off-points 
without requiring additional interpolation and at no extra cost (see [2] and [3]). 
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